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Abstract— Many topology discovery systems rely on traceroute
to discover path information in public networks. However, for
some routers, traceroute detects their existence but not their
address; we term such routers anonymous routers. This paper
considers the problem of inferring the network topology in
the presence of anonymous routers. We illustrate how obvious
approaches to handle anonymous routers lead to incomplete,
inflated, or inaccurate topologies. We formalize the topology
inference problem and show that producing both exact and
approximate solutions is intractable. Two heuristics are proposed
and evaluated through simulation. These heuristics have been
used to infer the topology of the 6Bone, and could be incorporated
into existing tools to infer more comprehensive and accurate
topologies.

I. INTRODUCTION

Understanding network topologies is important to protocol
evaluation, performance optimization, and network manage-
ment [1], [2], [3], [4], [5]. To probe the topology of large scale
public networks, many topology discovery systems rely on
traceroute [6]. Traceroute sends a series of hop-limited UDP
packets to a known destination and uses ICMP responses gen-
erated by intermediate routers to obtain the path between the
source and the destination. In order to obtain comprehensive
topology information, most existing systems run traceroute
from multiple probing hosts [7], [8], [9], [10], [11] or use
source-routed traceroutes [12], [13]. Two routers appearing
consecutively on a path implies the existence of a link between
them; this induces a natural construction of the underlying
topology from the traceroute probe results. We have developed
an IPv6 topology discovery tool, Atlas [13], which exploits the
widespread support of source-routing in IPv6 routers to probe
paths between all pairs of discovered routers.

¿From our experience with Atlas, and in results from other
topology discovery works that probe the IPv4 Internet, we have
observed the following phenomena: some routers do not send
out ICMP responses while others use the destination addresses
of traceroute packets instead of their own addresses as source
addresses for outgoing ICMPv6 packets. In both cases, the
presence of a router, but not its address, can be detected
by traceroute. We call such routers anonymous routers, and
routers that return their addresses known routers. IPv4 and
IPv6 routers with ICMP disabled behave anonymously. We
have additionally observed that IPv6 routers not configured
with global addresses also appear as anonymous. Such router
configurations exist for numerous reasons. For example, not
assigning routers IPv6 global addresses reduces administrative
overhead. Anonymous routers are also less likely to be the

target of malicious attacks and allow ISPs to keep their
network topologies opaque. Convenience, security, and privacy
concerns are therefore some reasons for the continued presence
of anonymous routers.

Deriving the actual topology from a traceroute probe result
becomes significantly more complicated in the presence of
anonymous routers. In the probe result, each router appears
multiple times, once in each probed path that traverses the
router. For a known router, these multiple occurrences can
be resolved as belonging to the same router either because
of a common interface address or because additional probing
resolves its different interfaces as belonging to the same
router [13], [12], [14]. On the other hand, for an anonymous
router, there is no way to distinguish its occurrences from
those of other anonymous routers. Therefore, each occurrence
is treated as a potentially distinct router. Consequently, the
natural construction of a topology from a probe result would
be inaccurate. Consider, for example, the topology of Fig. 1,
which has two anonymous routers 7 and 8 (represented by
squares), with all others being known routers (represented
by circles). The topology constructed from its probe result
is that in Fig. 2, which contains twenty anonymous routers.
Therefore, even the presence of a few anonymous routers can
significantly distort the constructed topology.

At the very least, deriving an accurate topology requires
identifying which occurrences of anonymous routers in the
probe result correspond to the same router. This identification
cannot be done using additional probing: the addresses of the
anonymous routers are unknown and therefore cannot be used
as the source or destination of any probe packets. Thus, the
actual topology must be deduced purely through analysis.

We observe that solving this problem is non-trivial by ex-
amining the shortcomings of some straightforward approaches.
Some existing topology discovery tools stop probing a path
when an intermediate router fails to respond [7], thereby avoid-
ing anonymous routers in the probe results. This approach,
however, would result in a topology with reduced coverage and
loss of connectivity information even among the discovered
routers. For example, in the topology of Fig. 1, this approach
would fail to capture that nodes 2 and 3 are connected to
each other or to other known nodes. A topology constructed
in which all anonymous occurrences in the probe results are
treated as distinct routers (the topology naturally induced by
the probe result) better reflects the connectivity information of
the underlying topology. However, as in Fig. 2, the resulting
topology can be greatly inflated.
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Fig. 1. Actual network topology
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Fig. 2. Topology induced from probe result

A more sophisticated approach would be to infer that any
two anonymous nodes that are adjacent to the same set of
known routers can be identified as being the same. This idea
could be generalized, using the notion of bisimilarity [15], to
identify all anonymous routers that are bisimilar in the graph of
the induced topology. Applying this to the topology of Fig. 2
would result in that of Fig. 3. This is still quite different from
the actual topology (Fig. 1), both in the number of anonymous
nodes and in its topological structure. This approach can be
shown, in general, to always produce a topology in which
every anonymous node would have exactly two neighbors,
which would often be inaccurate. Other criteria, therefore,
need to be developed for analyzing which anonymous routers
in the induced topology should be identified as being the same.

In this paper, we explore a more systematic approach to
inferring topology in the presence of anonymous routers. Since
the topology inferred must be consistent with the traceroute
results obtained by probing, we first formulate some properties
based on the probe result, that any topology must satisfy
to yield the probe result. This underlines the importance of
a subtle distinction between probe results and their induced
topology. Consider the following two probe results: (a) S1, in
which the traceroutes 1⊥12, 2⊥23, and 3⊥31 are observed,
and (b) S2 in which the traceroutes 1⊥12⊥23 and 3⊥31
are observed, where the nodes ⊥1,⊥2,⊥3 denote anonymous
nodes. For both these probe results, the induced topology is the
same, namely, that given in Fig. 4(a). However, the topology
of Fig. 4(b) is consistent with the first set of observed paths
but not the second, since it contains no simple path (i.e., one
without routing loops) whose trace could be 1⊥12⊥23. Thus,
the topology of Fig. 4(b) would be acceptable if the probe
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Fig. 4. Using raw path data for topology synthesis

result had been S1 but not if it had been S2. This example
shows that, in the presence of anonymous routers, the topology
should be inferred directly from the raw path data rather than
by analyzing the induced topology.

In this paper, we characterize the constraints on a topology
for it to be consistent with some observed probe results, and
formulate the topology inference problem as an optimiza-
tion problem subject to these constraints. We show that the
structure of any consistent topology can be obtained from
the induced topology by merging anonymous nodes that meet
certain conditions. These conditions define the criteria under
which anonymous nodes generated in the probe result can be
identified as being the same actual router. We show that the
topology inference optimization problem is NP-complete and
approximating it within nδ (where n is the size of the probe
result, and δ a fixed constant) is NP-hard. These results imply
that there are no polynomial-time algorithms that synthesize
or approximate the actual topology within nδ for all probe
results (unless P = NP ). We then develop heuristics that aim
to synthesize the actual topology for most probe results. We
present and establish the correctness of a pruning algorithm
for reducing the size of the probe results, which is critical
to inferring the topology of large networks. We evaluate our
heuristics through simulations and experiments and show that
they perform well for topologies with characteristics similar
to what we observe on the 6Bone.

The rest of the paper is organized as follows. In Section II
we formally define the topology inference problem. Section III
establishes the technical connection between topologies con-
sistent with probe results and their induced topologies. This re-
sult is used to establish the intractability and inapproximability
of topology inference in Section IV, and to derive heuristics in
Section V. Evaluation results of these heuristics are presented
in Section VI and related work is discussed in Section VII.
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We conclude in Section VIII.

II. THE TOPOLOGY INFERENCE PROBLEM

In this section, we formulate the topology inference prob-
lem. Section II-A formalizes probe results (the input to
topology inference) and topologies (the output of topology
inference), and Section II-B specifies requirements on the
topology that should be produced for a given probe result.

A. Topologies and Probe Results

A topology is an undirected graph with nodes representing
routers and edges representing links. Each node is annotated
with a label representing the address of the router. For the
remainder of the paper, let I be a set of possible addresses,
not containing the special symbol ⊥.

Definition 2.1 [Network Topology]

• A network topology, T = 〈V,E,L〉, where V is a set
of nodes, E is a set of undirected edges of the form
{u, v} with u, v ∈ V , and L : V→I ∪ {⊥} is a labeling
function such that for any u, v ∈ V , we have that if
L(u) = L(v) 
= ⊥ then u = v. The set of known nodes
of the topology, K(T ) = {v | L(v) 
= ⊥}, and its set of
anonymous nodes, A(T ) = {v | L(v) = ⊥}.

• A route in the topology T is a simple path in the graph
〈V,E〉, i.e., a node sequence v1 . . . vn with n ≥ 2, v1 
=
· · · 
= vn, and {vi, vi+1} ∈ E for 1 ≤ i < n.

• The trace of a route v0 . . . vn is the sequence
L(v0) . . . L(vn).

• The set TraceRoute(T ) of traces admissible by the topol-
ogy T consists of all sequences L(v0) . . . L(vn) such that
v0 . . . vn is a route in T and v0, vn ∈ K(T ).

A topology is, thus, simply an undirected graph equipped with
a labeling function on nodes. The label, L(v), of a node, v,
indicates how the node advertises itself in the trace of any
route that goes through that node. Known nodes advertise
their addresses and anonymous nodes are labeled with the
special symbol ⊥. Taking L to be a function of nodes reflects
the assumption that if a router is anonymous then it behaves
anonymously in every route. The additional condition imposed
on L captures the requirement that distinct routers cannot
share the same unicast address. Finally, the definition of
TraceRoute(T ) takes into account the fact that traceroutes can
only be obtained between known nodes.

Strictly speaking, a router has one address for each of
its interfaces and the label of a node should therefore be
a collection of addresses. However, the probing phase can
identify which addresses belong to the same router [12], [14],
[13]; we can therefore assume that the set of traces in the probe
result use a common representative address for each router.
This assumption serves to simplify our presentation of the
topology inference problem without affecting the applicability
of its analysis.

The result of probing the network is a set of observed traces.
Any anonymous node observed may be potentially distinct
from any other anonymous node and is tagged uniquely in the

probe result. We formally represent any anonymous node in
the probe result as ⊥k with k a natural number. A probe result
therefore consists of sequences u1 . . . un, where each ui ∈ I
or of the form ⊥k, with the source, u1, and destination, un,
having to be known addresses (i.e., u1, un ∈ I).

Definition 2.2 [Probe Result] A probe result, S ⊆ I(I ∪
{⊥i | i ∈ N})∗I , such that:

• If u1 . . . un ∈ S then u1 
= · · · 
= un

• For any k, there is at most one p ∈ S such that p = σ⊥kτ
for some σ, τ .

The first condition in Definition 2.2 imposes the requirement
that each trace observed does not include any routing loops,
and the second condition ensures that every anonymous node
in the probe result is tagged uniquely.

For any path p = u1 . . . un ∈ I(I∪{⊥i | i ∈ N})∗I , define
the known nodes appearing in p, K(p) = {u1, . . . , un}∩I , and
the anonymous nodes A(p) = {u1, . . . , un} ∩ {⊥i | i ∈ N}.
We define the known nodes in the probe result, K(S) =
∪p∈SK(p), and the anonymous nodes, A(S) = ∪p∈SA(p).

The natural topology constructed from a probe result (e.g.,
Fig. 2) is called its induced topology. The induced topology
has edges between any pair of nodes that appear consecutively
in the trace of some route. Its labeling function, Erase, makes
every generated node of the form ⊥k anonymous and every
discovered interface a known node whose label is itself.

Definition 2.3 [Induced Topology] For any probe re-
sult S, define the topology induced by S, T (S) =
〈V (S), E(S),Erase〉, where V (S) = K(S) ∪ A(S), E(S) =
{{u, u′} | σuu′τ ∈ S for some σ, τ} and Erase(u) = u if
u ∈ I , and Erase(u) = ⊥ otherwise.

B. Admissible Topologies

The goal of topology inference is to produce the topology
of the underlying network on which exhaustive traceroutes
yielded the observed probe result. We will write T |= S to
denote that probing the network topology T can yield the
probe result S. Alternatively, T |= S can be read as: if S is
the probe result obtained then T is an admissible topology. In
the presence of anonymous nodes, there may be more than one
admissible topology for a given probe result S. For example,
the topologies of Fig. 2, Fig. 3, and Fig. 1 can all yield the
results obtained by probing Fig. 1. Among the admissible
topologies, it seems reasonable to expect the actual topology
to be closest to the one that has the fewest number of routers.
Since the set of known nodes, for a probe result S, is fixed
to be K(S), the size of the topology is determined by the
number of anonymous nodes in it.

Definition 2.4 [Minimum Topology] A minimum topology for
a probe result S, with respect to an admissibility relation |=, is
a topology T such that T |= S, and for any topology T ′ |= S,
we have that |A(T )| ≤ |A(T ′)|.

We now proceed to define the admissibility relation. The
guiding principle is to reflect enough of the characteristics
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of exhaustive traceroute probing so that a minimum topology
with respect to this relation would with high likelihood be
very close to the real underlying topology. The first obvious
requirement is that each trace observed in the probe result
should be the trace of a route in the topology. The function,
Erase, defined in Definition 2.3, is extended to paths by
Erase(u0 . . . un) = Erase(u0) . . .Erase(un) and to probe
results by Erase(S) = {Erase(p) | p ∈ S}. Essentially, the
function “erases” the arbitrary tags generated for the anony-
mous nodes in the probe result.

Definition 2.5 [Trace Preservation] A topology T preserves
the traces in a probe result S, written T |=t

S iff Erase(S) ⊆
TraceRoute(T ).

We do not insist that every trace of the topology should be in
the probe result since some routes may not have been explored
during the probing phase. Also, note that trace preservation
is defined with respect to the probe result S rather than
the induced topology T (S), as discussed in Section I and
illustrated by the topologies in Fig. 4.

The minimum topology with respect to the trace preser-
vation requirement can be trivially obtained as follows. Let
S be the probe result. Let n = maxp∈S |A(p)| be the largest
number of anonymous nodes appearing in any path in S. Then
a minimum topology for S, with respect to |=t, is the topology
T = 〈V,E,L〉, where V = K(S) ∪ {⊥1, . . . ,⊥n}, E =
{{u, v} | u 
= v}, and L(u) = u if u ∈ K(S) and L(u) = ⊥
otherwise. In other words, the topology T is a full-mesh on
the known nodes K(S) together with n anonymous nodes.
Any trace that has at most n anonymous nodes is observable
in this topology and therefore T |=t

S. It is minimum because
there is a trace with n anonymous nodes in S and therefore
any topology |=t

S would need to have n distinct anonymous
nodes for this to be a route (simple path).

This full-mesh topology, which is a minimum topology with
respect to |=t, is clearly unlikely to be close to the underlying
topology. We, therefore, further refine our definition of an
admissible topology. One intuition for why the full mesh
topology is unacceptable is that nodes are too close together
— every node is one-hop away from the other. Therefore,
the additional restriction we place is that the shortest distance
between known routers is no less than can be inferred from
the probe result.

Distance preservation is formalized as follows. For a topol-
ogy T = 〈V,E,L〉, define dT (v1, v2) for v1, v2 ∈ V to denote
the shortest distance from node v1 to node v2 in graph 〈V,E〉
with each edge counting as cost 1. Note that by our condition
on the labeling function, for any interface u ∈ I , there is at
most one node v with L(v) = u. For addresses u1, u2 ∈ I ,
we therefore define dT (u1, u2) = dT (v1, v2) where L(v1) =
u1, L(v2) = u2. We define the distance observed in the probe
result, dS(u, u′) to be dT (S)(u, u′), where T (S) is the induced
topology (Definition 2.3). Note that dS(u, u′) is not the length
of an explicit path of the form uσu′ ∈ S. Rather, it is the
shortest length of a path from u to u′ that can be constructed
by concatenating subpaths of any paths observed in S. Thus,

the distance preservation criterion does not assume that every
route traced during probing was the shortest one but only
reflects the weaker assumption that a shortest route between
any two known nodes can be constructed from all the links
that were discovered in S.

Definition 2.6 [Admissibility] Let S be a probe result and T
be a topology. Then T |= S iff

• Trace Preservation: T |=t
S, and

• Distance Preservation: For any u, v ∈ K(S), we have
that dT (u, v) ≥ dS(u, v).

Definitions 2.4 and 2.6 are used to define the topology
inference problem.

Definition 2.7 TOP-INF: Given a probe result S, produce a
topology T = 〈V,E,L〉 that is a minimum topology for S
with respect to |=. The objective function is the number of
anonymous nodes |A(T )|. We denote the minimum of this
objective function, for a probe result S, by α(S).

Our first observation is that even deciding admissibility is
NP-complete.

Lemma 2.8: Given a topology T and a set S, deciding
whether T |= S is NP-complete.

Proof: The problem is in NP because for every trace σ ∈
S, we guess a route τ verifying that it is a simple path in T and
that L(τ) = Erase(σ). The minimum distance preservation
criteria can be checked in polynomial time by computing all-
pairs shortest paths in T (S) and T .

The problem is proven to be NP-hard by reducing from the
Hamiltonian path problem [17] defined as: given an undirected
graph G = (V,E) and vertices v1, v2 ∈ V , determine
whether there is a Hamiltonian path from v1 to v2 in G.
For a graph G = (V,E) and vertices v1, v2, we produce the
following instance of the admissibility problem: the topology
T = 〈V,E′, L〉 where E′ = E ∪ {{v1, v2}}, and L(u) = u
if u = v1 or u = v2, and L(v) = ⊥ for all v 
= v1, v2; the
trace set S = {v1⊥1 · · · ,⊥|V |−2v2, v1v2}. In other words, S
contains a trace of length |V | − 1 from v1 to v2 going only
through anonymous nodes and a trace of length 1. It can then
be shown that T |= S iff there is a Hamiltonian path from v1
to v2 in graph G.

III. MERGING ANONYMOUS NODES

The topology inference problem, as specified, requires
searching for an arbitrary topology that is minimum and
admissible; by Lemma 2.8, even checking the latter condition
is intractable. To permit feasible analysis of this problem, the
search space of all topologies needs to be restricted. In this
section, we show that it suffices to consider topologies of a
special form: those that arise by partitioning the discovered
anonymous routers and merging each partition in the topology
induced by the probe result.

Partitions are most easily expressed using equivalence re-
lations. Recall that an equivalence relation R is one that is
reflexive, symmetric, and transitive. The equivalence class
of an element x, denoted [x]R, is defined to be the set
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Fig. 5. Quotient Topology

{y | xRy}. The equivalence classes provide a partition of
the underlying set. Let T = 〈V,E,L〉 be a topology. We
say that an equivalence relation on V is label-respecting if
∀x, y, xRy⇒L(x) = L(y). Because of the conditions on the
labeling function (Definition 2.1), if R does not relate distinct
known nodes or a known node and an anonymous node, then
it is label-respecting. The result of merging nodes of some
topology can be formalized as the “quotient” topology with
respect to the equivalence relation (the merging relation).

Definition 3.1 [Quotient Topology] Let T = 〈V,E,L〉
be a topology and R a label-respecting equivalence
relation on V . The quotient topology T /R =
〈V/R,E/R,L/R〉 where V/R = {[u]R | u ∈ V },
E/R = {{[u]R, [v]R} | {u, v} ∈ E}, and L/R([u]R) = L(u).

The quotient topology T/R is obtained from T by merging
nodes that are related by R into a single node whose neighbor-
set is the union of the neighbor-sets of all the nodes that
have been merged. The label-respecting condition ensures that
L/R is well-defined, i.e., if [u]R = [v]R then L/R([u]R) =
L/R([v]R). Fig. 5 gives an example of the quotient construc-
tion.

We are interested in quotients of the induced topology T (S)
(Definition 2.3) that are admissible for the probe result S.
Admissibility requires trace preservation and distance preser-
vation, which are reflected as corresponding conditions on the
merging relation.

Definition 3.2 [Admissible Equivalence Relation] Let S be
a probe result. A label-respecting equivalence relation R on
T (S) is admissible (with respect to S) iff

• Trace Preservation: If uRv then there is no path
σ1uσ2vσ3 ∈ S

• Distance Preservation: If uRv then for any x, y ∈ K(S),
we have that dS(x, u) + dS(v, y) ≥ dS(x, y)

We next develop the key result that for a probe result S, any
admissible topology contains a fragment (subtopology) that
is structurally identical (isomorphic) to a quotient topology
T (S)/R with R being an admissible equivalence relation. To
state this result, we need some definitions. A homomorphism
h : 〈V1, E1, L1〉→〈V2, E2, L2〉 is a function h : V1→V2
such that for any u ∈ V1, L2(h(u)) = L1(u) and for any
{u, v} ∈ E1 we have that {h(u), h(v)} ∈ E2. If h is a

bijective function, and for every edge {u2, v2} ∈ E2 there
exists an edge {u1, v1} ∈ E1 with h(u1) = u2, h(v1) = v2,
then h is an isomorphism and two topologies are isomorphic
if there exists an isomorphism between them. A subtopology
of a topology 〈V,E,L〉 is a topology 〈V ′, E′, L′〉 such that
V ′ ⊆ V,E′ ⊆ E and L′(u) = L(u) for any u ∈ V ′.

We first prove the following lemma which shows that there
is a homomorphism from the induced topology to any admis-
sible topology, with the homomorphism satisfying additional
conditions.

Lemma 3.3: Suppose that a topology T |= S. Then there
exists a homomorphism h : T (S)→T such that:

1) For any path σ1uσ2vσ3 ∈ S, we have that h(u) 
= h(v)
2) For any u, v ∈ V (S), we have that dS(u, v) ≥

dT (h(u), h(v)).
Proof: Let T = 〈V,E,L〉. Consider any path u1 . . . un ∈

S. Since T |=t
S, there is a route v1 . . . vn in T whose trace

L(v1) . . . L(vn) = Erase(p). We take h(ui) = vi for 1 ≤
i ≤ n. The function h is well-defined on A(S) because each
⊥k ∈ A(S) occurs in exactly one path p ∈ S (Definition 2.2).
The function h is well-defined on any u ∈ K(S) because
L(h(u)) = Erase(u) = u 
= ⊥ which, by the condition on the
labeling functions of topologies (Definition 2.1), means that
h(u) is unique. We next show that h is a homomorphism. By
definition of h, Erase(u) = L(u). Consider any edge {u, v} ∈
E(S). Then there is a path σ1uvσ2 ∈ S. By definition of h,
the sequence h(σ1)h(u)h(v)h(σ2) is a path in T which gives
us that {h(u), h(v)} ∈ E. To establish Condition 1., consider
any path σ1uσ2vσ3 ∈ S. Then h(σ1)h(u)h(σ2)h(v)h(σ3) is
a route, i.e., a simple path, and hence h(u) 
= h(v). Finally,
Condition 2. follows from h being a homomorphism.

Using the special properties of the homomorphism con-
structed in Lemma 3.3, we can construct an admissible
merging relation (the classical algebraic kernel of the ho-
momorphism) which quotients the induced topology into an
isomorphic image of a subtopology.

Corollary 3.4: Suppose that a topology T |= S. Then T has
a subtopology T ′ such that T ′ |= S and T ′ is isomorphic to
a topology T (S)/R for some equivalence relation R that is
admissible with respect to S.

Proof: Let h : T (S)→T be the homomorphism provided
by Lemma 3.3. Define the equivalence relation R on V (S)
by uRv iff h(u) = h(v). Since h is a homomorphism,
R is label-preserving. By Condition 1. of Lemma 3.3, R
meets the trace preservation requirement of admissibility. Now,
consider any u, v such that uRv and any x, y ∈ K(S). By
Condition 2., dS(x, u) ≥ dT (h(x), h(u)), i.e., dS(x, u) ≥
dT (x, h(u)) (since L(h(x)) = x. Similarly, dS(v, y) ≥
dT (h(v), y). Since h(u) = h(v) (by uRv), dT (x, h(u)) +
dT (h(v), y) ≥ dT (x, y) ≥ dS(x, y) (with the last inequality
because T |= S). We thus obtain that R meets the distance
preservation condition. Finally, take the subtopology T ′ =
〈V ′, E′, L′〉 defined by V ′ = {h(u) | u ∈ V (S)} and E′ =
{{h(u), h(v)} | {u, v} ∈ E(S)}. Then h∗ : V (S)/R→V ′

defined by h∗([x]R) = h(x) gives an isomorphism from
T (S)/R to the subtopology T ′ of T .
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Corollary 3.4 provides a characterization of admissible
topologies. It shows that for a topology to be the underlying
network topology, it must contain a subtopology (intuitively,
the probed fragment) with structure identical to T (S)/R for
some admissible equivalence relation R. Thus, the admissibil-
ity of an equivalence relation provides the formal systematic
criterion for when two anonymous nodes can be identified as
being the same router.

The following lemma, required in Sections IV and V,
establishes sufficient conditions for T (S)/R |= S. The first
part states that if R satisfies the trace preservation condition
(of Definition 3.2) then T (S)/R preserves the observed traces.
The second part states that if the probe result does not include
any paths with two consecutive anonymous nodes then any
admissible merging relation R yields an admissible topology.
The example of Section V-B shows that the condition on the
probe result is necessary.

Lemma 3.5: 1) Let S be a probe result. For any label-
preserving equivalence relation R on T (S) that sat-
isfies the trace preservation condition, we have that
T (S)/R|=t

S.
2) Suppose that S is a probe result such that for any ⊥k ∈

V (S) if σu⊥kvτ ∈ S then Erase(u) = u,Erase(v) =
v. Then for any label-preserving equivalence relation R
that is admissible, we have that T (S)/R |= S.

IV. INTRACTABILITY OF TOPOLOGY INFERENCE

We first show that the problem TOP-INF is NP-complete.
This requires us to consider the decision version of the
optimization problem TOP-INF.

Definition 4.1 TOP-INF-DEC: Given a probe result S and a
number k, is there a topology T |= S with |A(T )| ≤ k?

Theorem 4.2: The problem TOP-INF-DEC is NP-complete.
Proof: The problem is in NP because given a probe result

S, we guess a relation R on A(S) which requires a polynomial
number of guesses (for each pair u, v ∈ A(S) guess whether
to relate them or not.) and extend R to be the identity relation
on K(S). We can then check in polynomial-time that: (a) R is
an equivalence relation with at most k equivalence classes on
A(S), (b) R satisfies the path preservation condition, which by
Lemma 3.5 ensures that T (S)/R|=t

S, and (c) for any u, v ∈
K(S), dT (S)/R(u, v) ≤ dT (S)(u, v).

The problem is shown to be NP-hard by reducing the
coloring problem to it. An instance of the coloring problem
is an undirected graph G = 〈V,E〉 and an integer k with the
problem being to determine whether there exists a k-coloring
of G. For a graph G = 〈V,E〉, we define the probe result
f(G) as

f(G) = {o⊥uu | u ∈ V } ∪ {u k{u,v} v | {u, v} 
∈ E}

where o, u, v, k{u,v} are known addresses. Given an instance
G, k of the coloring problem, we produce the instance f(G), k.
We now show that G has a k-coloring iff f(G) admits a
topology with at most k anonymous nodes. Assume that f(G)
admits a topology with at most k anonymous nodes. By

Corollary 3.4, there exists an admissible equivalence relation
R on the set {⊥u | u ∈ V } with at most k distinct equivalence
classes (each of the non-anonymous nodes forms a singleton
equivalence class in a label-preserving equivalence relation).
Consider the coloring which assigns nodes u, v the same
color iff ⊥uR⊥v. This clearly uses at most k colors; all that
remains to be shown is that this is a proper coloring. Note that
df(G)(⊥u, u) = 1, and df(G)(u, v) ≤ 2 iff {u, v} 
∈ E. Since
R is admissible, we have that if ⊥uR⊥v then df(G)(u, v) ≤
df(G)(u,⊥u) + df(G)(⊥v, v) = 2 which in turn implies that
{u, v} 
∈ E. This proves that any two nodes that are colored
the same are not adjacent in the graph G and that this is a
valid coloring.

For the converse direction, assume that G has a k-coloring
given by the function c : V→{1, . . . , k} such that for any
{u, v} ∈ E we have that c(u) 
= c(v). Define the equiv-
alence relation R on the topology T (f(G)) by ⊥uR⊥v iff
c(u) = c(v), and xRy iff x = y for x, y ∈ K(f(G)).
Then R has at most k equivalence classes on the anonymous
nodes. R trivially meets the path-preservation condition and
meets the distance preservation condition because if ⊥uR⊥v

then {u, v} 
∈ E (because c is a proper coloring) and thus
df(G)(u, v) = 2. Hence R is admissible, and by Lemma
3.5, T (f(G))/R |= f(G) and T (f(G))/R has at most k
anonymous nodes.

Given that the decision problem TOP-INF-DEC is NP-
complete, the topology inference problem TOP-INF is in-
tractable. Instead of looking for a topology that is the exact
minimum, the best we can hope for is to infer a topology that
is close to the minimum, or in other words, an approximation
algorithm for TOP-INF. In the approximation version of the
problem, given a probe result S, we try to find a topology T
such that the ratio |A(T )|/α(S) is within some approximation
bound ε that is as small as possible. Unfortunately, we can
show that achieving an approximation bound of ε = nδ ,
for some fixed constant δ, is also NP-hard. In other words,
TOP-INF falls into the hardest class of NP-complete problems
(c.f. [18]) with respect to approximability.

Theorem 4.3: There exists a polynomial-time reduction τ
from the satisfiability problem, SAT, to TOP-INF that for some
fixed δ > 0 ensures that for all instances I of SAT

I ∈ SAT =⇒ α(τ(I)) ≤ K(|I|)
I 
∈ SAT =⇒ α(τ(I)) > K(|I|)nδ

where K(|I|) is a polynomial-time (in |I|) computable func-
tion, and n is the size of τ(I). Therefore, there exists a fixed
δ > 0 such that approximating TOP-INF to within a factor nδ

is NP-hard, where n is the size of the input probe result.
Proof: Consider the function f defined in the reduction

from coloring to TOP-INF-DEC. As proven in Theorem 4.2,
we have that for any graph G, α(f(G)) = χ(G), where χ(G),
the chromatic number of G, is the minimum number of colors
required to color G. We thus have that for any values c, ρ, and
for any graph G,

χ(G) ≤ c =⇒ α(f(G)) ≤ c
χ(G) > cρ =⇒ α(f(G)) > cρ
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By the inapproximability result of coloring [18], we have a
polynomial-time reduction σ from SAT to coloring that for
some fixed ε > 0 ensures that for all instances I ,

I ∈ SAT =⇒ χ(σ(I)) ≤ K ′(|I|)
I 
∈ SAT =⇒ χ(σ(I)) > K ′(|I|)nε

where K ′(|I|) is a polynomial-time (in |I|) computable func-
tion, and n is the size of σ(I). We take the desired reduction τ
of the theorem to be the composition f ◦σ. Note that f(G) for
any graph G has at most O(|G|2) paths each of length 2 and
thus |f(G)| = O(|G|2). Thus, taking δ = ε/2, and K = K ′,
we get the statement of the theorem.

V. PRUNING AND HEURISTICS

The results of Section IV show that both exact solutions
and approximate solutions, with worst case error bounds, are
unlikely to be achieved with polynomial-time algorithms. We
therefore look for heuristics that, on many input instances,
produce topologies that are close to the actual topology.
Corollary 3.4 shows that the topology inference problem can
be solved by deriving an admissible equivalence relation R
with fewest equivalence classes such that T (S)/R |= S. Our
heuristics are based on this idea.

The heuristics use time and space that is polynomial in
the number of anonymous nodes in T (S), which could still
be large when applied to probe results obtained from large
networks. To keep computation times and memory footprints
feasible, it becomes critical to reduce the input size. Our imple-
mentation therefore includes an initial pruning phase where the
number of anonymous nodes in T (S) is significantly reduced
before the heuristics are applied. Section V-A describes the
pruning algorithm and establishes its correctness. Section V-B
develops the heuristics.

A. Pruning

One simple strategy for pruning is that if a path p in the
probe result is a subpath of some other path, then p can be
safely removed. The anonymous nodes appearing in p then no
longer have to be considered for merging. Our pruning method
is a generalization of this idea, where instead of requiring
a path to be an exact subpath (for it to be removed), it
only requires that all the purely anonymous segments, without
considering their direction, can be recovered in another path.

Call a trace p ∈ I{⊥i | i ∈ N}+
I , purely anonymous,

i.e., one in which source and destination are known inter-
faces, all intermediate nodes are anonymous, and there is
at least one intermediate anonymous node. For a trace p ∈
I(I ∪ {⊥i | i ∈ N})∗I in the probe result, define its purely
anonymous segment traces, ATrace(p), as the set:

Erase({p′ ∈ I{⊥i | i ∈ N}+
I | p = σp′τ

for some σ, τ})

For example, ATrace(1⊥12⊥2⊥334⊥456) is the set
{1⊥2, 2⊥⊥3, 4⊥5}. For a sequence σ, define its reversal
σR, by (u1 . . . un)R = un . . . u1, and for a set of sequences,
SR = {pR | p ∈ S}. We generalize the notion of subpaths,

1 2

1{ , 2} 4

3 3{ , 4}

65

Fig. 7. Inadmissibility due to simultaneous merging

and define a path p to be subsumed by a path p′, written
p � p′ iff ATrace(p) ⊆ ATrace(p′) ∪ (ATrace(p′))R. For
example, the path 2⊥1345⊥26 � 13⊥326⊥454. For a probe
result S, define the result of its pruning S�, to be a minimal
subset of S such that for every p ∈ S, there exists a p� ∈ S�

such that p � p�. For a topology T = 〈V,E,L〉, define
the subtopology induced by a set V ′ ⊆ V , as the topology
T|V ′ = 〈V ′, E′, L′〉, where E′ = {{u, v} ∈ E | u, v ∈ V ′}
and L′(v) = L(v) for any v ∈ V ′. For any probe result S,
the pruned topology T (S)� = T (S)|K(S)∪A(S�). Note that the
pruned topology does not include any anonymous nodes in
traces that are subsumed, but does include any links between
known interfaces that are present in them.

We can then establish the following lemma, whose proof
follows similar ideas as Corollary 3.4.

Lemma 5.1: Suppose that a topology T |= S. Then T has
a subtopology T ′ such that T ′ |= S and T ′ is isomorphic to a
topology T (S)�

/R for some equivalence relation R on T (S)�

that is admissible with respect to S.
Lemma 5.1 shows that for a probe result S, it suffices to

consider quotients of the pruned topology T (S)� (as opposed
to the full induced topology T (S)). Our heuristics are therefore
applied to the pruned path set S� and pruned topology T (S)�.
Pruning is a generalization of bisimilarity; for the probe results
of the network of Fig. 1, the pruned topology is that of Fig. 3.
In our implementation, the pruned path set S� is obtained by
transforming each path to eliminate consecutively occurring
known interfaces, re-ordering path segments so that the source
and destination interfaces are in increasing order and then
eliminating any paths that are subpaths of existing paths after
the transformation.

B. Heuristics

For a given probe result S, we try to infer a quotient
topology T (S)/R for a merging relation R having the fewest
number of equivalence classes. As Corollary 3.4 shows, the
relation R has to be admissible with respect to S — one
obvious methodology would therefore be to look for a merging
relation satisfying the conditions given by Definition 3.2.
Unfortunately the following example shows that not every
admissible relation results in an admissible quotient topology.

Example: Let S be a probe result that includes the paths
1⊥12, 2⊥2⊥34, 5⊥46, and additional paths consisting only of
known nodes such that the shortest distances between the
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Input: A probe result S
Output: An equivalence relation R such that T (S)/R |= S
Steps:

1. R0 := {(x, x) | x ∈ V (S)}; /* no nodes are initially merged */
2. i := 0;
3. UP := A(S); /* set of unpartitioned anonymous nodes */
4. while UP �= ∅ do
5. Pi := ∅; /* next equivalence class */
6. C := UP; /* candidate nodes to be included in equivalence class */
7. while C �= ∅ do
8. Pick u ∈ C; Pi := Pi ∪ {u}; /* add a candidate node */
9. C := C − {u} − {v | u U(Ri) v}; /* remove nodes unmergeable with u */
10. end while
11. Ri+1 := Ri � Pi; /* add new equivalence class to Ri */
12. UP := UP - Pi; i := i + 1;
13. end while
14. R := Ri;

Fig. 6. Algorithm for topology inference

nodes are: dS(1, 3) = dS(4, 6) = 2, dS(1, 4) = dS(2, 4) =
dS(3, 6) = dS(3, 5) = 3, dS(1, 6) = 4. Then an equivalence
relation R such that ⊥1R⊥2 and ⊥3R⊥4 (with other related
elements implied by reflexivity and symmetry) is admissible
with respect to S. However, consider T (S)/R, part of which is
shown in Fig. 7. Although R is admissible, we do not have that
T (S)/R |= S because dT (S)/R(1, 6) = 3 < dS(1, 6) which
violates the distance preservation criterion.

The reason for this example is that merging ⊥1,⊥2 did not
violate the distance preservation criteria only in the absence
of any other anonymous nodes being merged, and similarly
for ⊥3,⊥4. Once both the pairs were merged simultaneously,
the resultant topology was not admissible.

In general, merging many pairs of anonymous nodes simul-
taneously may produce an inadmissible topology. However, we
show that more than one pair of nodes can be merged provided
they belong to the same equivalence class. Our heuristics
are therefore based on producing the merging relation incre-
mentally, extending by one equivalence class at a time. The
construction of each equivalence class takes into account nodes
that have already been merged to ensure that the distance
preservation requirement is met. (Lemma 3.5 ensures that
path preservation is automatically ensured by any admissible
merging relation.) We next make these intuitions more precise.

Let R be a label-respecting equivalence relation on T (S)
for some probe result S. Define the set UP (R) (the nodes that
are not partitioned by R) as the set {x ∈ A(S) | |[x]R| = 1}.
For a non-empty set P ⊆ UP (R), we define the relation R*P
(the extension of R with a new equivalence class P ) as xR*Py
iff xRy ∨ (x ∈ P ∧ y ∈ P ), which can be seen to be a label-
respecting equivalence relation. Note that for any x ∈ P , we
have that [x]R�P = P . We can now define the conditions for
extending a merging relation.

Definition 5.2 Let S be a probe result, and R a label-
respecting equivalence relation on T (S). Then an equivalence
relation R′ on UP (R) is an admissible extension of R (with
respect to S) iff

• Trace Preservation: If R′(u, v) then there is no path
σ1uσ2vσ3 ∈ S

• Distance Preservation: If R′(u, v) then for any x, y ∈
K(S), we have that dT (S)/R(x, u) + dT (S)/R(v, y) ≥
dT (S)/R(x, y)

Note that the main difference from Definition 3.2 is that
distance preservation is computed with respect to the quotient
topology T (S)/R rather than the full topology T (S), to take
into account nodes that have already been merged (by R).

Lemma 5.3: Let S be a probe result and R a label-
respecting equivalence relation such that T (S)/R |= S. Then
for any equivalence relation R′ that is an admissible extension
of R, we have that T (S)/(R * [x]R′) |= S for any x ∈ UP (R).

Note that Lemma 5.3 only shows that an extension of the
equivalence relation R with one equivalence class produces an
admissible topology. As should be expected from our previous
example, we do not have, in general, that T (S)/(R ∪R′) |= S.

For presenting our topology inference algorithm, it is con-
venient to recast Definition 5.2 using an unmergeability rela-
tion. Let R be a label-respecting equivalence relation on the
topology T (S). We define the unmergeability relation (with
respect to R), U(R) ⊆ UP (R) × UP (R), as (u, v) ∈ U(R)
iff either (a) there exists a path σ1uσ2vσ3 ∈ S, or (b) there
exists x, y ∈ K(S) such that dT (S)/R(x, u)+dT (S)/R(v, y) <
dT (S)/R(x, y). Note that R′ is an admissible extension of R iff
R′ ∩U(R) = ∅, and that a set P ⊆ UP (R) is an equivalence
class of an admissible extension iff ∀u, v ∈ P.(u, v) 
∈ U(R).

The general algorithm for topology inference is given in
Fig. 6. For each set Pi constructed, we have that (u, v) 
∈
U(Ri) for any u, v ∈ Pi, and Pi is therefore an equivalence
class of an admissible extension of Ri. Using Lemma 5.3,
we can show by induction that for each i, T (S)/Ri |= S, and
that the equivalence relation produced results in an admissible
quotient. Furthermore, note that each set Pi produced is
maximal in that for any node u 
∈ Pi, the set Pi ∪ {u} is
not an equivalence class of any admissible extension of Ri.
Together with the fact that U(Ri) ⊆ U(Ri+1) this implies that
the equivalence relation produced is a maximal one, i.e., no
additional anonymous nodes can be merged.

Theorem 5.4: For the equivalence relation R produced by
the algorithm of Fig. 6, T (S)/R |= S and for any R′ ⊇ R
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such that T (S)/R′ |= S, we have that R′ = R.
Different heuristics can be obtained from the basic algorithm

of Fig. 6 by fixing a particular choice of u ∈ C that is added
to the currently generated equivalence class Pi (in Line 8 of
the algorithm); we consider two possibilities. One choice is to
pick a u such that |{v ∈ C | u U(Ri) v}| is minimum among
all nodes in C; we call the resulting algorithm the “Min”
heuristic. The motivation for this heuristic is to make each
equivalence class Pi as large as possible, thereby ensuring that
the equivalence relation R has a small number of equivalence
classes. It can be shown that the size of Pi is at least �logk n�,
where n = |UP | is the number of remaining unpartitioned
nodes and k is the minimum number of equivalence classes in
any admissible extension of Ri (The proof of this is similar to
that in [19].) However, the Min heuristic may perform poorly,
if for some intermediate merging relation Ri, the number of
equivalence classes in any admissible extension of Ri is large,
i.e., the new unmergeability relation U(Ri) is such that many
previously mergeable pairs of nodes become unmergeable.

A second heuristic tries to ensure that the equivalence
classes constructed do not significantly alter the mergeability
of the remaining nodes. This heuristic, referred to as “Max”,
chooses a u such that |{v ∈ C | u U(Ri) v}| is maximum
among all nodes in C. The intuition is that such nodes are
the most constrained as to which nodes they can be merged
with and therefore choosing them earlier ensures flexibility
in extending the merging relation. However, the size of each
equivalence class produced would be small, which could
increase the number of equivalence classes.

VI. EVALUATION

The two heuristics, Min and Max, were evaluated on data
collected via simulations and results from probing an IPv6
testbed. For simulation, ns-2 [20] was enhanced to support
both source routing and the Atlas probe engine [13]. A set
of connected topologies were randomly created according to
specified numbers of known routers, anonymous routers and
links. There was no route changes during the simulations.
Probe results collected from these topologies by ns-2 were
then processed by the heuristics. When both Min and Max
were applied to the probe result obtained from the topology
in Fig 1, the actual topology was correctly inferred.

B

C

A

D

Fig. 8. Mapping from actual to inferred anonymous routers

A. Evaluation Method

Directly comparing the number of anonymous routers in
actual and inferred topologies does not necessarily reflect the
minimality of the inferred topology nor its similarity with the

actual topology. One anonymous router in an actual topology
may give rise to multiple anonymous routers in its inferred
topology and vice-versa. As a result, the two topologies may
have the same number of anonymous routers even though they
differ significantly from each other.

We therefore use an approach based on mappings from
anonymous routers in the probe result (generated anonymous
routers) to actual and inferred anonymous routers. For each
simulated topology, the mapping from generated to actual
anonymous routers is produced by ns-2, whereas the mapping
from generated onto inferred anonymous routers is produced
by each heuristic. A graph G = (X,Y,E) is produced based
on the two mappings: X represents the set of actual anony-
mous routers, Y represents the set of inferred anonymous
routers, and {x, y} ∈ E iff there is at least one generated
anonymous router that maps to both x and y, i.e., it is obtained
from probing x and got merged into y. It can be easily shown
that G is bipartite with node partitions X and Y . There are
only four possible cases for bipartite connected components
of G, as illustrated in Fig. 8.

Case A, the one-to-one mapping, indicates all generated
anonymous routers resulting from an actual router x are
merged into a single inferred router y. As a result, all observed
connectivity information for x is preserved by y. This case is
therefore called the perfect-merge. Case B, the many-to-one
mapping, means a set M ⊆ X of actual anonymous routers are
merged into a single inferred anonymous router y. In addition,
y has the aggregated connectivity of all routers in M . This
case, denoted as the over-merge case, indicates that the actual
topology is not minimum. Case C, the one-to-many mapping,
indicates that a single actual router and its connectivity is
splitted into multiple inferred routers and therefore called the
under-merge case. Case D, the many-to-many mapping, means
generated anonymous routers, i.e., connectivity information,
belonging to multiple actual anonymous routers are intermin-
gled into multiple inferred anonymous routers. In this case, if
the component is G′ = (X ′, Y ′, E′) and |Y ′| > |X ′|, then it
is called the mixed-non-optimal case. Otherwise, it is called
the mixed-optimal case.
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Fig. 9. Percentage of routers optimally merged by Min

B. Simulation Results

Topologies with 50 routers and 50, 75, 100, and 125 links
were studied. Changing the number of nodes and links in
proportion does not change the results significantly. Each link
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Fig. 10. Percentage of routers optimally merged by Max

was assigned the same cost and shortest path routing was
used. Choosing link cost randomly between 1 and 10, thereby
simulating the non-shortest path routing case, does not change
the result significantly. According to our observation of the
6bone, it is likely that only a small percentage of routers are
anonymous. Therefore, numbers of anonymous routers were
selected to be from 2 to 7, corresponding to 4% to 14%. If
there was only one anonymous router, both heuristics always
achieved perfect merge and is therefore not listed here. For all
the figures in this section, the x-axis represents the percentage
of actual routers that are anonymous. Each data point on the
graph is the average obtained from running the simulation on
about 50 randomly generated topologies.

The probability that an actual anonymous router is merged
optimally was first studied. Its upper bound can be calculated
by first summing up the number of actual anonymous routers
in perfect-merge, over-merge and mixed-optimal cases, and
then dividing it by the total number of actual anonymous
routers. The results obtained by Min and Max heuristics are
shown in Fig. 9 and Fig. 10 respectively. In both figures, y-axis
represents percentage of anonymous routers merged optimally,
and different lines represent topologies with different number
of links: 50, 75, 100 and 125. It can be observed that Min
optimally merged more than 90% anonymous routers in most
cases while Max did not do as well. By calculating the
difference between numbers of anonymous routers in the
actual and inferred topologies, we observed that less than 25%
more anonymous routers were introduced by both heuristics
in all cases considered in Fig. 9 and Fig. 10.

Since the inferred topology is not necessary the actual topol-
ogy, it is also interesting to see how similar they are. This can
be measured by the percentage of actual anonymous routers
in perfect-merge and over-merge cases, where connectivity of
actual anonymous routers are correctly reflected in the inferred
topology. The results are listed in Fig. 11 and Fig. 12. Min
achieved more than 80% node similarity when no more than
8% routers were anonymous, and Max performed much worse.

The performance of both Min and Max improved as average
node degree and percentage of anonymous routers decreased.
When there are few actual anonymous routers, our distance
preservation criterion makes it unlikely for generated anony-
mous routers from different actual routers to be mixed up.
Under such condition, our heuristics would produce a topology
that is both close to minimum and similar to the actual
topology. The same argument also applies when average node

degree is small.
We observed that Max typically had worse performance than

Min. The two heuristics differs in their strategies in selecting
equivalent classes: Min tries to build a larger equivalence class
in each round while Max tries to leave more flexibility for
future rounds. It turned out, from our results, the former had
bigger impact.

C. Experiment Results

Both heuristics were further tested on probe results collected
from a small IPv6 testbed in our lab. Two of the routers were
configured as anonymous. When the heuristics were applied
to the probe result, the inferred topology is the same as the
actual topology. Applying the Min heuristic on the probe result
of the 6Bone produced 34 anonymous routers while the total
number of routers was 1351, which means about 2.5% routers
were anonymous [13]. According to simulation results, the
inferred topology is highly similar to the actual topology and
very close to the minimum under such conditions. Therefore,
one may conjecture that the inferred result is similar to the
actual topology of the 6Bone.
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Fig. 11. Similarity between inferred and actual routers for Min
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Fig. 12. Similarity inferred and actual routers for Max

VII. RELATED WORK

Source routed traceroute had been used in IPv4 topology
discovery tools to obtain router connectivity and to determine
whether two interfaces belong to the same router [12]. By
sending source routed traceroute to a known destination,
Govindan and Tangmunarunkit [12] could identify whether
a router was source routing capable. They recognized some
intermediate IPv4 routers did not send back ICMP responses,
which indicated that they might be anonymous. However, since
the authors were interested only in router adjacencies, rather
than paths, such routers were ignored. Pasiot and Grad [21]

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



used source routing capable routers to analyze the topologies
of multicast trees on the Internet. Any path that contained
non-responsive routers were discarded from their analysis.

Some topology discovery tools use multiple hosts to send
traceroute packets in order to detect comprehensive network
topology. For example, the Skitter project [9], [16] sent tracer-
oute packets from more than 20 hosts distributed around the
world. The authors reported that close to one third of probed
paths contain anonymous, private, or invalid addresses, i.e.,
anonymous routers. To handle anonymous routers, arc graph,
place holder graph, and shortcut place holder graph were
introduced. But the focus was on extracting the topology of the
Internet’s core, rather than inferring actual anonymous routers
in the topology. The Rocketfuel project [14] used results from
294 public traceroute servers to construct router level ISP
topologies. Techniques that can reduce the amount of probing
and resolve address aliasing were presented. But anonymous
routers were not discussed. Cheswick et. al. [7] proposed using
IP-in-IP tunnels to distribute probe packets so that probes
could originate from multiple sources. In their tool, probing of
a path was stopped if an intermediate router failed to respond;
the anonymous router problem was not addressed. Paxson [8]
ran traceroute among 37 different hosts in order to study end-
to-end routing behavior in the Internet. The IDMaps [4] project
studied the placement of tracers for distance estimation on the
Internet. The focus of these two projects was on end-to-end
performance rather than accurate topology, therefore, they did
not address the anonymous router problem.

The only previous work to consider the anonymous router
problem, due to Broido and Claffy [16], uses shortcut place-
holder graphs in which adjacent anonymous nodes between
two known nodes are discarded if there already exists a path
of equal or shorter length between the two known nodes. This
results in a topology that is essentially equivalent to that based
on merging bisimilar nodes whose shortcomings have already
been discussed in Section I. Compared to the bisimilarity ap-
proach, shortcut graphs may contain fewer anonymous nodes
but this reduction also results in loss of path information from
the probe result.

Our topology discovery tool, Atlas, effectively sends tracer-
oute from every known routers by exploiting widespread
support for source routing in IPv6 routers. It also continues
to probe a path after determining an intermediate routers is
anonymous. Therefore, a more comprehensive topology can
be derived. As a side effect, more occurrences of anonymous
routers are included in the probe result. Consequently, it is
crucial for us to solve the anonymous routers problem.

VIII. CONCLUSIONS

This paper has identified the anonymous routers (those
whose addresses could not be determined by traceroute)
phenomenon and defined the topology inference problem in
the presence of anonymous routers. We have shown that the
problem is intractable, established lower bounds on its approx-
imability, and developed heuristics and evaluated them through
simulation and experimentation. Our simulation results show

that our heuristics are able to produce topologies close to the
actual topology under conditions similar to the 6Bone.

As part of future work, we would like to obtain an approxi-
mation algorithm that provably achieves this worst case bound.
This paper made the simplifying assumption that a router
cannot have both a known and anonymous interface address.
While this assumption is consistent with our experience in the
context of the 6Bone, it would be interesting to solve the more
general problem of inferring topologies in which actual routers
may behave anonymously in some paths and but not in others.

Although the impact of anonymous routers on topology
inference was made evident by the Atlas project, the problem
is also relevant in IPv4. Furthermore, we believe that the tech-
niques developed in this paper can also be incorporated into
existing tools to discover more comprehensive and accurate
network topologies.
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