
Multipoint-to-Point Session Fairness in the Internet
Pradnya Karbhari, Ellen Zegura, Mostafa Ammar

Networking and Telecommunications Group, College of Computing
Georgia Institute of Technology, Atlanta, Georgia 30332

Email: {pradnya,ewz,ammar}@cc.gatech.edu

Abstract— In the current Internet, many applications start
sessions with multiple connections to multiple servers in order
to expedite the reception of data. One may argue that such
aggressive behavior leads to unfair sharing of bandwidth using
the current per-connection rate allocation methods. Sessions with
more connections get a higher total rate than competing sessions
with fewer connections. In this paper, we explore the issue of
fairness of rate allocation from a session point of view. We define
a multipoint-to-point session as a set of point-to-point connections
started from multiple servers to a client in order to transfer an
application-level object. We present session fairness definitions,
propose algorithms to achieve these definitions, and compare
the resulting allocations with the traditional connection fair
algorithm. It is clear from our evaluations that the session fair
algorithms proposed achieve a more fair distribution of session
rates than the connection fair algorithm, by redistributing the
rates claimed by sessions with more connections. We present
some initial thoughts on the challenges involved in implementing
the session fair algorithms proposed.

I. INTRODUCTION

Content delivery in the current Internet has evolved beyond
a simple point-to-point connection from a server to a client.
Many retrievals now involve parallel point-to-point connec-
tions from multiple servers to a single client. This shift is
largely an artifact of the competition among content providers
who are motivated to employ aggressive methods for content
delivery in an attempt to give better delay and bandwidth
performance than their competitors.

Content delivery networks (CDNs), replicated servers and
caches, are some of the means used by content providers for
distributing content from servers in close proximity to clients.
These servers typically do not cache all the data from the
origin site, but only a subset of the data. Thus, a single request
for a page is satisfied by setting up multiple connections to
different servers.

For example, when a user requests the webpage
www.cnn.com, the data is retrieved from the origin server,
an advertisement server, an image server, and a couple of
CDN servers. Krishnamurthy et al. [1] have observed in a
January 2001 study that the average number of CDN servers
contacted by a client is somewhere between 3.4 and 10.3, with
the median being around 6.

Recent proposals for content delivery of streaming media
[2]–[4] take advantage of path diversity between multiple
servers/peers and clients. These approaches use different forms

This work was supported by NSF grant ANI-9973115 and the Georgia Tech
Broadband Institute.

of content coding (e.g. multiple description coding) to produce
complementary descriptions of content, which are then served
from multiple servers/peers to the same client.

Companies like PeerGenius.com [5], CenterSpan.com [6],
digitalfountain.com [7] and parallel file-download applications
such as those proposed in [8] start multiple connections to
multiple servers in order to expedite the reception of data,
thus improving user-perceived performance.

The conclusion we draw from these example applications
is that data transfer is increasingly being performed over a set
of point-to-point connections from multiple servers to a single
client, and we can expect this trend to continue. We refer to
such a set of connections as a multipoint-to-point session.

The long-standing max-min fair [9] rate allocation strategy,
which proposes a fair allocation for competing connections,
is based on a network with point-to-point connections. It
allocates rates to connections, considering each connection
independently. In the current Internet, this strategy favors ses-
sions with more connections because a session with multiple
connections from multiple servers to a single client will be
given a higher total rate than a session with a single connection
between one of the servers and the client.

For example, if two connections belonging to a single
session are bottlenecked at the same link, the max-min fair
rate allocation strategy says that each connection should get
an equal share at that link. Thus, the session as a whole
will receive twice as much bandwidth as any other single-
connection session bottlenecked at that link. One may view
this as being “unfair” from the point of view of a session with
fewer connections. In this work, we explore the possibility
of treating sessions “equally”, irrespective of the number of
connections they comprise1.

In general, the data path of a multipoint-to-point session
forms a tree with data flow from the leaves to the root, as
shown in Figure 1. The whole network will thus have a set of
senders and a set of receivers, with each session comprising
some of these senders and a single receiver2. Each connection
in the session might have different individual bottlenecks. The
data path of a session might thus have multiple bottlenecks and
sharing of these bottlenecks at a session level, as opposed to
the current connection-level sharing, is a challenging problem.

1The appropriate use of our mechanisms is a matter of policy.
2For simplicity, we assume a network with only point-to-point and

multipoint-to-point connections. We expect that point-to-multipoint connec-
tions can be accommodated as a set of point-to-point connections.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

serverclient server
server

server

client
server

Fig. 1. Multipoint-to-point sessions in the Internet

Our goal in this paper is to explore this issue of fairness of
rate allocations from a session perspective. This problem has
been alluded to as an open problem by Balakrishnan et al. [10]
and Padmanabhan [11]. In particular, we look at multipoint-
to-point sessions, which are defined as a set of point-to-point
connections started from multiple servers to a client in order
to transfer an application-level object. We explore answers to
the questions:

• What are “reasonable” definitions for session fairness?
• How do connection-fair allocations differ from session

fair allocations?

We use Raj Jain’s fairness index [12], variance of session
rates, and mean, minimum and maximum session rates as
quantitative metrics to compare rate allocations. We show
that the fairness index for session rates improves with the
session fair allocations, while maintaining or improving overall
utilization, in comparison with the connection fair allocation.
Also, the variance and minimum of the session rates achieved
with the session fair allocations are lower than those with the
connection fair allocation.

The outline of the paper is as follows. We start with related
work in Section II. We elaborate on the problem statement
in Section III. We then formalize the definitions of session
fair allocations, and give algorithms to achieve the same in
Section IV. The evaluation results comparing the session fair
algorithms with each other and with the original connection
fair algorithm are presented in Section V. Implementation
issues are briefly outlined in Section VI, and we conclude
in Section VII.

II. RELATED WORK

Previous work, such as Webmux [13], Ensemble-TCP [14],
and Integrated Congestion Manager [15], looks at the problem
of fairness of resource allocation to multiple connections
between the same client and server pair. In our work, we
extend this problem to the case of multiple servers sending to a
single client. The challenge in this case is that each connection

in the session might traverse different paths and hence might
have different bottleneck links. Thus, connections cannot share
congestion information with each other, as proposed in the
above papers. In Section VI, we present some thoughts on
the extension of some of these approaches to handle the
multipoint-to-point session fairness problem.

Banchs [16] has recently proposed the notion of user-
fairness, in which every sender is considered as a single user
in the network. This fairness scheme, referred to as user
fair queueing (UFQ), suggests that all connections started by
a user (sender) should be considered as a single entity for
rate allocation. This proposal moves away from the notion
of per-connection fairness, towards session fairness from a
sender point of view. This approach might put the client at a
disadvantage because it might contact a server that has many
other open connections, each one of them thus receiving a
low rate. We compute the allocation achieved by this proposal
with our session fair allocations. Our algorithms have a more
fair allocation from the client’s point of view, compared to the
user fairness approach.

In ATM research, there has been some work on multipoint-
to-point session fairness. Fahmy et al. [17] give an informal
definition for virtual-circuit based (VC-based) fairness, but
without a formal definition or an algorithm to achieve the
same. Moh and Chen [18] present an informal definition and
an algorithm for multipoint-to-point multicast flow control.
These approaches benefit from the ability of ATM switches to
do complex processing and focus on intra-network merge point
behavior. However, in the Internet we are limited in our ability
to implement functionality in routers. We want the solution to
be purely an end-to-end [19] solution.

Point-to-multipoint session fairness has been discussed in
the multirate multicast context in the paper by Rubenstein et
al. [20]. In the multirate multicast scenario, the bandwidth used
by each session on any link is the maximum of the receiving
rate of any of the downstream receivers. In our case however,
the session rate on any link is the sum of the total rates of the
upstream senders that are sending to a particular client. Hence
we cannot directly use their approach to solve the multipoint-
to-point session fairness problem.

III. DISCUSSION OF PROBLEM STATEMENT

This section provides more detail regarding the problem of
multipoint-to-point session fairness, and describes informally
the proposed fairness definitions.

A. Static and Dynamic Sessions

We begin by differentiating between static and dynamic
sessions. Static sessions are multipoint-to-point sessions com-
prising connections which, for the purposes of rate allocation,
start and terminate at approximately the same time. On the
other hand, connections in dynamic sessions start and termi-
nate at different times. Thus, the composition of a dynamic
session varies significantly over time. Clearly, the designation
of static or dynamic must be based on the temporal granularity
of resource allocation.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

1

2

3

4

time

object
number

(a) Connections in a static multipoint-to-point session

10

1

2

3

4

5

6

7

8

9

13

12

11

14

number
object

time

(b) Connections in a dynamic multipoint-to-point session

Fig. 2. Static and Dynamic multipoint-to-point sessions

A typical static session is shown in Figure 2(a). The
length of each horizontal line denotes the duration that the
connection was active. The Multiple Description Streaming
Media with Content Delivery Networks approach [2], the
parallel-access approach in Rodriguez et al. [8], and retrieval
by companies like PeerGenius.com [5], CenterSpan.com [6],
digitalfountain.com [7], are examples of applications using
static sessions.

Retrieval of webpages, on the other hand, is typically an
example of a dynamic session. Figure 2(b) from Liston et
al. [21] shows a typical object retrieval with a number of
connections (possibly to different servers) starting and ending
at different points in time.

In this work, we focus on static sessions. Static sessions
are important in their own right, given the number of near-
simultaneous parallel download applications that are increas-
ingly under development. Further, the definitions and algo-
rithms proposed here can be used as building blocks to solve
the session fairness problem for dynamic sessions3.

B. Inter-Session and Intra-Session Fairness

The notion of session fairness has two components—

• Inter-session fairness refers to the fairness of the total
session rates with reference to each other.

• Intra-session fairness refers to the division of the session
rate amongst the connections constituting the session.

3Dynamic sessions may require additional or alternative strategies, partic-
ularly if the connections are highly dynamic.

Inter-session fairness advocates fair sharing of network
resources between independent sessions on intersecting paths.
To this end, we propose the notions of normalized rate session
fairness and per-link session fairness, the details of which are
presented in Section IV.

Normalized rate session fairness is based on the notion
of weight of a connection, which is used to express, in
some sense, the number of connections in the session. Each
connection in a session is assigned a weight, such that the
total weight of the connections in a session is 1. The rate
allocation for each connection at every link in the network is
based on the weight of the connection. The constraint on the
total weight of the connections in a session ensures that the
session rates are fair with reference to each other. In fact, if all
connections in all sessions traverse the same bottleneck link,
all sessions will get an equal session rate.

Per-link session fairness, on the other hand, looks at each
link in the network and tries to ensure that each session shares
the capacity of the link in a fair manner. The capacity of every
link in the network is divided equally between the sessions
traversing that link. The sessions divide the rate assigned to
them at that link amongst the connections belonging to that
session, that traverse the link4.

Intra-session fairness options allow the client in each session
to decide for itself as to how each connection in the session
should be treated, in terms of rate allocation. An allocation is
said to be “source and session fair” if each connection in the
session is treated equally. That is, the rate allocation within
the session is fair from the point of view of the sources in
the session. If each connection in a session is given a rate
allocation in proportion to the amount of data retrieved over
that connection, the allocation is said to be “data and session
fair”. This allocation has the appeal of allowing sources with
more data to operate at higher speeds than sources with less
data. If each connection in a session is given a rate allocation
based on its path in the network (i.e. based on sharing of links
between connections in the session), the allocation is said to be
“path and session fair”. For simplicity, we describe algorithms
that achieve “source and session fairness”.

The normalized rate session fair algorithm is very flexible
and can be easily extended to incorporate intra-session fairness
definitions, based on the clients’ choices, by adjusting the
weights of the connections. It is also amenable to a distributed
end-to-end implementation. On the other hand, it is difficult
to extend the per-link session fair algorithm to incorporate the
intra-session fairness definitions. This is because the algorithm
has implicit weights embedded for each connection. There is
no way for the client to specify (say with the weight of the
connection) that it wants otherwise, in terms of rate allocation
within the session, at any link.

In the next section, we discuss these definitions and algo-
rithms in detail.

4We conjecture that per-link session fairness is equivalent to normalized
rate session fairness for some globally-coordinated assignment of weights.
However, such an assignment is sufficiently complex that it makes sense to
describe per-link session fairness separately.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

IV. DEFINITIONS AND ALGORITHMS

In this section we formalize the definitions for different fair-
ness criteria for rate allocation to multipoint-to-point sessions.
For comparison, we define the connection max-min fairness
criterion. We also present algorithms to achieve the allocations
defined, and discuss properties of these allocations with respect
to their session rates. The notations used are given in Table
I5.

TABLE I

NOTATIONS

lj jth link in the network
Cj capacity of link lj
cj residual capacity of link lj
Si ith session in the network
m number of sessions in the network
ki number of senders in session Si

si,k kth sender in session Si

ri ith receiver in the network
Ri,j set of receivers in Si whose data path traverses lj
Rj set of receivers in all sessions whose data path traverses lj
ai,k data rate of sender si,k

ai,k data rate of sender si,k using an alternate allocation
wi,k weight of sender si,k

zi,k normalized rate for sender si,k

bi,k,j link rate for kth connection in session Si on lj
bi,j link rate for session Si on lj
bj link rate for all sessions on lj
ai data rate for session i (or session rate of Si)
X, Y set of unassigned receivers
ci,j residual capacity for session i on link lj
ui,j number of unassigned connections in session i on link lj
uj number of unassigned sessions on link lj

A. Connection Fairness (Max-Min Fairness)

We first present the traditional connection max-min fairness
definition, for comparison with our session fairness definitions.

Definition: An allocation of sender rates ai,k is said to be
connection fair [9] if it is feasible and for any alternative
feasible allocation of sender rates where ai,k > ai,k, there is
some other sender si′,k′ �= si,k such that ai,k ≥ ai′,k′ > ai′,k′ .

An allocation is said to be feasible if each sender si,k is
assigned a sending rate ai,k, subject to the constraint

∀j : {
∑

ai,k : si,k ∈ Rj} ≤ Cj

Informally, the rate of a connection at its bottleneck link is
greater than or equal to the rate of any other connection at
that link. The feasibility condition ensures that the link is not
loaded beyond its capacity. The algorithm for achieving this
allocation is given in Bertsekas and Gallager [9].

Example allocation: We describe the working of the al-
gorithms with the help of an example. Figure 3(a) shows
the topology considered. Session S1 consists of sender s1,1
sending to receiver r1. Session S2 consists of two senders,
s2,1 and s2,2, sending to r2. The capacities of the links are as
shown in Figure 3(a).

5For consistency, we adopt a notation similar to that used in Rubenstein et
al. [20].

Figure 3(b) shows the connection fair rate allocation.
Link a-b is the bottleneck link for all three connections, and
hence each connection gets a rate of 2 units. Session S1 gets
a total rate of 2 units, and session S2 gets a total rate of 4 units.

Properties of the Allocation: We discuss properties of the
allocation from a session point of view. These properties are
in addition to the normal connection rate properties.

• If all connections in all sessions have the same bottleneck
link, the session rates will be in proportion to the number
of connections in the session.

• Two connections between the same sender and receiver,
belonging to different sessions will be bottlenecked at the
same link and will receive equal rates.

B. Normalized Rate Session Fairness (NRSF)

We now present the two session fair definitions and discuss
them in detail. We also present algorithms to achieve the
allocations and then discuss some properties of the allocations.

Definition: An allocation of sender rates ai,k is said to be
normalized rate session fair if it is feasible and for any alter-
native feasible allocation of sender rates where the normalized
rate zi,k > zi,k, there is some other sender si′,k′ �= si,k such
that zi,k ≥ zi′,k′ > zi′,k′ .

The normalized rate of a connection is defined as

zi,k = ai,k

wi,k
,

where wi,k is the weight of the connection, subject to the
constraints:

∑
k wi,k = 1
wi,k ≤ 1

Informally, the normalized rate of a connection at its bot-
tleneck link is greater than or equal to the normalized rate of
any other connection at that link. The first constraint on the
weights ensures that the set of connections in each session
behaves as at most one connection throughout the data path
of the session, and hence as at most one connection on each
link that it traverses. The rate assigned to each connection at
its bottleneck link will be in proportion to its weight6. The
second constraint ensures that no connection behaves as more
than one connection on any link.

The session fairness definition can be extended to an r-
parallel connection fairness definition if each session behaves
as at most r connections throughout the data path of the
session. This approach lies between the connection-fair and
the session fair rate allocation approaches, with r = 1
corresponding to the session fair approach and r = number
of connections corresponding to the connection-fair approach.
r-parallel connection fairness can be achieved by defining the
normalized rate of a connection as

zi,k = ai,k

wi,k
,

6Moh and Chen [18] also use the concept of weights for each connection,
but their definition and algorithm differ from ours.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

5
r

s

s

1,1
s

1

2

2,1

2,2

d

c

r

6
a

4

b

(a) Session Layout

6

5

4

r

r

s

s

1,1
s

1

2

2,1

2,2

: 2.0

: 2.0

: 2.0

a b

c

d

(b) Connection fair allocation
(S1 : 2.0, S2 : 4.0)

6

5

4

r

r

s

s

1,1
s

1

2

2,1

2,2

: 2.66

: 1.33

: 2.0
d

a b

c

(c) Normalized rate session fair
allocation (S1 : 2.66, S2 : 3.33)

6

5

4

r

r

s

s

s

1

2

2,1

2,2

: 1.75

: 2.0

: 2.25
1,1

a b

c

d

(d) Per-link session fair allocation
(S1 : 2.25, S2 : 3.75)

Fig. 3. (a)Example network, (b)Connection fair, (c)Normalized rate session fair, (d)Per-link session fair

subject to the constraints:
∑

k wi,k ≤ r
wi,k ≤ 1

The second constraint ensures that no connection behaves
as more than one connection on any link.

Algorithm: We first assign weights to each connection
according to the intra-session fairness approach that the client
wants, as described in Section III. For “source and session
fairness”, we assign equal weights to each connection, for
“data and session fairness”, we assign weights to each con-
nection in proportion to the size of data retrieved from that
server, and for “path and session fairness”, we assign weights
to each connection according to the sharing of the data path
of the session. For simplicity, we describe the normalized rate
session fair algorithm with all clients using “source and session
fairness”.

In every iteration, we compute the normalized rate attainable
on every link and saturate the link with the minimum normal-
ized rate. The connections which get saturated as a result are
bottlenecked at that link. Thus, after every iteration, at least
one link will be saturated, and the algorithm will terminate
when all connections have a bottleneck link. We expect the
session rates to be fair with respect to each other because we
have assigned weights subject to the constraint:

∑
k wi,k = 1

In fact, the weight of each connection gives an idea about the
number of other connections constituting the session it belongs
to.

The algorithm is given below, followed by a discussion of
the steps involved.

1) X = {si,k : i = 1..m, k = 1..ki};
∀j, cj = Cj ;
∀si,k, ai,k = 0

2) while (|X| > 0)
3) ∀j, xj = cj∑

si,k∈Rj
wi,k

4) xmin = min{xj}
5) ∀si,k ∈ X :

ai,k += wi,k ∗ xmin

∀lj along the path from si,k to ri

cj −= wi,k ∗ xmin

6) ∀j, if (cj == 0)7

X = X − {si,k ∈ Rj}
7) repeat from step 2
We assume that each connection has a weight wi,k. In step

1, we initialize the unsaturated sender set (senders in a session
with no bottleneck link) to all the sender-receiver pairs in the
topology. Each connection is assigned a rate ai,k of 0. In step
3, xj is calculated as the ratio of the residual capacity of the
link to the sum of the weights of all unsaturated connections
traversing that link, that do not have a bottleneck yet. In
step 4, we compute the minimum of all these xj’s. In step
5, the rate for all unsaturated connections is incremented by
its weight, times the minimum value, thus saturating at least
one link. The residual capacity on all links along the path
from the senders in set X to the receivers is then decremented
by that amount. In step 6, all senders that are saturated as a
result are removed from set X. We repeat steps 2 through 7
until all receivers have a bottleneck link. The rate allocation
thus determined is the required normalized rate session fair
allocation.

Example allocation: Figure 3(c) shows the allocation
achieved by the normalized rate session fair algorithm. The
connection in session S1 is assigned a weight of 1.0, and the
two connections in session S2 are each assigned a weight
of 0.5. In the first iteration, the total weight on link a-b
is 2.0, hence a weight of 1.0 would correspond to a rate
of 3 units. The total weight on link b-c is 1.5, hence a
weight of 1.0 corresponds to a rate of 4/1.5 = 2.66 units.
The total weight on link b-d is 0.5, hence a weight of 1.0
corresponds to a rate of 10 units. The minimum normalized
rate is 2.66, hence the algorithm will saturate link b-c first.
s1,1, which has a weight of 1.0, therefore gets a rate of
2.66 units, and s2,1, which has a weight of 0.5, gets a rate
of 1.33 units. In the next iteration, link a-b is saturated,
and s2,2 gets a rate of 2.0 units. Thus, session S1 gets a

7At least one link corresponding to xmin will get saturated.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

total rate of 2.66 units and session S2 gets a rate of 3.33 units.

Properties of the Allocation: We present some properties
of the allocation that follow in a relatively straightforward
manner from the definition of normalized rate session fairness.

• If all sessions have an equal number of connections, they
will share bandwidth as in the connection max-min fair
allocation. This is because, the weights of all connections
in all the sessions will be equal, and they will share the
capacity on bottleneck links equally.

• If all connections in all sessions traverse the same bot-
tleneck link, the rates allocated to each session will be
equal because we have imposed the constraint:

∑
k wi,k = 1

on each session. Each session will therefore be treated as
a single connection on that link. The connections within
a session will share this session rate.

• All connections (possibly from different sessions) bottle-
necked at the same link will have the same normalized
rate:

zi,k = ai,k

wi,k

• Two connections between the same sender and receiver
(assuming they follow the same path), belonging to
different sessions with different number of connections
(and hence having different weights, to be more precise),
will be bottlenecked at the same link and will receive
different rates, in proportion to their weights. However,
their normalized rates will be the same.

C. Per-Link Session Fairness (PLSF)

Definition: An allocation of sender rates ai,k is said to be
per-link session fair if it is feasible and for any alternative
feasible allocation of sender rates ai,k, where bi,j > bi,j for
session Si at some link lj , there is some other session Si′ �= Si

such that bi,j ≥ bi′,j > bi′,j .
Informally, this means that the rate of a connection can

be increased only by decreasing the rate of a session with
an already lower or equal rate on a link at which the higher
rate session, which comprises the connection, is bottlenecked.
This also ensures that each session behaves like at most one
connection on each link that it traverses. The basic idea here
is that the capacity of the bottleneck link is shared equally by
all the sessions traversing that link (and not by the individual
connections). In other words, we try to achieve session fairness
on every link.

The above definition does not lead to a unique allocation.
This is because the per-link session fairness definition
advocates the sharing of the session rate at each link in a
fair manner. The session then splits this rate amongst the
connections that traverse that link. This leads to residual
capacity on some links. The manner in which this residual
capacity is shared amongst the sessions can lead to multiple
allocations which satisfy the above definition. We present an
algorithm which will lead to one such allocation.

Algorithm: In this algorithm, we make the distinction be-
tween virtual bottleneck links and physical bottleneck links.
Each link is considered to be a set of virtual links, one for each
session on that link. In every iteration, at least one virtual link
is saturated. Thus, at the end of one run of the algorithm, each
connection has a virtual bottleneck link. But it might be the
case that a connection does not have a physical bottleneck link
on its path, and hence it can send at a higher rate. We therefore
reassign the available capacities amongst all sessions without
physical bottleneck links and reiterate through the algorithm.
We do this until each connection has a physical bottleneck
link on its path.

The algorithm is given below, followed by a discussion of
the steps involved.

1) ∀j, cj = Cj ;
∀si,k, ai,k = 0

2) Y = {si,k : i = 1..m, k = 1..ki}
3) while (|Y | > 0)
4) X = Y

uj = number of sessions on link lj
ui,j = number of connections in session i on link lj

5) ∀i, j, if (uj �= 0)
ci,j = cj

uj

6) while (|X| > 0)
7) xi,j = ci,j

ui,j

8) xmin = min{xi,j}
9) ∀si,k ∈ X:

ai,k += xmin

∀lq along the path from si,k to ri

ci,q −= xmin

cq −= xmin

if (ci,q == 0)8

X = X − {si,k ∈ Ri,q}
∀lq on the path from these si,k’s to ri,

ui,q−−
if (ui,q == 0)

uq−−
if (cj == 0)

Y = Y − {si,k ∈ Rj}
10) repeat from step 6
11) repeat from step 3

Set Y is the set of receivers without a physical bottleneck
link. Set X is the set of receivers without a virtual bottleneck
link in the current iteration. In step 5, each session is
assigned the rate it is allowed to use on that link. This is
the ratio of the residual capacity of that link to the number
of sessions traversing that link. In step 7, each session
then determines the rate of each connection it comprises
as the ratio of the above rate to the number of unsaturated
connections constituting that session on that link. In step 8,
we determine the minimum of these rates, and increment
the rates of all unsaturated connections by that amount. We
thus saturate at least one virtual link in this step, and remove
these connections from consideration in this iteration. If any

8At least one virtual link corresponding to xmin will get saturated.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

physical edge has a residual capacity of zero, we remove
those connections from consideration permanently. We repeat
steps 6 through 10 until all connections are saturated by a
virtual link. We then reassign the set X to the set Y and
continue steps 3 to 11 until each connection has a physical
bottleneck link. The resulting rate allocation is the per-link
session fair allocation.

Example allocation: Figure 3(d) shows the allocation
achieved by the per-link session fair algorithm. On link a-b,
sessions S1 and S2 can each use a rate of at most 3 units.
Session S2 can therefore use at most 1.5 units for each
connection, assuming that it shares the rate equally between
the connections in the session. On link b-c, sessions S1 and
S2 can each use at most 2 units. On link b-d, session S2
can use at most 5 units. Since 1.5 units is the minimum rate
that can be used by a connection in this scenario, the virtual
link for session S2 on link a-b is saturated in this iteration,
and s2,1 and s2,2 each get a rate of 1.5 units. These two
connections are then removed from contention on all the links
that they traverse. In the next step, s1,1 is assigned 0.5 units
more, thus saturating its virtual link on b-c. Note that we did
not reallocate the extra 0.5 units not used by session S2 on
link b-c, because we can reuse it in successive iterations. In
the next run, we therefore reconsider all senders that are not
saturated by a physical link. All three senders satisfy this
condition— the residual capacity on link b-c is 0.5 units, that
on link a-b is 1 unit, and that on link b-d is 3.5 units. s1,1
and s2,1 get 0.25 units each, in this round, thus saturating
physical link b-c. s2,2 also gets 0.25 units, thus saturating the
virtual link for session S2 on link a-b, but the physical link
is not yet saturated. In the next round, the only connection
in contention is s2,2, and it gets the residual 0.25 units, thus
saturating link a-b. Session S1 therefore gets a rate of 2.25
units under the per-link session fair allocation, and session
S2 gets a total rate of 3.75 units.

Properties of the Allocation: The properties presented are
for the allocation in general, and not just for the allocation
achieved by this particular algorithm. They follow in a rela-
tively straightforward manner from the definition of per-link
session fairness.

• If all connections in all sessions traverse the same bottle-
neck link, the rates allocated to each session will be equal
by definition. That is, each session will be treated as a
single connection on that link. The connections within a
session will share this session rate.

• Two connections between the same sender and receiver,
belonging to different sessions will be bottlenecked at
the same link if they are part of sessions with the same
number of connections at the bottleneck link, and they
will receive the same rates. If the connections belong to
sessions with different number of connections on that
link, they will receive different rates.

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% of 1−connection sessions

fa
irn

es
s

in
de

x

normalized rate session fair
per−link session fair
user fair queueing
connection fair

Fig. 4. Fairness index for sessions rates

To summarize this section, we have proposed two definitions
for session fairness, and presented algorithms to achieve those
allocations. We have also discussed some properties of these
allocations.

V. EVALUATION RESULTS

This section describes an evaluation of the proposed session
fair algorithms using simulations of a wide area network. Our
goal is to evaluate the advantages offered by the proposed
algorithms in an environment like the Internet, with data
paths of sessions intersecting arbitrarily, and to ensure that
the session fair allocations do not just degrade to the existing
connection fair allocation. We compare the two session fair
algorithms with each other, and with the original connection
fair algorithm. We also compare these algorithms with the user
fair queueing algorithm presented by Banchs [16].

A. Evaluation model

We implemented the four algorithms (normalized rate ses-
sion fair, per-link session fair, connection fair, and user fair
queuing) and computed the allocations achieved for various
session configurations in the topologies discussed below.

We constructed transit-stub topologies of 100 nodes and 600
nodes using GT-ITM [22]. A number of sessions were then
simulated on top of this topology, with varying percentages
of clients and servers. These sessions comprised 1, 4 or
15 connections from multiple servers to a single client. We
allowed for a single client to have multiple co-located sessions.

Based on a study by Krishnamurthy et al. [1], we varied the
percentages of 1, 4 and 15-connection sessions, such that the
average number of servers contacted by a client is between
4 and 9. We varied client and server percentages and their
locations in the network, computed the allocations with the
four algorithms and plotted the performance metrics discussed
in Section V-B. A typical plot for the performance metrics is
analyzed in Section V-C.

B. Performance metrics

The performance metrics used for comparison of the algo-
rithms, and their significance are discussed below.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0 20 40 60 80

0e
+

00
1e

+
07

2e
+

07
3e

+
07

4e
+

07

% of 1−connection sessions

va
ria

nc
e

of
 s

es
si

on
 r

at
es

normalized rate session fair
per−link session fair
user fair queueing
connection fair

(a) Variance of session rates

0 20 40 60 80

40
00

45
00

50
00

55
00

60
00

% of 1−connection sessions

m
ea

n
of

 s
es

si
on

 r
at

es

normalized rate session fair
per−link session fair
user fair queueing
connection fair

(b) Mean of session rates

0 20 40 60 80

0
50

0
10

00
15

00
20

00
25

00
30

00

% of 1−connection sessions

m
in

im
um

 s
es

si
on

 r
at

e

normalized rate session fair
per−link session fair
user fair queueing
connection fair

(c) Minimum of session rates

0 20 40 60 80

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0
35

00
0

% of 1−connection sessions

m
ax

im
um

 s
es

si
on

 r
at

e

normalized rate session fair
per−link session fair
user fair queueing
connection fair

(d) Maximum of session rates

Fig. 5. Performance metrics for session rates

• Raj Jain’s fairness index: This is a commonly accepted
fairness performance measure, and is defined as:

f(x1, x2, . . . xn) =
(
∑n

i=1
xi)2

n
∑n

i=1
xi

2

It accounts for variability in the xi’s of all the users.
The index assumes a range of values between 0 and 1.
A fairness index of 1 implies an equal distribution of
xi’s. The lower the value of the fairness index, the more
unfair the distribution is. For calculation of the fairness
index for session rates, the xis are the total data rates
of each session. For calculation of the fairness index for
connection rates, the xis are the rates allocated to each
connection by the algorithm.

• Variance of session rates: A higher variance in ses-
sion rates implies that the session rates are unevenly
distributed across all sessions. Hence, a lower variance
indicates a more fair distribution.

• Mean session rate: A higher mean session rate indicates
a higher utilization of available bandwidth resources.

• Minimum and Maximum session rates: The minimum and
maximum session rates are just two extreme points in

the distribution. Since the session with the lowest rate
is least satisfied, a fair algorithm would try to increase
the minimum session rate. Also, a fair algorithm would
try to redistribute the excess rate in the session with the
maximum rate amongst sessions with lower total rates.
Hence, an algorithm with a higher minimum session rate
and a lower maximum session rate can be considered
more fair.

C. Comparison of the Algorithms

Figures 4 and 5 show typical plots of the performance
metrics discussed in the previous section. These plots are for
a 100-node topology with 30 servers and 20 clients. 20%
sessions have 15 connections, and we vary the percentage
of 1-connection and 4-connection sessions between 0% and
80%. The x-axis for each graph is the percentage of sessions
with 1 connection, and therefore, the percentage of sessions
with 4 connections is (80 − x)%.

1) Comparison of the two session fair algorithms and the
connection fair algorithm: From Figure 4, it is clear that the

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

fairness indices for the normalized rate session fair algorithm
are higher than the per-link session fair and connection fair
algorithms. It thus achieves the most fair allocation of session
rates for this configuration.

The variances in session rates, as seen from Figure 5(a),
are much higher with the connection fair algorithm than the
per-link session fair algorithm and the normalized rate session
fair algorithm. In some cases, the connection fair algorithm
has a variance as much as two or three times that of the
normalized rate session fair algorithm, thus giving a rather
unfair allocation.

Although the mean session rates, as seen in Figure 5(b),
are almost the same for all three algorithms, in most cases the
normalized rate session fair algorithm achieves a higher mean
than the connection fair algorithm and the per-link session
fair algorithm. Note that a higher mean session rate implies a
higher overall bandwidth utilization in the network.

As seen in Figure 5(c), the minimum session rate achieved
by the normalized rate session fair algorithm is always greater
than that achieved by the per-link session fair algorithm, which
is again greater than that achieved by the connection fair
algorithm. On the other hand, as seen from Figure 5(d), which
plots the maximum session rate, the connection fair algorithm
has a higher maximum session rate most of the times. The
session fair algorithms try to decrease the maximum rate
achieved by any session, and redistribute that rate amongst
sessions with lower rates, thus increasing the minimum rate.
Thus, the normalized rate session fair algorithm is more fair
than the connection fair algorithm.

Thus, we can conclude that the session rates achieved
by the session fair algorithms are more fair than those
achieved by the connection fair algorithm, while maintaining
or increasing overall bandwidth utilization.

2) Comparison with the User Fair Queueing (UFQ) Algo-
rithm: In the normalized rate session fair algorithm, we need
to be careful when we assign weights to the connections in
each session. Our algorithm assigns weights in a session at the
client or receiver end, subject to the condition

∑
k wi,k = 1.

However, if the weights are distributed amongst all connec-
tions at the sender, as suggested in the user fair queueing
algorithm [16], the session-rate distribution may not be fair.

In Figure 5 the fourth algorithm plotted is the user fair
queueing algorithm, which is basically the normalized rate
session fair algorithm, with weights assigned at the server.
As can be seen, the minimum session rate achieved by this
algorithm is often lower than even that achieved by the
connection fair algorithm. The variance is almost as high
as that with the connection fair algorithm, or sometimes
higher, and the mean session rate (and hence utilization) is
lower than that with the connection fair algorithm at times.
This is because, in user fair queueing, if a sender has many
clients (N), the weight assigned to each connection is 1/N .
Effectively, some multipoint-to-point session might get a
total weight of more than 1, and if two such sessions share
a bottleneck link for all their connections, one session will

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% of 1−connection sessions

fa
irn

es
s

in
de

x

normalized rate session fair
per−link session fair
user fair queueing
connection fair

Fig. 6. Fairness index for connection rates

get a higher share than the other session. The normalized
rate session fair algorithm performs better than the user fair
queueing algorithm in all cases.

3) Comparison of Connection Rates: The improved session
fairness does not come without a penalty. The performance
metrics for the connection rates are shown in Figures 6 and
7. The x-axis shows varying percentages of 1-connection
sessions in the network. On the y-axes we plot minimum,
maximum, variance and mean of the connection rates in
the network. It is clear that the minimum connection rates
for the session fair algorithms are lower than those for the
connection-fair algorithm and the variances are higher. This is
the tradeoff seen due to our proposal of achieving fairness at
the session level, as opposed to fairness at the connection level.

Thus, we conclude that the session fair algorithms, while
achieving the same or higher total utilization as the connection
fair algorithm, distribute the rate allocations more evenly
among sessions.

VI. IMPLEMENTATION ISSUES

We present some preliminary thoughts on the challenges
involved in implementing the session fair algorithms proposed.
Both the algorithms assume global knowledge of the residual
capacities of each link, and information about all connections
in all sessions. Thus, these algorithms are inherently central-
ized and do not scale well. Modifications to these algorithms
are necessary in order to implement them in a distributed and
scalable manner.

The normalized rate session fair algorithm is amenable to
a distributed end-to-end implementation. On the other hand,
because of the need to compute the session rate at every link,
the per-link session fair algorithm appears to require a more
complex implementation. Also, as seen from the evaluations,
the normalized rate session fair allocation performs better
than the per-link session fair allocation. Hence, we focus on
the normalized rate session fair algorithm in the following
discussion.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0 20 40 60 80

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

% of 1−connection sessions

va
ria

nc
e

of
 c

on
ne

ct
io

n
ra

te
s

normalized rate session fair
per−link session fair
user fair queueing
connection fair

(a) Variance of connection rates

0 20 40 60 80

0
50

0
10

00
15

00
20

00

% of 1−connection sessions

m
ea

n
of

 c
on

ne
ct

io
n

ra
te

s

normalized rate session fair
per−link session fair
user fair queueing
connection fair

(b) Mean of connection rates

0 20 40 60 80

0
20

0
40

0
60

0
80

0

% of 1−connection sessions

m
in

im
um

 c
on

ne
ct

io
n

ra
te

normalized rate session fair
per−link session fair
user fair queueing
connection fair

(c) Minimum of connection rates

0 20 40 60 80

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0

% of 1−connection sessions

m
ax

im
um

 c
on

ne
ct

io
n

ra
te

normalized rate session fair
per−link session fair
user fair queueing
connection fair

(d) Maximum of connection rates

Fig. 7. Performance metrics for connection rates

The three important issues in the implementation of the
session fair algorithms are as follows:

• Identification of the transport connections belonging to
the same session.

• Communication between connections within the same
session about the existence of other connections in the
session.

• Estimation of the sending rate of each connection, in
accordance with the session fair algorithms, and then
achieving that rate.

The issue of session identification of a connection, and
communication between connections in a session can be
implemented explicitly by each application, or by extending
the Session Control Protocol [23] or Session Initiation Protocol
[24]. The Integrated Congestion Management architecture
[15] includes the ability to communicate information between
different connections, though clearly the appropriate type and
use of information must be modified to meet our needs. More
work is needed to develop techniques for estimating the correct
sending rate and incorporating rate adjustment into existing
protocols (e.g. by modifying TCP acknowledgement behavior).

Our future work will continue to explore these options with
the goal of designing and building a workable system for
session fair rate control.

VII. CONCLUDING REMARKS

In the current Internet, many applications start sessions with
multiple connections to multiple servers in order to expedite
the reception of data. Such aggressive behavior can be viewed
as unfair sharing of available bandwidth. This has been our
motivation to propose the notion of session fairness when
allocating rates to connections. In particular, we looked at
static multipoint-to-point sessions which comprise multiple
connections from multiple senders to a single client, starting
and terminating at approximately the same time. We explored
the session fairness space and proposed and evaluated two
definitions and algorithms to achieve the definitions. The
normalized rate session fair algorithm achieves a higher level
of session fairness, while achieving the same or higher network
utilization, as compared to the connection fair algorithm. The
per-link session fair algorithm also performs better than the
connection fair algorithm, but not as well as the normalized

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

rate session fair algorithm. We discussed some of the issues
involved in implementing these algorithms and presented
some preliminary thoughts on options for implementation. The
normalized rate session fair algorithm appears to be easier to
implement than the per-link session fair algorithm.

Our future work will involve implementation of a protocol
to realize session fair algorithms, as well as investigation of
fairness issues for dynamic multipoint-to-point sessions.

REFERENCES

[1] B. Krishnamurthy, C. Wills, and Y. Zhang, “On the Use and Performance
of Content Distribution Networks,” in Proceedings of ACM SIGCOMM
Internet Measurement Workshop, 2001.

[2] J. Apostolopoulos, T. Wong, S. Wee, and D. Tan, “On Multiple De-
scription Streaming with Content Delivery Networks,” in Proceedings
of IEEE Infocom, 2002.

[3] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed
Content Delivery Across Adaptive Overlay Networks,” in Proceedings
of ACM Sigcomm, 2002.

[4] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Dis-
tributing Streaming Media Content Using Cooperative Networking,” in
Proceedings of NOSSDAV, 2002.

[5] “Peergenius,” http://www.peergenius.com/.
[6] “Centerspan,” http://www.centerspan.com/.
[7] “Digital fountain,” http://www.digitalfountain.com/.
[8] P. Rodriguez, A. Kirpal, and E. Biersack, “Parallel-Access for Mirror

Sites in the Internet,” in Proceedings of IEEE Infocom, 2000.
[9] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, NJ,

Prentice-Hall, 1992.
[10] H. Balakrishnan and S. Seshan, “The Congestion Manager,” Internet

Engineering Task Force, Request for Comments 3124, 2001.
[11] V. Padmanabhan, “Coordinating Congestion Management and Band-

width Sharing for Heterogenous Data Streams,” in Proceedings of
NOSSDAV, 1999.

[12] R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley and Sons Inc., 1991.

[13] J. Gettys and H. Nielsen, “The WEBMUX protocol, Internet
Draft (work in progress),” http://www.w3.org/Protocols/MUX/WD-mux-
980722.html, 1998.

[14] L. Eggert, J. Heidemann, and J. Touch, “Effects of Ensemble-TCP,”
ACM Computer Communication Review, vol. 30, no. 1, pp. 15–29,
January 2000.

[15] H. Balakrishnan, H. Rahul, and S. Seshan, “An Integrated Congestion
Management Architecture for Internet Hosts,” in Proceedings of ACM
Sigcomm, 1999.

[16] A. Banchs, “User Fair Queueing: Fair Allocation of Bandwidth for
Users,” in Proceedings of IEEE Infocom, 2002.

[17] S. Fahmy, R. Jain, R. Goyal, and B. Vandalore, “Fairness for ABR
multipoint-to-point connections,” in Proceedings of SPIE Symposium on
Voice, Video and Data Communications,, November 1998.

[18] M. Moh and Y. Chen, “Design and Evaluation of Multipoint-to-Point
Multicast Flow Control,” in Proceedings of SPIE Symposium on Voice,
Video and Data Communications,, November 1998.

[19] J. Saltzer, D. Reed., and D. Clark, “End-to-End Arguments in System
Design,” ACM ToCS, Nov. 1984.

[20] D. Rubenstein, J. Kurose, and D. Towsley, “The Impact of Multicast
Layering on Network Fairness,” in Proceedings of ACM Sigcomm, 1999.

[21] R. Liston and E. Zegura, “Using a Proxy to Measure Client-Side Web
Performance,” in Proceedings of the 6th International Web Caching
Workshop and Content Delivery Workshop, June 2001.

[22] K. Calvert, M. Doar, and E. Zegura, “Modeling Internet Topology,”
IEEE Communications Magazine, June 1997.

[23] S. Spero, “Session Control Protocol,”
http://www.w3.org/Protocols/HTTP-NG/http-ng-scp.html, 1998.

[24] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP:
Session Initiation Protocol,” Internet Engineering Task Force, Request
for Comments 2543, 1999.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

