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Abstract—The aim of this article is to propose and analyse
measurement-based admission control schemes. We distinguish
between large-scale and small-scale systems, where scale is
measured in the number of concurrent applications that can run
simultaneously. For large scale systems, we show that simple end-
user probing strategies, based on ECN-type feedback provided
by the network, achieve a good utilisation/quality trade-off. We
explicitly take account of feedback delay, and use limiting results
for assessing performance. We illustrate the benefits of using
ECN-type feedback rather than relying on loss. For small-scale
systems, the previous strategies are no longer adequate and we
propose alternative, more gradual probing strategies.
Methods Keywords: Stochastic Processes/Queuing Theory,

Control theory, System Design

I. INTRODUCTION

Real-time flows have quality of service requirements that
translate to requiring some minimal level of resource allo-
cation, for example some minimal bandwidth. For packet-
based networks such as the Internet, the minimal quality of
service level for many real-time flows also typically involves
requiring small packet-loss rates and small queuing delays
to minimise latency. Although adaptive codes and Forward
Error Correction can be used to help counteract variations in
bandwidth and quality, they do not solve issues of latency or
varying bandwidth for all applications. We are motivated by
audio and video applications that have an interactive element,
or tight latency bound, where the minimal requirement is
necessary.
Admission control is the obvious way to ensure such flows

get an acceptable level of performance from the network,
assuring the quality of service of existing flows by refusing ad-
mission to others. Traditionally some form of signalling mech-
anism is used, for example RSVP, which makes reservations
along a path. However there are scalability questions associ-
ated with this approach, which has led several researchers [1],
[2], [3], [4], [5] to consider end-point admission control, or
distributed admission control, where the end-system probes the
network at some rate, receives some information back from the
network in terms of packet-loss or ECN marks [6], and bases
the entry decision on this information. The end-systems may
be hosts, or gateways. The advantage of this approach is that
no state has to be maintained in routers, all they have to do
is drop or mark packets appropriately.

Breslau et al [2] discuss some of the architectural issues with
this approach. They major on loss as the primary feedback
mechanism, with the admission controlled traffic in a separate
DiffServ service class, giving soft-guarantees that fit into
the Controlled Load framework. Kelly [5] looks at a looser
framework, an Integrated Services network, with ECN marks
as the feedback mechanism, and hence router support for ECN
is the main network requirement. We do not limit ourselves
to any particular architecture, although our model is similar
to Kelly’s, and shall not go further into the implementation
issues. Our model also includes loss based feedback as a
special case, which requires no ECN support.
Many voice and audio applications use UDP to transfer data

and for the associated control channel, hence to use ECN
marks in the ways that we want requires that this IP level
information is accessible to UDP. The feedback mechanism
could be done using an extension to RTCP for example (the
RTP control channel) as the feedback channel.
Our primary focus is on how the probing should be done.

For simplicity, we only consider admission controlled traffic.
For example, such traffic could be in its own traffic class.
Much of the previous literature has focussed on simulations
as a way of investigating probing schemes. Most researchers
assume that since packet loss is a critical performance metric,
the probing phase should attempt to estimate this loss, [2],
[5], which implies a long probing phase, whereas we consider
much simpler probing schemes which make a relatively quick
decision based on feedback from a small number (perhaps
1) of probe packets; the cumulative decisions of many con-
nections then keep the loss rate down. This is similar to [1],
although there the effects of feedback delay were neglected.
Previous researchers have suggested probing at the rate which
you want to achieve, or to use something like slow-start ramp-
up to achieve this probing rate. We attempt to determine an
optimal probing rate. Indirectly, we are also able to illustrate
the benefits of using ECN-type feedback rather than packet
loss; essentially when loss is the feedback signal we are
unable to cope with a very high connection arrival rate without
damaging the system, which is not the case when ‘early-
warning’ signals (such as ECN) are used.
There is a natural system scale measured by the number of

applications that can run simultaneously. A small-scale system
may represent a home network, where there is a small number
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of simultaneous real-time audio/video applications that may
compete for some resource. Conversely, an example of a large
scale system is the Internet, with much larger capacities at
bottleneck links. We attempt to look at both scales.
The outline of the paper is as follows: in Section II, we

look at large scale systems. First we outline the model of a
single resource, and then show how it is possible to use fluid
limits and diffusion scaling to analyse fluctuations about this
limit. The closest related work is that of [7], who look at
adaptation rather than admission control. We use the diffusion
approximation to the system with feedback delays to analyse
the performance of different probing schemes, in terms of
performance seen by connections and in terms of stability. In
Section III we discuss some consequences of the analysis, as
well as comparing the results with simulations. It turns out that
there are several key parameters that affect the performance of
the system, such as the derivative of the marking function and
whether we mark before we lose packets, which we discuss.
Stability of the system is affected by the relative size of the
round-trip time compared to the flow life-time. We are able to
show that choosing the key parameters appropriately enables
us to design robust probing strategies for stable systems. In
Section IV we turn to small scale systems, where the analysis
and probing strategies for large systems do not apply. Finally,
in Section V we conclude.

II. LARGE SCALE SYSTEMS

A. Model

Consider a single resource, with capacity N. Request arrivals
occur at the instants of a Poisson process with intensity ν(N) :=
Nν. Requests last for an exponentially distributed random
time, with parameter µ.
New connections initially enter a probing state. When

probing, connections send packets at some rate rp, and these
packets are ACKed. Upon receipt of an unmarked ACK, a
probing connection moves to the active state with probability
Πa, and continues probing with probability 1− Πa. Upon
receipt of a marked ACK (or inference of loss for the cor-
responding packet), a connection drops out with probability
Πd , and keeps on probing with probability 1− Πd . While
active, connections do not react to marks, and send packets
at constant rate ra. ACKs are received after some fixed round
trip time delay τ. As a special case, packets may be dropped
(lost) rather than marked, which conceptually we treat as if a
marked ACK is received. For ease of description, we continue
to use the term ‘marked packets’ even when these correspond
to dropped packets.
For tractability we assume that when active or probing, con-

nections send packets at Poisson time instants, with respective
rates ra and rp. Let X

(N)
a (t) and X (N)

p (t), respectively, denote
the number of active probing connections at time t. Thus
packets are generated at a Poisson rate of raX

(N)
a (t)+rpX

(N)
p (t)

at time t. Assume that the resource marks (alternatively, drops)
packets independently of one another, with probability f (y/N)
when faced with a Poisson process of packet arrivals, with

intensity y (see [8] for a discussion of marking schemes that
may achieve this). Notice that the function f is implicitly
defined by the marking or packet dropping behaviour at a
resource, for example drop-tail marking, or other marking
schemes induce a particular f .
If we ignore the round-trip delay τ, then under these

assumptions the state variable X (N)(t) := (X (N)
p (t),X (N)

a (t)) is
a Markov process, with transition rates


(xp,xa) → (xp,xa−1) : µxa
(xp,xa) → (xp+1,xa) : Nν
(xp,xa) → (xp−1,xa+1) : qa[1− f (y/N)]xp
(xp,xa) → (xp−1,xa) : qd f (y/N)xp,

(1)

where y := raxa + rpxp, qd = rpΠd and qa = rpΠa, in other
words qa, qd are the rates at which probing connections
convert to active connections or drop out respectively . A
similar model has been analysed in [1], where the authors
also consider the case of multiple bottlenecks, but assume
zero round-trip delays. For non-zero round-trip time τ, the
same transition rates apply, but at time t one should use
y(t − τ) = raxa(t − τ) + rpxp(t − τ) rather than y(t) in the
argument of function f , and xp(t−τ) rather than xp(t). Indeed,
probing connections liable to change their rates at time t will
do so because they were already probing at time t−τ, and do
so on the basis of feedback information delayed by τ.
Another system we shall consider is that where candidate

connections are provided with a feedback signal, equal to 0
with probability 1− f (y/N), and chose to enter when it equals
0 and to leave otherwise. In that system no probing traffic is
created and the state of the system is simply the number of
active connections, Xa(t). The transitions for this system are{

xa → xa−1 : µxa
xa → xa+1 : Nν[1− f (y/N)].

(2)

Again, in the presence of round-trip delays, one should take
y= y(t−τ) = raxa(t−τ) into the argument of f . In the sequel
we refer to this system as operating with “free probing”. This
model is appropriate for reflecting the behaviour of candidate
traffic sources that send a single packet through the network
to receive feedback, in the case where the additional traffic
due to such probe packets can be neglected.

B. Fluid limits

We now let N go to infinity. Using results of Hunt and
Kurtz [9] or [10], it can be shown that under suitable assump-
tions on the initial conditions X (N)(0), the rescaled process
{N−1X (N)(t)} converges to the process {n(t)}, where n(t) =
(np(t),na(t))T satisfies the delay-differential equations{

ṅa(t) = qa(1− ft−τ)np(t− τ)−µna(t),
ṅp(t) = ν−qa(1− ft−τ)np(t− τ)−qd ft−τnp(t− τ).

In the above, we have introduced the notation fs = f (rpnp(s)+
rana(s)). Setting these derivatives to zero one obtains the
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following fixed point equations for the eventual limiting points
(np,na) of these dynamics:{

µna = qa[1− f (rpnp+ rana)]np,
ν = qa[1− f (rpnp+ rana)]np+qd f (rpnp+ rana)np.

(3)
For concreteness, assume now that

f (x) =min(1,(1+ f ′.(x− c))+), (4)

so that the sensitivity of f is f ′ in the range where it is not
constant, and f reaches its maximum value 1 at c. c is related
to the capacity of the resource. Note that if c = 1, then we
quench arrivals when the capacity limit is reached, whereas if
c< 1, we start to stop accepting connections before this point.
Assume for the moment that qa = qd = q, which is saying

that the probability that an unmarked packet causes a probing
connection to become active is the same as the probability
that a marked packet causes a connection to drop out. We
let ρ := raν/µ denote the (normalised) potential load on the
system. Assuming ρ > c, there exists a unique fixed point to
the above equations, given by{

np = ν
q ,

rana = ρ f ′
1+ρ f ′ (c− rpnp).

(5)

This can be interpreted as follows: the steeper the marking
function (i.e., the larger f ′), the larger the useful utilisation
rana. Also, the smaller the per-connection probe traffic rp/q,
the larger the useful utilisation. We now discuss how these
conclusions should be modified when taking into account the
dynamics of the system.
We assume existence and uniqueness of the solution n. Let

f := f (rpnp+ rana), and f
′
:= f ′(rpnp+ rana). The linearised

dynamics for small perturbations m(t) = (mp(t),ma(t))T :=
n(t)−n are

ṁ(t) = −Pm(t)−Qm(t− τ), (6)

where the matrices P and Q are given by

P=
(
0 0
0 µ

)

Q=
(
qa(1− f )+qd f 0
−qa(1− f ) 0

)
+

np f
′
(

(qd−qa)rp (qd−qa)ra
qarp qara

)
.

(7)

The main stability properties for the linearised system (6)
are summarised below; their proof is in the Appendix.
Theorem 1: In the absence of propagation delays (i.e., when

τ = 0), the system (6) is stable when qd ≤ qa. For positive τ,
stability holds if and only if any solution s to the characteristic
equation

Det
(
sI+P+ e−sτQ

)
= 0 (8)

is such that its real part ℜ(s) is negative. In the special case
where qa = qd =: q, sufficient conditions for stability are given

by

qτ <
π
2
, (9)(

ν f ′raτ
)2

< (µτ)2+ α2, (10)

where α is the solution to the equation α = −µτ tan(α) that
lies in the interval (0,π).
Remark 1: Recently, several authors ([11], [8], [12]) have

analysed the stability properties of congestion control schemes
with an emphasis on the impact of feedback delays. These
contrast with the present work not only because we focus on
admission control rather than on congestion control, but also
because we are mainly concerned with flow level dynamics,
whereas the references above consider rate adaptation for a
fixed population of users. On the other hand, these go beyond
the single bottleneck case.
Note that q is the rate at which probing connections will

either leave the system or move to the active state. Thus, q
is also interpreted as the reciprocal of the probing time. Con-
dition (9) requires a probing time that is at least proportional
to the round-trip delay1. As the quantity α in (10) is always
larger than π/2, a sufficient condition for (10) to hold is given
by (

ν f ′raτ
)2

< (µτ)2+
(π
2

)2
. (11)

Taking for instance the piecewise affine marking function (4),
one sees that the system’s stability is not affected by the
probing volume rp/q used by each connection. Thus the
system’s performance is increased by reducing this probe
traffic rp/q, as this allows one to accept more flows into the
system.

C. Diffusion scaling: fluctuations around the fluid limits

In this section we investigate the “second-order” properties
of the system under consideration. Recall that X (N)(t) is the
state variable, expected to be close to Nn. Introduce the
notation

Z(t) := (Zp(t),Za(t))T =
1√
N

(X(t)−Nn) .

We argue that this (approximately) satisfies the following
stochastic delay differential equation

dZ(t) = −PZ(t)dt−QZ(t− τ)dt+dW(t), (12)

where

W(t) =
√

ν
(
1
0

)
B1(t)+

√
µna

(
0
1

)
B2(t)

+
√
qanp(1− f )

(−1
1

)
B3(t)+

√
qdnp f

(−1
0

)
B4(t), (13)

and Bi, i= 1, . . . ,4 are independent scalar Brownian motions.
This is a two-dimensional Ornstein-Uhlenbeck process, with

1In the more general case where qa �= qd , we also find that the two pa-
rameters qa and qd have to be chosen proportional to τ−1. The corresponding
stability conditions are less easily expressed and we do not provide them here.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



a delayed input term. Indeed, the perturbations Z(t) (ap-
proximately) satisfy the linearised equations of the previous
subsection, with additional input noise terms which correspond
to the randomness in the original Markov process2 . The result
below characterises the stationary covariance of process Z.
Theorem 2: The process Z as described by (12) admits the

steady state covariance matrix

Σ := E[ZZT ] =
1
2π

∫ +∞

−∞

{[
iωI+P+ e−iωτQ

]−1
M

[−iωI+PT + eiωτQT ]−1}
dω, (14)

where

M =
(

ν+qdnp f +qanp(1− f ) −qanp(1− f )
−qanp(1− f ) µna+qanp(1− f )

)
.

The proof is in the Appendix. We now discuss two cases of
particular interest.

a) variance analysis with zero delays: In the undelayed
case τ = 0, the integral in (14) admits an explicit solution. In
the special case where qa = qd = q, the corresponding closed
form expression for Σ in turn yields the following formula for
the variance of the normalised total utilisation raZa+ rpZp:

Var (raZa+ rpZp) =
r2aν(1− f )

µ+ f
′
raν

+
(
rp
q

)
ν
rpµ2+q

(
−(1− f ) f ′r2aν+ rp(µ+ νra f

′)
)

(
µ+ f

′
raν

)(
q+µ+ f

′
raν

) · (15)

Note that the first term does not depend directly on the two
parameters rp, q that characterise the probing phase (it depends
indirectly on the ratio rp/q, which affects the value of f ). The
second term will be zero if both rp and q are set to zero, while
the ratio rp/q is held fixed. This limiting situation corresponds
to probing at an infinitesimal rate, which still sees the true
marking probability, and reacting accordingly. The first term
in (15) does in fact correspond to the variance of the quantity
raZa where Za is the (approximation to the) perturbation term
(Xa(t)−Nna)/

√
N for the system with free probing discussed

previously.
But note that the second term in (15) may be negative, hence

it is possible to decrease the variance by having a non-zero
probing rate. Recall that q = Πrp. To ease exposition, and
without loss of generality, we now set µ= 1, corresponding to
a time rescaling, which requires that we replace Π by Π/µ.
Define γ by

γ = νra f̄ ′. (16)

Then the variance can be written as

νra2(1− f̄ )
1+ γ

+
νrp

(
1− (

1− f̄
)

Πγra+ Π(1+ γ)rp
)

Π(1+ γ)(1+ γ+ Πrp)
· (17)

2A rigorous treatment would consist in showing that as N goes to infinity,
the corresponding perturbation process Z converges weakly to the Ornstein-
Uhlenbeck process given here. Such a proof might for instance rely on the
methods in Ethier and Kurtz [13], but is beyond the scope of the present
paper.
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g
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Optimal probing

ρ

Fig. 1. Optimal probing rate rp as a function of offered load. Parameter
values: µ= 0.01, c= 1,N = 100,ra=1, f ′ = 10.

The second term will be negative if γ is large enough, that is
if

γ >
1+ Πrp(

1− f̄
)

Πra−Πrp
. (18)

Now the fixed point equation can be written as

n̄a = ν
(
1− f

(
ran̄a+

ν
Π

))
(19)

hence the utilisation increases with Π, while the variance is
relatively insensitive to Π and decreasing in Π, hence we want
to chose Π as large as possible (1 in the original units, or
1/µ in the rescaled units here). Provided the condition (18)
is satisfied, then for Π fixed, the variance is minimised by
choosing the probing rate to satisfy,

rp =
−1− γ+

√
γ
(
2+

(
1− f̄

)
Πra+ γ

)
Π

· (20)

As γ becomes large, this tends to the limit

rp =
1
2
ra(1− f̄ ). (21)

The limiting value (21) has an interesting interpretation,
namely that the optimal probing rate is to probe at half the
rate at which active connections are marked. Note that it is
always best to probe at less than half the active rate.
Figure 1 shows how the optimal rate decreases with increas-

ing load ρ on the system, where we have taken a system of
capacity N = 100 with µ= 0.01.

b) variance analysis with free probing and non-zero
delays: We now provide an exact variance analysis for the
non-zero delay case, for ‘free’ probing. The diffusion equation
satisfied by Za(t) can either be derived from (12) by replacing
np by ν/q and then letting rp, q go to zero, or alternatively
be derived directly. The resulting equation is

dZa(t) = −ν f ′raZa(t− τ)dt−µZa(t)dt

+
√
2ν(1− f )dB(t), (22)
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where B(t) is a standard Wiener process. Rewrite equation (22)
as

dZa(t) = −γZa(t− τ)dt−µZa(t)dt+bdB(t) (23)

where γ is defined in (16) and b=
√
2ν(1− f̄ ). We then have

the following
Theorem 3: The process Za as described by (22) admits the

steady state variance

Var(Za) = ν(1− f̄ )·
cos

(
τ
2

√
γ2−µ2

)
+

√
γ+µ
γ−µ sin

(
τ
2

√
γ2−µ2

)
(γ+µ)cos

(
τ
2

√
γ2−µ2

)
−

√
γ2−µ2 sin

(
τ
2

√
γ2−µ2

) (24)

when γ > µ, and

Var(Za) = ν(1− f̄ )·
cosh

(
τ
2

√
µ2− γ2

)
+

√
γ+µ
µ−γ sinh

(
τ
2

√
µ2− γ2

)
(γ+µ)cosh

(
τ
2

√
µ2− γ2

)
+

√
µ2− γ2 sinh

(
τ
2

√
µ2− γ2

)
(25)

otherwise.
The proof is in the Appendix.

c) Minimal variance for central controller: We would
like to know how efficient the performance of the scheme with
free probing is. To this end, we now evaluate the minimal
variance achievable by a central controller, whose aim is to
bring the utilisation as close as possible to a target value. The
set-up is as follows: the controller chooses at each time t the
rate of accepted new arrivals into the system, A(t), on the basis
of the history of the number X(s) in the system for all s≤ t−τ,
and of the previous acceptance rates A(s), s< t. The durations
of accepted calls are random, exponentially distributed with
parameter µ, and the controller has no information at time t
about the departures that have taken place during [t−τ, t]. We
assume that the target utilisation, N, is large, and consider
the deviations Z(t) := (X(t)−N)/

√
N. We formalise this as

follows:

dZ(t) = a(t)dt−µZ(t)dt+
√
µdB(t),

where the controlled (perturbation to the) rate of arrivals a(t)
is Ft−τ-adapted, and the filtration Ft keeps track of the history
of the process Z. One has the following explicit expression

Z(t) =
∫ t

−∞
e−µ(t−s)[a(s)ds+

√
µdB(s)].

The conditional variance formula ensures that

Var(Z(t)) ≥ E(Var(Z(t)|Ft−τ)) .

Because a(s) is Fs−τ-adapted, the right-hand side of this
expression reads

Var

(∫ t

t−τ
e−µ(t−s)dB(s)

)
=
∫ t

t−τ
µe−2µ(t−s)ds.

We thus obtain the following lower bound for the optimal
variance:

Var(Z(t)) ≥ 1− e−2µτ

2
· (26)

This lower bound can effectively be achieved by a central
controller, as long as it is able to pool from a large reservoir
of candidate connections (which holds when the offered load
is larger than the capacity): indeed it suffices to define the
control a(t) so as to set to zero the non-negative term we
have neglected when using the conditional variance formula.
This minimal variance (26) is typically one order of magni-

tude smaller than the one achieved by free probing. One thing
to note is that this depends only on the quantity T := 1/(µτ),
which is the ratio of holding time to round trip time. As
we shall see in the next section, this ratio is also critical for
the performance of the schemes we consider, although none
achieves variances close to the optimal (26).

III. NUMERICAL RESULTS AND DISCUSSION

We now explore some of the consequences of the analysis,
and compare with simulation. One striking fact that emerges
from the analysis is the crucial effect the derivative of the
marking function, f ′, has on performance. On the one hand,
increasing f ′ increases the efficiency of the system, both
by increasing the utilisation, as is immediate from (5), and
by decreasing the variance; on the other hand the f ′ may
compromise stability, since the larger the f ′ the smaller the
offered load before stability breaks down. We return to this
point later.
First we consider the system with negligible delays. Equa-

tion (21) says that we should probe at not more than half
the active rate, in fact at exactly half the rate at which an
active connection would be marked. To assess the performance
of different probing schemes, we look at the probability
the offered load exceeds the capacity limit, N. Recall that
connections are generating packets at certain rates, hence when
the load (total utilisation) exceeds this limit packets are lost,
hence we use the performance measure

Ploss = Pr [raXa+ rpXp > N]

= Pr

[
ran̄a+ rpn̄p+

1√
N

(raZa+ rpZp) > 1

]
(27)

which is the proportion of connections that lose packets.
This relates to the proportion of connections that see an
unacceptable quality of service. Using the large system limit,
for a system of size N we approximate this by the probability
that a normal distribution with mean ran̄a+ rpn̄p and variance
Var(raZa+ rpZp)/N exceeds 1.
Figure 2 compares utilisation against performance for three

schemes, where we put c= 1, in other words where the point
at which we mark all packets is also the point at which we
start to lose packets. This corresponds to drop-tail marking, or
the case where there is no marking, only packet loss. Here the
utilisation is the normalised goodput, ran̄a. The three schemes
are

• Free Probing,
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Fig. 2. Utilisation (goodput) and log10Ploss, based on analysis. Parameter
values: µ= 0.01, c= 1, N = 100, ra = 1, f ′ = 10.
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Fig. 3. Utilisation (goodput) and log10Ploss, based on analysis. Parameter
values: µ= 0.011, c= 0.95, N = 100, ra = 1, f ′ = 10.

• ‘Rate 1 probing’: probing at active rate (i.e. rp = ra)
• ‘Optimal probing’: probing at the rate which minimises
the variance of the load, given by (20).

We have taken f ′ to be 10, and set Π/µ = 100, which could
correspond to a mean holding time of say 100 (seconds),
with Π = 1. We have also taken a moderately sized system,
with N = 100, and the graphs are obtained using the analytic
formulae of the previous section as the offered load ρ is varied
between 0.7 and 4. The results show that free probing performs
the best, with a log-linear relationship between goodput and
performance. For optimal and rate 1 probing the performance
degrades badly above a critical offered load.
Contrast this with Figure 3, where c is less than 1, namely

c = 0.95, implying that we mark all packets before we start
losing packets. Now both free probing and ‘optimal’ probing
have room to work, and the performance of the system is
bounded, in other words the performance of existing flows is
not damaged excessively by probing traffic, whereas probing
at the active rate leads to a performance collapse above a
critical offered load. This illustrates dramatically the benefits
of sacrificing a small amount of utilisation (say 5%) to gain
control of the system. In real terms there is no loss of
utilisation, since trying to run at full utilisation is likely to
produce unacceptable performance for most applications.
We now introduce delay. In Figure 4 the mean and the

standard deviation of the utilisation with free probing are
reported, based on both simulations and analysis. We observe
a good match between the predicted mean and that achieved
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Fig. 4. Average utilisation and corresponding standard deviation, based on
analysis (dotted lines) and simulations (plain lines). Parameter values: µ =
.025, τ = 30, c= 100, rp = 0, ra = 1, f ′ = 0.43.

in simulations. The match between the predicted and observed
standard deviations is also good in a wide range of values of ν
where the stability condition (10) is satisfied. When condition
(10) fails, the Ornstein-Uhlenbeck system no longer admits
a stationary regime, and thus the analysis cannot provide
predictions for the standard deviation. When this condition
fails, utilisation in the real system displays oscillations, the
amplitude of which is essentially kept bounded by non-
linearity of the marking function f .
Figures 5 and 6 illustrate how delays may compromise the

behaviour of probing schemes. We use the same three schemes
as before, where the optimal probing refers to the optimal rate
if the delay is zero. Recall the definition T = 1/(µτ), hence
T is the number of round trip-times per holding time. If T
is moderate, 100 or smaller, implying the feedback delay is
large, for example, corresponding to a 1 second round trip
time and 100 second mean holding time, then optimal rate
probing may not do much better than rate 1 probing. With
a smaller delay, T = 1000 ( µτ = 0.001), the story becomes
the same as without delays, i.e. almost identical to Figures 2
and 3. Hence, whether it is safe to use a non-zero probing rate
depends critically on the ratio of the mean holding time to the
round trip time.
Figure 7 shows a simulation of optimal probing for a system

of size 100 with large delays, which tells the same kind of
story as the analytic graphs. Notice that we need a large
amount of headroom to preserve quality of service bounds,
which here are represented by the maximum (total) utilisation.
In other words here we need to have c< 0.8, approximately,
to ensure a good performance for large loads in this case, i.e.
20% spare capacity.
For comparison, consider the experiments of Breslau et

al. [2]. They consider a 10Mbps link with bursty connections
having an average rate of 128k, a mean holding time of 300
seconds and a round time comprising a propagation delay
of 20ms and a queuing delay bounded by 20ms, with loads
between 1.2 and 4. Under our scaling, this corresponds to a
capacity N of 80, and a T value of T = 300/0.04= 7500. This
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Fig. 5. Utilisation (goodput) and log10Ploss. Parameter values: µ = 0.01,
c= 1, N = 100, ra = 1, f ′ = 10, τ = 1, T = 100.
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Fig. 6. Utilisation (goodput) and log10Ploss . Parameter values: µ = 0.01,
c= 0.95, N = 100, ra = 1, f ′ = 10, τ = 1, T = 100

means that the impact of delayed measurements is negligible,
stability is not an issue, and Figure 6 can be compared with
their results. In contrast to the schemes of their paper, we are
probing for a very short time. Notice that we get very good
performance with either optimal rate probing or ‘free-probing’.
Their paper also considers a virtual queue, with c= 0.9 rather
than c= 0.95, which is one reason why their utilisations are
lower. They also effectively have a much higher value of f ′
than we do (an order of magnitude higher).
The analytical condition (11) seems to be a reliable predictor

of when oscillations will emerge. Rewriting the condition as

ρ f ′ <

√
1+

(
π
2µτ

)2

(28)

gives the sufficient condition

ρ f ′ <
π
2µτ

=
πT
2

. (29)

There are two ways to interpret the condition (29): for a
given T and f ′ we can regard it as a condition describing the
limits on the offered load before the system destabilises, or we
can seek to tune the parameter f ′ to ensure stability. Note that
for long-lived flows such as streaming media, the system will
self-stabilise under typical operating conditions. For example,
assuming such flows last 100 seconds and have a 500msec
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Fig. 7. Utilisation (from simulations) with optimal probing. Parameter values:
µ= .001, τ = 5, N = 100, rp = opt, ra = 1, f ′ = 10.

round trip time implies that T = 200; if we set f ′ = 10, then ρ
can go as large as 30 (extreme overload!) and still the system
will be stable.
As a specific example of how f ′ can be chosen, consider

the Virtual Queue marking mechanism, described in [14], [1],
[15]. If the real queue (output port of a router) has a service
rate N, then the virtual queue runs at lower rate cN, and marks
packets if the virtual buffer capacity exceeds some threshold B.
No real scheduling is done in the virtual queue, its sole purpose
is to mark packets. Under our scaling, for this queue f ′ is
approximately B, hence if we chose B to be 10 packets, (taking
the average packet size) then we have the system modelled
here.
Adapting f ′ could correspond to adapting the buffer size

in the virtual queue. An alternative approach is to adapt
both parameters f ′ and c in (4) to tune average utilisation
and fluctuations. Srikant [16] considered an adaptive virtual
capacity algorithm; f ′ is a harder quantity to tune.

IV. SMALL SCALE SYSTEMS

In small scale systems, simple strategies such as free
probing might no longer provide a satisfactory goodput/quality
of service trade-off. This is illustrated in Figure 8, where
the mean and maximal utilisation of a system with virtual
capacity cN equal to 10. We see that, when the arrival rate
ν is large, the maximum utilisation can be as large as twice
the average utilisation. Another observation we make is that
standard deviation is not an appropriate performance descriptor
in such small scale systems. Indeed, the standard deviations
corresponding to the simulations reported in Figure 8 are all
between 1 and 2, which suggests better performance than we
actually observe.
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Fig. 8. Maximal and average utilisation (from simulations) with free probing.
Parameter values: µ= .001, τ = 5, N = 10, rp = 0, ra = 1, f ′ = 10.

Probing at non-zero rates provides a solution to reduce the
variance. The question is then of designing probing strategies
which allow to keep the overflow probability small, while
maintaining the probing traffic small in comparison to the
useful traffic carried by the resource. The rule (21) derived
in the previous section provides a natural candidate. Figure 9
illustrates the corresponding performance. As we see, this is
only marginally better than what free probing achieves.
Yet another option consists of using more than one probing

stage. In Figure 10, users go through a first phase at which
they probe at rate 1/4, and then have to go through a second
probing phase, during which they probe at rate 1/2, before
eventually entering the system.
As is seen on Figure 10, the added complexity of using

several probing phases can be beneficial. More generally, one
might consider the following family of probing strategies.
Connections can probe at several rates, r1, . . . ,rK−1, while the
rate when active is still ra. For instance, one might let

ri = raz
K−i,

where z is less than 1, and z−1 is the inflation ratio between
probing rates i− 1 and i. We shall also assume that a con-
nection probing at rate ri−1 will either abandon, or move to
the next probing level ri (if i= K, the connection will in fact
become active). Again, we assume that the decision between
the two options is based on ECN-type binary feedback marks
received from the congested resource, and that the probability
of a feedback mark generated at time t being equal to 1 is
exactly f (X(t)/N), where N is the bottleneck capacity, and
X(t) is the rate submitted to the bottleneck at time t. For each
feedback signal received while probing at rate ri, a connection
will choose to react to this information with probability Πi.
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Fig. 9. Utilisation and goodput for “optimal” probing. Parameter values:
µ= .001, τ = 5, N = 10, rp = 0, ra = 1, f ′ = 10.

Denoting by Xi(t) the number of connections in probing
state i at time t, we thus have

X(t) =
K

∑
i=1

riXi(t).

In the previous equation we let XK(t) denote the number
of active connections at time t, and rK = ra. For an arrival
rate ν(N) = Nν, exponentially distributed sojourn times with
parameter µ, and in the absence of delay in the feedback loop,
(Xi(t)1≤i≤K) is a Markov process with transition rates



x1 → x1+1 : Nν
(xi,xi+1) → (xi−1,xi+1+1) : xiriΠi[1− f (x)]

(1≤ i< K−1)
xi → xi−1 : xiriΠi f (x)

(i< K)
xK → xK−1 : µxK .

Although the analysis techniques used in the previous section
are based on the assumption that the system’s capacity N
is large — which we no longer assume here — they might
still provide insight into the performance of systems with
small N. Mimicking the preceding derivations, we arrive at the
following fixed point equations for the normalised quantities
n̄i = E[Xi]/N:


n̄i = (Πiri)−1ν(1− f̄ )i−1 (1≤ i≤ K−1)
n̄K = (ν/µ)(1− f̄ )K−1
f̄ = f (∑K

i=1 rin̄i).

These might be used to infer the average resource utilisation,
and the average goodput, that is the average traffic due to active
rather than probing connections. We do not try to reproduce
the variance analysis in the previous section, not only because
it becomes so intricate with several probing levels, but also
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Fig. 10. Utilisation and goodput for two-level probing. Parameter values:
µ= .001, τ = 5, N = 10, rp = 0, ra = 1, f ′ = 10. Probing rates: 1/4 and 1/2.

because variances might be too crude to describe the system’s
performance.

V. CONCLUDING REMARKS

A number of authors have proposed various probing mech-
anisms for end-point admission control, yet little analysis has
been done to enable different schemes to be assessed. One of
the aims of this work was to look at analytic techniques as
a vehicle to gain insight into designing good strategies that
can then be tested by simulation or experiment. A concern
with any probing strategy is that the act of probing can
damage existing connections, and we want to use strategies
that provide good information while having minimal impact
on existing connections.
We have analysed a number of probing schemes for dis-

tributed admission control, and analysed the effect of the prob-
ing traffic on the system performance. The analytic techniques
take account of the delayed information available to flows
attempting to join the system, which has enabled us to look
at stability. We use limiting results for large systems, which
give rise to fluid limits; deviations form the fluid limits are
described by delayed diffusion approximations, which can be
explicitly solved.
The large system results seem accurate, even for moderate

size systems, and enable a number of practical conclusions to
be drawn. First, the parameter T = 1/(µτ), the ratio of mean
holding time to the round trip time, equivalently the number
of round times per holding time, is a critical parameter for
stability of the system. If this is large (round trip times are
relatively small) then the influence of delay on the system is
minimal, and performance is similar to undelayed systems;
whereas if T is small (large relative RTTs), the delayed
feedback can compromise the stability of the systems. We have

concentrated on strategies that are relatively light-weight, and
that react rather quickly, for example making a decision on the
basis of a single marked packet. Indeed, within the restricted
set of probing strategies we consider, this strategy is better
than one which uses several packets to make the decision.
This is in contrast to much previous work which assumes
that relatively long probing time is required. For the typical
streaming or interactive applications of today, T is likely to
be large enough that stability is guaranteed for our schemes.
For emergent applications which may have short call holding
times, this condition may change.
Two other critical parameters that affect the performance

of the system are the derivative of the marking function, f ′
and the relationship between the point at which all packets are
marked, c in normalised units, and the point at which packets
are dropped. The larger f ′, the better the utilisation, and the
better the performance, but the tighter the stability criterion. If
c= 1, corresponding to tail marking or packet loss feedback
for example, then any non-zero probing scheme can become
unstable under moderate loading, the effect of probing traffic
pushing the system into overload. Even free probing cannot
bound the performance for high load. In contrast, if we set
c to be smaller than capacity, say c = 0.95, which could be
achieved by using a virtual queue running at 95% of the real
queues’ rate, then the system can be stabilised. Indeed with
free probing, the system is self-adjusting: the performance is
bounded regardless of the load. This illustrates the benefits
of giving up a small amount of potential utilisation in return
for controllability and better performance, and illustrates the
benefits of using something like ECN for admission control.
The ‘free-probing’ scheme appears the best way to probe

in large systems, which receives delayed feedback and has
negligible impact on the network. This could be implemented
by using a very small packet to do the probing. For stable
(large) systems, the limiting optimal non-zero probing rate is
exactly half the rate at which active connections are marked,
hence we should never probe at more than half the active
rate, and if there is some knowledge of the current marking
rate, then we can use this to approximate the optimal probing
rate. Such a scheme can induce a smaller variance than free
probing, which is offset by the extra traffic non-zero probing
generates, which means that free-probing and optimal rate
probing behave similarly if the system is stable.
The choice of probing strategies for small systems is

less clear: the large system models are not appropriate, and
indeed the variance of the load can be a poor predictor of
performance. For small systems free probing is not ideal, and
there is an incentive to probe at a gradually increasing rate,
and we have some evidence that probing in several phases is
beneficial.
The analysis has relied on simplifying assumptions for

tractability, such as exponential holding times, and homo-
geneous connections. It is possible to relax some of the
assumptions at the cost of a rather more complex analysis,
though we believe that our models and conclusions for large
systems are robust. If we assume marking functions that are
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conditionally independent across resources given the load, then
for certain probing strategies our methodology can be extended
to network models.

APPENDIX

A. Proof of Theorem 1

When τ = 0, the linear system (6) is stable if and only if the
eigenvalues of P+Q all have a positive real part. This in turn
holds if and only if the trace and the determinant of P+Q are
positive. In view of the expressions

Trace(P+Q) = qa(1− f )+qd f +µ+

np f
′[(qd−qa)rp+qara],

Det(P+Q) = µ[qa(1− f )+qd f+

np f
′(qd−qa)rp]+np f

′
qdraqa,

it follows that these conditions are always met provided qd ≥
qa.
The system (6) is of retarded type (see Bellman and Cooke

[17] for a definition and Theorem 12.12, p. 418 in [17] for
a proof); Corollary 6.1, p. 190 in [17] can thus be applied,
yielding the corresponding necessary and sufficient condition
for stability (8).
Nyquist’s criterion guarantees that stability holds for some

value of τ if for all t ∈ [0,τ], the characteristic equation (8) has
no root iω on the imaginary axis. In the special case where
qd = qa =: q, the matrices P and Q are both lower triangular,
so that the eigenvalues of the matrix in (8) are simply its
diagonal elements. Thus stability follows if for all t ∈ [0,τ],
and all ω ∈ R, the two conditions

−iω �= e−iωt
[
qa(1− f )+qd f

]
= e−iωtq

−iω �= µ+ e−iωtnp f
′
qra

hold. The latter condition simplifies to

iω+µ+ e−iωt f ′νra �= 0,

since np = ν/q.
Hayes’ lemma [18] (see also Theorem 13.8 in Bellman

and Cooke [17]) can then be applied to yield the equivalent
conditions (9)-(10), thus concluding the proof of Theorem 1.
�

B. Proof of Theorem 2

Using Laplace transform techniques, it can be seen that a
stationary solution to (12) is given by

Z(t) =
∫ t

−∞
H(t− s)dW(s),

where the matrix-valued function s→H(s) is characterised by
its Laplace transform:

Ĥ(z) :=
∫

R

H(s)e−zsds=
(
zI+P+ e−zτQ

)−1
.

Equation (14) then follows from an application of
Plancherel-Parseval’s isometry formula. �

C. Proof of Theorem 3

We adapt the proof of Ott [19] who considered the case
µ = 0, to calculate the steady state variance of this process.
Consider the covariance process,

C(t)
de f
= E [Za(s)Za(s+ t)], (30)

which satisfies C(t) = C(−t). If follows directly from (23)
that, for t > 0,

d
dt
C(t) = −γC(t− τ)−µC(t). (31)

By considering d(Z2a(t)), using Ito’s formula and taking ex-
pectations it follows that

γC(τ)+µC(0) =
b2

2
(32)

giving a boundary condition. Now for 0< t < τ,
d
dt
C(t) = −γC(t− τ)−µC(t) = −γC(τ− t)−µC(t),

hence for |t| ≤ τ/2,
d
dt
C

( τ
2

+ t
)

= −γC
( τ
2
− t

)
−µC

( τ
2

+ t
)

. (33)

Now putting

C
( τ
2

+ t
)

=
∞

∑
j=0

a jt
j

and equating coefficients in equation (33), gives

C
( τ
2

+ t
)

= a0

{
cos

(
t
√

γ2−µ2
)

−
√

γ+µ
γ−µ

sin

(
t
√

γ2−µ2
)}

(34)

for γ ≥ µ, and

C
( τ
2

+ t
)

= a0

{
cosh

(
t
√
µ2− γ2

)

−
√

γ+µ
µ− γ

sinh

(
t
√
µ2− γ2

)}
(35)

for γ < µ. Hence using the boundary condition (32) to find a0,
gives the expressions (24)-(25) for C(0). �
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[8] L. Massoulié, “Stability of distributed congestion control with hetero-
geneous feedback delays,” IEEE Transactions on Automatic Control,
vol. 47, pp. 895–902, 2002.

[9] P. Hunt and T. Kurtz, “Large loss networks,” Stochastic Processes and
their Applications, vol. 53, pp. 363–378, 1991.

[10] A. Mandelbaum, W. A. Massey, and M. I. Reiman, “Strong approxima-
tions for Markovian service networks,” Queueing Systems – Theory and
Applications, vol. 30, pp. 149–201, 1998.

[11] R. Johari and D. Tan, “End-to-end congestion control for the internet:
delays and stability,” IEEE/ACM Trans. Networking, vol. 9, pp. 818–832,
2001.

[12] G. Vinnicombe, “On the stability of networks operating tcp-
like congestion control,” in IFAC conference, 2002, http://www-
control.eng.cam.ac.uk/gv/internet/index.html.

[13] S. Ethier and T. Kurtz, Markov processes: characterization and conver-
gence. John Wiley, New York, 1986.

[14] R. Gibbens and F. Kelly, “Resource pricing and the evolution of
congestion control,” Automatica, 1999.

[15] R. J. Gibbens, P. B. Key, and S. R. E. Turner, “Properties of the Virtual
Queue marking algorithm,” in 17th UK Teletraffic Symposium. IEE,
2001.

[16] S. Kunniyur and R. Srikant, “Analysis and design of an Adaptive Virtual
Queue (AVQ) algorithm for active queue management,” in Proceedings
of SIGCOMM 2001, San Diego, California, USA, 8 2001.

[17] R. Bellman and K. Cooke, Differential-Difference Equations. Academic
Press: New York, 1963.

[18] N. Hayes, “Roots of the transcendental equation associated with a certain
differential-difference equation,” Journal of the London Mathematical
Society, vol. 25, pp. 226–232, 1950.

[19] T. Ott, “On the Ornstein-Uhlenbeck process with delayed feedback,”
available at http://web.njit.edu/ ott/Papers/Del O U.ps.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003


	INFOCOM 2003
	Return to Main Menu


