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Abstract— We present a new algorithm for routing of messages
in ad-hoc networks where the nodes are energy-constrained.
The routing objective is to maximize the total number of
messages that can be successfully sent over the network without
knowing any information regarding future message arrivals or
message generation rates. From a theoretical perspective, we
show that if admission control of messages is permitted, then
the worst-case performance of our algorithm is within a factor
of O(log(network size)) of the best achievable solution. In other
words, our algorithm achieves a logarithmic competitive ratio.
Our approach provides sound theoretical backing for several
observations that have been made by previous researchers. From
a practical perspective, we show by extensive simulations that the
performance of the algorithm is very good even in the absence
of admission control (the admission control being necessary only
to prove the competitive ratio result), and that it also performs
better than previously proposed algorithms for other suggested
metrics such as network lifetime maximization. Our algorithm
uses a single shortest path computation, and is amenable to
efficient implementation. We also evaluate by simulations the
performance impact of inexact knowledge of residual battery
energy, and the impact of energy drain due to dissemination of
residual energy information.

I. INTRODUCTION

With the rapid increase in low cost sensor devices, there
is an increased interest in the deployment of ad-hoc wire-
less sensor networks. This is reflected in the recent spurt
of research interest in this area [1], [4]. Low cost sensors
typically have low battery life and therefore conserving battery
energy is a prime consideration in these networks. Since some
battery energy is depleted for each message transmission, it is
necessary to use energy aware and energy conserving routing
algorithms. This paper presents a new distributed algorithm for
on-line message routing in energy-constrained wireless ad-hoc
networks.

Our routing objective is to maximize the total number
of messages successfully carried by the network (hereafter
referred to merely as network capacity) without making any
assumptions on future message arrivals. This is equivalent to
minimizing the number of messages that cannot be routed
for an (unknown) sequence of message routing requests. This
is different from a previously studied objective [1], [4] of
maximizing the network lifetime (i.e., the time before the first
message loss). Despite the differing objective, the algorithm

developed in this paper outperforms the existing algorithms
even with respect to optimizing the network lifetime.

The on-line algorithm we develop is a simple algorithm
using only one shortest path computation. We show that if
admission control of messages is permitted, our algorithm
achieves a competitive ratio [8] that is logarithmic in the
number of network nodes, i.e., its performance without knowl-
edge of future message arrivals is in the worst case within a
logarithmic factor of the best performance achievable by an
off-line algorithm with complete information about messages
to be transmitted. Admission control is necessary only for
obtaining the competitiveness result. In practice, the algorithm
works very well even without admission control, as can be
seen from the simulation results. We use knowledge of residual
battery energy at each node, and also consider the general
setting where energy consumption for message transmission
is dependent on the distance to the neighbor. Though the
assumption on the knowledge of residual energies is used
for proving the theoretical worst-case performance bounds,
simulations show that the algorithm works well even with
inexact knowledge of node residual energies.

Our approach uses ideas developed for competitive con-
nection routing in wired networks [5]. However, the routing
model for energy aware routing in wireless ad-hoc networks is
different from that for connection routing in wired networks.
In wired networks the constraint is on the consumption of link-
bandwidth. In contrast, the routing problem in wireless ad-hoc
networks is constrained by the battery energy of each node.
It cannot be transformed to a link capacity constraint problem
by node splitting since the energy expended in transmitting on
different links can be different. However, as we show in this
paper, the ideas used for wired connection routing can still be
nicely applied to develop a new algorithm for energy aware
capacity maximizing routing in wireless ad-hoc networks and
to prove its competitive ratio.

As in [4], our algorithm ideally requires knowledge of the
energy level of all other network nodes. This may become
a problem in large networks. For this case, we show that
periodic, geographically limited broadcasts of the energy level
is sufficient to ensure that our algorithm’s performance with
partial energy information is close to that of the ideal case
with complete energy information. The energy consumption
for these neighborhood broadcasts is accounted for when
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computing the network energy consumption in performance
comparisons. An alternate use of the algorithm is to combine
it with the zone-based approach developed in [4].

Note that we do not make any assumptions regarding
message arrivals, unlike [1], [4] where it is assumed that
the message arrival rates between different source-destination
pairs have a regular pattern. Moreover, our algorithm is
also computationally much simpler than existing algorithms.
A detailed comparison of our approach with the previous
approaches is provided in Section II.

The paper is organized as follows. The next section dis-
cusses related work. In Section III, we describe the energy-
constrained routing problem formally, and outline our ap-
proach and objectives. In Section IV, we describe a capacity-
competitive on-line algorithm for the energy-constrained rout-
ing problem. Section VI evaluates the performance of our
algorithm on the basis of simulation results. We conclude in
Section VII.

II. RELATED WORK

There has been tremendous research interest in ad-hoc
networks in the last few years. The early literature on ad-
hoc networking primarily addressed the design of efficient
routing algorithms but without optimization of the energy
required to send messages. After the work of Singh et al.
[10], there has been a growing literature on energy aware
routing in ad-hoc wireless networks. Energy aware routing is
particularly important for sensor networks where nodes often
have a limited amount of battery energy.

Routing with the objective of maximizing the network life-
time has been addressed in [1], [4]. In [1], the authors consider
the scenario where messages are generated at the sensor nodes
at a known fixed rate, and formulate the lifetime maximization
problem as a linear program. The authors propose some dis-
tributed heuristics that can be used to solve this linear program
approximately. In [2], the authors observe that the structure of
the linear program resemble that of a maximum concurrent
flow problem, and use this fact to develop an algorithm that
can solve the problem to any arbitrary degree of accuracy.
The algorithms in [1], [2] can be used to determine how the
traffic (generated at a constant rate) should be split amongst the
different routes so as to maximize the lifetime of the network.
Therefore in this case, the ad-hoc sensor network can solve
the lifetime maximizing traffic splitting problem once at the
beginning, and use the computed routes thereafter without any
further reoptimization. Thus in the scenario considered in [1],
[2], since the traffic generation rates are assumed to be constant
and known, the network can solve the routing problem in an
off-line manner.

Our work differs from [1], [2] in several aspects. Most
importantly, we do not assume that the message generation
rates are known, or that they are constant. In a vast majority
of applications involving ad-hoc networks, the message gen-
eration rates can vary with time, and the message generation
process is highly unpredictable. In other words, there is no
a priori information (deterministic or statistical) on the future
message generation (arrival) process. Whereas the approach in

[1], [2] cannot be used in that case, the algorithm proposed in
this paper is very well suited for such a scenario. Also note
that in this paper we are interested in optimizing the network
capacity, and not the network lifetime as considered in [1],
[2].

This paper is motivated by the network lifetime compet-
itive ratio results in [4] for the max-min zPmin algorithm
developed by the authors. In [4], the authors propose an
on-line message routing algorithm (which does not need to
know the message generation rates) for the network lifetime
maximization problem, and provide a competitive analysis for
their algorithm. However, this approach has two drawbacks.
Firstly, in the analysis, the authors assume that the messages
are generated at a constant rate. (It is assumed that messages
are generated cyclically, or in each interval of time the set
of messages are the same.) Secondly, the competitive bound
depends on values that are not given as input to the problem,
and it is not clear how good the bound is. (For example, the
competitive bound depends on the amount of residual energy
left over in the network as well as the periodicity of the
messages.) Further, the algorithm involves several shortest path
computation invocations.

The capacity maximization algorithm developed in this
paper uses only one shortest path computation, and the com-
petitive ratio depends only on the input parameters to the
problem. Further, from the experimental results, it seems to
perform better than max-min zPmin even for the lifetime
maximization objective.

The problem of minimizing power consumption during idle
times is addressed in [3]. Topology control of ad-hoc networks
by adjustment of node power levels has been considered in [7],
[6], [9]. We refer the reader to [4] for an excellent survey of
the work in this area.

III. THE ON-LINE ENERGY-CONSTRAINED ROUTING

PROBLEM

In this section, we discuss the on-line routing problem in
energy-constrained wireless networks. We first describe the
system model, and then outline our routing objectives.

A. System Model

A node in an ad-hoc sensor network can either be in idle
state or in a transmit/receive mode. In this paper, we consider
the energy (power) consumed at each node when it is in a
transmit/receive mode. The ad-hoc network can be modeled
as a graph G = (N,A) where N represents the set of nodes
in the network and A the set of edges. We assume that there are
n nodes and m edges in the graph. The energy consumed for
transmitting a unit message along link (i, j) ∈ A is represented
by eij . Node i ∈ N is assumed to have an initial energy
reserve of Ei. Each message that has to be carried by the
network has a source node that originates the message, and a
destination node which the message has to reach through the
multi-hop network. Let sk and dk represent the source and
destination nodes for message k. Let lk represent the length
of message k. Therefore if message k is transmitted at node
i along link (i, j) then the energy at node i decreases by the
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quantity lkeij . Each message is assumed to represent some
unsplittable information and therefore has to be routed along
a single path. In other words, a given message cannot be split
across multiple paths. We assume that the messages are of
different lengths. Though not necessary for the analysis, the
energy eij that is consumed per message on link (i, j) ∈ A is
a usually proportional to some power of the distance between
nodes i and j.1 All messages that enter the system have to
be routed at the time they arrive into the system. We do not
assume to know any information about future arrivals to the
network. We do not assume constant rates or any periodicity
of the message pattern.

B. Routing Objectives

We want to maximize the capacity of the network. In this
paper, network capacity is defined to be the total amount of
message data that is successfully carried by the network. If
the entire message sequence is known ahead of time, then it is
possible to develop an off-line routing algorithm to maximize
the amount of data that is carried by the network. We use
this off-line algorithm only as a benchmark to measure the
performance of our routing algorithm for which messages
arrive only one at a time. We would like our on-line algorithm
(which does not have any knowledge of future message
arrivals) to perform well compared to the off-line algorithm
for all message arrival patterns. The competitive ratio of an
on-line algorithm is defined to be the worst case ratio of the
capacity of the off-line algorithm to the capacity of the on-
line algorithm over all sets of inputs. Ideally we would like the
competitive ratio to be a small constant. However, as shown
in [4] and [5], this is not possible in general. In fact, if there
is no control on the size of the messages then the competitive
ratio can be as bad as O(n). Intuitively, the on-line algorithm
can be made to perform arbitrarily bad by an adversary who
injects messages into the system if

• The size of the messages can be arbitrary.
• The algorithm is not allowed to perform admission

control (i.e., the algorithm is not allowed to reject any
message as long as there is a path available to carry it,
no matter how much network resources is consumed by
the message).

Therefore, to obtain the competitive ratio result, we permit
admission control, i.e., the algorithm can occasionally reject
messages that are determined to be too detrimental to the net-
work’s residual capacity. Fortunately, it turns out that neither
of these assumptions are critical in practice. We show that even
if the algorithm is run without the admission control option,
its performance is excellent. Further from the experiments it
can be seen that it outperforms the existing algorithms both
with respect to network capacity as well as network lifetime.

IV. A CAPACITY-COMPETITIVE ALGORITHM

In this section, we describe our on-line routing algorithm
(CMAX), and derive its competitive ratio.

1Energy consumed in transmitting a message between two nodes that are
d units apart is proportional to dκ, where κ is a constant between 2 and 4.

A. The Algorithm

We first define some notation needed to describe the algo-
rithm. Let messages be indexed in the order in which they are
generated. Let lk denote the length of message k. Let sk and dk

represent the source and the destination nodes, respectively, of
the message k. Let Ei(k) denote the residual energy of node
i at the time when message k is generated (but before it is
routed). Note that according to our notation, Ei(1) = Ei. Let

αi(k) = 1 − Ei(k)
Ei

.

Therefore αi(k) is the fraction of the energy of node i that
is used at the time message k arrives. We will refer to the
quantity αi as the energy utilization of node i. In the algorithm
stated below, λ and σ are constants, chosen appropriately (we
will discuss the choice of these constants later in the paper).

Algorithm CMAX

Step 1. Consider routing message k on the network G.
Eliminate all links (i, j) ∈ A for which eij >
Ei(k)

lk
to form a reduced network.

Step 2. Associate weights wij with each link (i, j) in the
reduced graph, where wij = eij(λαi(k) − 1).

Step 3. Find the shortest path from sk to dk in the reduced
graph with link weights wij , as defined in Step 2.

Step 4. Let γk be the length of the shortest path found
in Step 3 (γk = ∞ if no path was found). If
γk ≤ σ, route the message along the shortest path,
otherwise reject it.

Note that the computational complexity of the algorithm
is determined by the shortest path computation (Step 3) and
is O(m + n log n). In contrast, the algorithm in [4] involves
performing as many as logm shortest path computations.

According to the algorithm stated above, a message is routed
along the shortest path, based on the weights wij (computed
in Step 2), provided the shortest path length is not “too high”.
Note that the weight of an link (i, j), wij , increases with
an increase in eij , the energy expended in traversing link
(i, j). Moreover, wij increases as the energy utilization of
the transmitting node i, αi, increases. This means that the
algorithm tries to avoid links which require very high energy
for transmission, and nodes where the residual energy fraction
is low. The algorithms in [1] and [4] are also based on a
similar intuition. The algorithm in [4] first determines the paths
that consume minimum energy, and the path that maximizes
minimum residual energy, independently. Then the algorithm,
through a series of shortest path computations, determines a
path that is good with respect to both these criteria. In our
case, the weight function defined above captures both these
effects and provides a provably good competitive ratio. The
exponential dependence of the weight function on the energy
utilization suggests that this plays a dominant role in the
routing. Note that if the shortest path length is greater that
a specified threshold σ, the message is rejected, even if there
is a path with enough energy to accommodate it. Since the
path length is an increasing function of time, this implies
that for any particular source-destination pair, all messages
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will be accepted till a certain instant of time, after which
all messages will be rejected. As stated earlier, without this
option to reject, an adversary can inject messages that consume
too much resources destroying the competitive ratio of the
algorithm. However, this is not of practical consequence when
messages are generated at random or by an adversary who
does not know the routing policy. In practical situations,
rejecting a message when sufficient energy is available is
usually unacceptable. Experimental results show that although
setting σ to its theoretically determined value might result
in improved capacity performance, setting the value of σ
to infinity (i.e., the only reason for rejecting a message is
insufficient energy) results is excellent performance both with
respect to the capacity as well as the lifetime of the network.

B. Competitive Bound

We now outline the competitive bound of CMAX. We define
emax = max(i,j)∈A eij , and emin = min(i,j)∈A eij . Therefore,
emax and emin are respectively the maximum and minimum
energies expended by a message of unit length when traversing
some link in the network. Let ρ = emax/emin, and let L(k)
denote the total length of messages successfully routed by our
algorithm till the arrival of message k. Let Lopt(k) be the
total length of messages successfully routed by the optimal
algorithm till the arrival of message k. We now formally state
the competitiveness result for our algorithm.

Theorem 1: Let λ = 2(nρ + 1) and σ = nemax. For all
messages k, let

lk ≤ mini∈N Ei

emax log λ
(1)

Then
L(k)

Lopt(k)
≥ 1

1 + 2 log λ
∀k.

The proof of this result is stated in Appendix I. The above re-
sult implies that the competitive ratio of CMAX is O(log nρ).
In the derivation of the result, we assume that all messages
may not be of the same length. If all messages are of the same
length, then the algorithm also provides a competitive ratio for
the number of messages accepted.

V. IMPLEMENTATION ISSUES

For routing messages, the algorithm CMAX has to know
the topology of the network and the current energy utilization
at all nodes in the network. The topology of the network
includes all the nodes and links in the network as well as
the energy used to transmit a unit message on each link in the
network. The network topology can be learned by a node at
the time it joins a network. Typically, the network topology
is relatively static, and any changes in the topolgy (due to
joining/leaving of nodes, nodes running out of energy etc.) can
be disseminated throughout the network. However, the energy
utilization of the nodes changes frequently. In small networks,
disseminating this information though the network may not be
expensive. However, frequent dissemination of global energy
information may not be feasible in larger networks. In such
cases, we can use one of the following two approaches.

A. Zone Based Approach

In [4], the authors use a zone based approach for routing
in large networks. This approach is based on aggregating
information in zones and routing the message from one zone
to another. Note that the information required by CMAX and
max −min zPmin are identical. Therefore one can use the
same zone based approach to route with CMAX. In fact we
can use Dijkstra’s algorithm to compute the route instead of
Bellman-Ford that has to be used in the case of approximate
distributed version of max −min zPmin.

In this paper, we use an alternate approach based on limited
flooding.

B. Limited Flooding Approach

Limited flooding approach requires that the algorithm be
robust to imprecise energy information. Our experimental re-
sults show that this is indeed the case for the CMAX algorithm.
The main idea in the limited flooding approach is to transform
CMAX into a hop-by-hop routing algorithm like OSPF, which
we call D-CMAX. In a hop-by-hop implementation, each
node computes the shortest path to the destination of the
message and forwards the message to the next hop node on
this shortest path. This process is repeated until the message
reaches the destination. Hop-by-hop routing algorithms are
typically robust to errors in link weight information of distant
links. We take advantage of this fact in the limited flooding
approach. In this approach, each node periodically broadcasts
its residual energy information to all nodes that are within a
certain distance of that node. This is done by broadcasting with
limited power so that it will be “heard” only by all nodes that
are within some limited distance of the transmitting node. We
define a (r, γ) local broadcast mechanism to be one in which a
node i ∈ N transmits its energy level information to all nodes
within a distance of r from itself, and the broadcast is done
when its current energy level becomes less by a factor of γ
from the last local broadcast energy value. While computing
the next-hop node using the shortest path algorithm, a node
i assumes that the residual energy at any other node j is the
same as the value last broadcast by j. If node i is outside
the broadcast radius of node j (i.e., i cannot hear node j’s
broadcast), then i just assumes that the energy of node j is
at its initial level. For the experimental results presented, we
assume that the values of r and γ are the same for all nodes.
We also performed several experiments where the value of
r and γ are node-dependent, and the results were similar to
the ones shown below. Theoretically, due to the asymmetry
of information at different nodes, there can be loops in the
routing paths. Loop avoidance can be done by finding the
shortest path subject to the constraint that forward progress is
made at each step. This can be achieved in several ways. As
an example, consider the case where each node is associated
with a GPS device, and in addition to knowing the topology
of the network, each node also knows the GPS location of all
nodes in the network. The hop-by-hop routing algorithm can
then be modified so that the shortest path is determined such
that the next hop of the path is closer to the destination. In all
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the experiments we assumed that the node energy decreases
whenever

• The node forwards a message.
• The node performs a local broadcast of its energy infor-

mation.

The cost of performing a local broadcast is determined in
the same fashion as determining the energy consumed by
transmission over a link in the network.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our algo-
rithm through simulations. First we consider the case where
each node knows the instantaneous energy level of all nodes
in the network. Next we study the case where the nodes have
information about the energy levels of only the nodes in its
immediate neighborhood.

A. Effect of λ and σ

In this section, we study the effect of the parameters λ and
σ on the performance of CMAX. We consider a network of
20 nodes located randomly in a 10×10 region. The initial
energy of each node is 30 units. We assume that all messages
are of unit length, and are generated randomly between all
source-destination pairs. The energy required for transmitting
a message along an edge (i, j) is max(0.001, 0.001 ∗ d3

ij),
where dij is the distance between nodes i and j. This is similar
to the kind of networks studied in [4]. We assume that each
node can directly send a message to every other node, and
so the underlying graph is complete. We also assume that the
instantaneous energy level of every node is known to all nodes
(the scenario where the energy levels of nodes are not known
precisely is addressed later).

Based on Theorem 1, the following (loose) upper bounds
on λ and σ can be easily computed: σ ≤ 70, λ ≤ 140, 000.
Setting σ < ∞ implies that messages may be rejected even
if there is sufficient energy available to route the message.
As mentioned earlier, this is needed to obtain the competitive
ratio bound. We generate 100,000 messages in the network and
Figure 1 shows the number of messages out of this 100,000
that are successfully routed as λ is varied, for two cases:

• σ = 70.
• σ = ∞

The case of σ = ∞ represents the case where there is no
admission control, which is likely to be the case in practice. (It
is unlikely that messages will be dropped if sufficient energy is
available.) The figure shows that with σ = 70, the number of
accepted messages increase with increasing λ, reaches a peak
somewhere between λ = 10, 000 and λ = 100, 000, and then
starts decreasing with further increase in λ. With σ = ∞, the
network capacity is relatively insensitive to λ as long as λ is
large enough. Since this is probably the case that will be used
in practice, the rest of the plots are shown for σ = ∞, and a
sufficiently large λ. Therefore, messages are rejected only due
to insufficient energy.
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Fig. 1. Number of accepted messages (out of 100000 message arrivals) as
a function of λ.

B. Comparison with existing algorithms

Now we compare our algorithm with some existing algo-
rithms in terms of the achieved network capacity and the
achieved network lifetime. We compare the performance of
the following algorithms:

1) Algorithm pmin, where a message is routed on a path
that consumes minimum total energy,

2) Algorithm max-min, where a message is routed along
a path such that minimum residual energy fraction of
nodes on that path is the maximum amongst all paths,

3) max-min zPmin, an algorithm proposed in [4], where
a message is routed on the path with the maximum
minimum residual energy fraction amongst all paths that
consume at most z times the energy consumed in routing
over the minimum energy path.

For the last algorithm, we experimented with different values
of z and observed that the capacity is maximized when z = 2
(the authors in [4] also report similar observations). This is
the value we use in the rest of the paper.

First we compare the performance of the algorithms over
20 trials with respect to

• Maximum capacity of the network, i.e., the total number
of messages successfully routed till no more messages
can be routed. (Figure 2).

• Lifetime of the network, i.e., the number of accepted
messages until the first rejection (Figure 3).

Note that in both these measures CMAX outperforms the other
algorithms.

Figure 4 shows the number of rejects as the number of
messages increases, for a single trial (the results for other
trials were similar). Note that the performance of CMAX is
better than all other algorithms throughout the trial. This figure
demonstrates that our algorithm performs better than the other
algorithms in terms of network capacity, measured till any
point in time.
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Fig. 3. Lifetime under various algorithms.

Next we compare the performance of CMAX to its dis-
tributed version, D-CMAX. Recall that D-CMAX works with
imprecise information and local broadcasts. Recall that each
local broadcast is characterized by (r, γ) where r is the
local broadcast radius and γ determines the frequency of
broadcasting. We assume that all arriving messages are of
unit length, and the length the local broadcast message is 0.1
units. The local broadcast message contains the node id and
current residual energy of the node. Thus if the local broadcast
radius is r, then the cost of doing local broadcast is given by
0.1 × 0.001 × r3. The first term (0.1) is the length of the
local broadcast message. The rest of the formula represents
the energy required to send a message over a distance r.

C. Effect of broadcast distance

We first study the effect of varying the broadcast distance
on the performance of D-CMAX. Figure 5 shows how the
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Fig. 4. Number of message rejects as a function of the number of message
arrivals.

network capacity varies as a function of the broadcast radius r.
The experiment is conducted for 50 nodes located randomly in
25×25 region. The energy model is the same as in Section VI-
A. Figure 5 shows the the number of accepted messages
(out of 20000 message arrivals) as the broadcast distance
of all nodes is varied from 0.2 units to 10 units. In these
experiments, λ = 100, and γ = 1.0 (i.e., a node broadcasts
its energy information whenever its residual energy changes).
All nodes have an initial energy of 32 units. The plot shows
that the performance improves initially with increase in the
broadcast distance. Increasing the broadcast distance allows
more nodes to know about the correct energy level of a
node, and therefore the algorithm usually takes better routing
decisions. However, each broadcast consumes some energy
at the broadcasting node which could have been used for
transmitting messages arriving in future. Broadcasting over a
large distance consumes a lot of energy and could drain the
battery at the transmitter considerably, thus adversely affecting
performance. Thus, in Figure 5, we see that when the broadcast
distance becomes higher than a certain threshold, the achieved
capacity diminishes.

D. Effect of broadcast frequency

Figure 6 studies the effect of broadcast frequency on
achieved capacity. The network and the simulation conditions
are similar to those described in the previous subsection. The
broadcast frequency parameter γ determines when a node
broadcasts its energy level information. For example, if γ =
0.8, then a node broadcasts its energy level information only
when its energy level drops to 0.8 times or lower compared to
the last time it sent out a broadcast message. Increasing γ from
0 to 1 clearly increases the number of broadcast messages.
As the figure shows, as the broadcast frequency increases,
the achieved capacity (measured by the number of messages
successfully routed over a sequence of 20000 message arrivals)
increases initially, and then drops very sharply as γ approaches
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1. In the plots, the broadcast radius, r, is set to 5 units. For
low values of γ, the broadcasts happen very infrequently, and
so the nodes have to do the routing based on out-of-date
information. Therefore, the routing decisions become better
with increasing γ. However, as γ approaches 1, the number of
broadcast messages become very high, which consume a lot
of energy, thus causing degradation in performance.
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Fig. 6. Number of messages successfully routed as a function of γ, the
broadcast frequency parameter.

E. Comparison of CMAX and D-CMAX

In this section we show that by an appropriate choice of
the broadcast distance and broadcast frequency, D-CMAX,
the distributed version of the algorithm CMAX, can achieve
performance close to CMAX. Figure 7 shows the number
of messages routed successfully by the two algorithms D-
CMAX and CMAX, for 20 different trials. Each different trial

corresponds to a different network and a different sequence of
message arrivals. The networks are randomly generated with
parameters similar to those described in previous subsections.
The parameter λ is set to 100, the broadcast distance is set to
5 units, and the broadcast frequency parameter (γ) is set to
0.5. From the plot we see that as expected, CMAX in general
performs better than D-CMAX. However, on an average, D-
CMAX performs fairly closely. In fact, averaging over the
20 different trials shows that D-CMAX does only about 8%
worse than CMAX. We also performed experiments on large
networks with 1000 nodes in a 10 × 10 square. In all our
experiments, we observed that the performance of D-CMAX
goes down by only 8% to 15% compared to CMAX. The
performance of the algorithm appears to scale well as the
number of nodes in the network increases.
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Fig. 7. Number of messages successfully routed by CMAX and D-CMAX,
for 20 different trials.

VII. CONCLUDING REMARKS

We presented a new algorithm for energy-aware on-line
routing of messages in wireless ad-hoc networks. The algo-
rithm uses only a single shortest path computation, and can
be implemented in a distributed manner. Without making any
assumptions regarding future message arrivals, we proved a
logarithmic competitive ratio for the case where the routing
objective is network capacity maximization. Obtaining this
competitive ratio result needs the network to allow admission
control. However, we showed by simulations that admission
control is not needed to ensure good performance in practice.
We also showed by simulations that the algorithm performs
significantly better than previously proposed algorithms for
both capacity maximization and lifetime maximization routing
objectives. Furthermore, the algorithm is robust to imprecision
in energy information and works well in a limited information
flooding scenario.

APPENDIX I: PROOF OF THEOREM 1

The competitive analysis is along the same lines as the
competitive analysis presented in [5].
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Associate a cost ci with each node i ∈ N . The cost ci before
the arrival of the message k defined as

ci(k) = Ei(λαi(k) − 1) (2)

In the following, let S(k) be the set of messages successfully
routed by our algorithm till the arrival of message k.

The proof is done in three steps. First we lower-bound the
total length of messages routed by CMAX in terms of the
node costs defined above.

Lemma 2:
∑

i∈N

ci(k) ≤ 2nemaxL(k) log λ.

Proof:
Consider any k′ ∈ S(k). Then, by (2), for any i ∈ N ,

ci(k′ + 1) − ci(k′)

≤ Ei

(
λαi(k′+1) − λαi(k′)

)

= Eiλ
αi(k′)

(
λ((Ei(k′)−Ei(k′+1))/Ei) − 1

)

= Eiλ
αi(k′)

(
λ(lk′eij/Ei) − 1

)

= Eiλ
αi(k′)

(
2(lk′eij log(λ)/Ei) − 1

)
(3)

Note the base of the logarithm in (3) is 2. From assumption
in (1), (lk′eij log λ/Ei) ≤ 1. Also note that 2x − 1 ≤ x for
0 ≤ x ≤ 1. Therefore, from (3) we have

ci(k′ + 1) − ci(k′) ≤ λαi(k′)lk′eij log(λ) (4)

Let P (k′) be the path over which the message k′ was routed.
Note that since message k′ was accepted by CMAX therefore,

∑

(i,j)∈P (k′)

eij(λαi(k′) − 1) ≤ σ = nemax (5)

Then summing the terms in (4) over all the nodes i ∈ N , we
get

∑

i∈N

(ci(k′ + 1) − ci(k′))

=
∑

(i,j)∈P (k′)

(ci(k′ + 1) − ci(k′))

≤
∑

(i,j)∈P (k′)

λαi(k′)lk′eij log λ

= lk′ log λ
∑

(i,j)∈P (k′)

eij(λαi(k′) − 1)

+lk′ log λ
∑

(i,j)∈P (k′)

eij

≤ lk′nemax log λ+ lk′nemax log λ (6)

≤ 2lk′nemax log λ (7)

Relation (6) follows from (5) and the fact |P (k′)| < n. Note
that if k′ /∈ S(k), ci(k′ + 1) − ci(k′) = 0. Also note that

ci(1) = 0. Using these facts, and (7), we obtain

∑

i∈N

ci(k) =
k−1∑

k′=1

∑

i∈N

(ci(k′ + 1) − ci(k′))

=
∑

k′∈S(k)

(ci(k′ + 1) − ci(k′))

≤
∑

k′∈S(k)

2lk′nemax log λ

= 2nemaxL(k) log λ

In the next lemma we show that the sum of the lengths of
the shortest paths of the rejected messages is lower bounded
by nemax. This is needed to prove Lemma 4. Let T (k) be the
set of messages successfully routed by the optimal off-line
algorithm but rejected by CMAX, until the arrival of message
k.

Lemma 3: For all k′ ∈ T (k),
∑

(i,j)∈P (k′)

eij(λαi(k′) − 1) > nemax

Proof:
Note that a message can be rejected by our algorithm
because of two reasons:

1) If there is no path with sufficient energy to route the
message (see Step 1 of our algorithm).

2) If the shortest path length is too high (Step 4 of our
algorithm).

Clearly, the above lemma holds if message k′ is rejected in
Step 4 of CMAX due to the choice of σ. Now let us assume
that message k′ is rejected in Step 1 of CMAX. Let Popt(k′) be
the path over which the optimal algorithm routes message k′.
Since the message is rejected by our algorithm, there exists an
arc (i′, j′) ∈ Popt(k′) such that Ei′(k′) < lk′ei′j′ . Therefore,
αi(k′) > 1 − (lkeij/Ei) ≥ 1 − (1/ log λ) (from (1)), and
therefore,

∑

(i,j)∈Popt(k′)

eij(λαi(k′) − 1)

≥ ei′j′(λαi′ (k
′) − 1)

> ei′j′(λ(1−(1/ log λ)) − 1)

= ei′j′(
λ

2
− 1)

= emin(
λ

2
− 1)

= nemax (8)

Relation (8) follows from the choice of λ stated in Theorem 1.

We now bound the difference between the sum of the costs
of the on-line and optimum off-line algorithms.

Lemma 4:

nemax(Lopt(k) − L(k)) ≤
∑

i∈N

ci(k)
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Proof:
Using Lemma 3,

nemax (Lopt(k) − L(k))

≤
∑

k′∈T (k)

nemaxlk′

<
∑

k′∈T (k)

∑

(i,j)∈P (k′)

lk′eij(λαi(k′) − 1)

=
∑

k′∈T (k)

∑

(i,j)∈P (k′)

lk′eijci(k′)/Ei (9)

=
∑

k′∈T (k)

∑

(i,j)∈P (k′)

lk′eijci(k)/Ei (10)

=
∑

i∈N

ci(k)
∑

k′∈T (k),(i,j)∈P (k′)

(lk′eij/Ei)

≤
∑

i∈N

ci(k) (11)

Relation (9) follows from (2), relation (10) holds because the
node costs are non-decreasing, and (11) follows from the fact
that the total energy expended (in transmitting messages) at a
node cannot exceed the initial energy of the node.

From Lemmas 2 and 4, it follows that

L(k)/Lopt(k) ≥ 1
1 + 2 log λ

,

thus proving Theorem 1.
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