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Abstract— Protocols such as TCP require packets to be ac-
cepted (i.e., delivered to the receiving application) in the order
they are transmitted at the sender. Packets are sometimes mis-
ordered in the network. In order to deliver the arrived packets to
the application in sequence, the receiver’s transport layer needs
to temporarily buffer out-of-order packets and re-sequence them
as more packets arrive. Even when the application can consume
the packets infinitely fast, the packets may still be delayed for
resequencing. In this paper, we model packet mis-ordering by
adding an IID random propagation delay to each packet and
analyze the required buffer size for packet resequencing and the
resequencing delay for an average packet. We demonstrate that
these two quantities can be significant and show how they scale
with the network bandwidth.

I. INTRODUCTION

Protocols such as TCP requires packets to be accepted (i.e.,
delivered to the receiving application) in the order they are
transmitted at the sender. Packets are sometimes mis-ordered
in the network. For instance, since every packet contains
the destination address, the network can deliberately route
packets via different paths to the destination, possibly for
load balancing purpose. Certain packets may be dropped by
the network and retransmitted by the sender, causing the
packets to arrive out-of-order at the receiver. In order to
deliver the arrived packets to the application in sequence, the
receiver’s transport layer needs to temporarily buffer out-of-
order packets and re-sequence them as more packets arrive.
Even when the application can consume the packets infinitely
fast, the packets may still be delayed for resequencing. We are
interested in how large the resequencing buffer must be and
how much the resequencing delay is for an average packet.
We’d like to know how these two quantities scale with the
network bandwidth. The results will enable us to examine one
consequence of a fundamental principle of packet networks:
each packet contains its destination address and can be routed
independently.

A. Network Model

We will examine a model shown in figure 1, where the
sender and the receiver are separated by a network that
causes a random variable delay on each data packet. The
transmission capacity of the sender is denoted by Cs. When
packets are ready to be accepted, the receiver can consume

them at the capacity, Cr. Typically, we assume Cr = ∞.
The receiver can send perfect feedback information to the
sender about the reception status of each packet, subject to a
fixed delay, T . The sender transmits new packets in increasing
order of the packet IDs. Each packet experiences a fixed
propagation delay T , and a variable delay Xi. We assume
that the {Xi}’s are independently and identically distributed
(IID) random variables. The receiver needs to accept packets
IN ORDER, and can temporarily store out-of-order packets in
its resequencing buffer of size b. When an arrival packet finds
the buffer full, the packet with the largest ID among all stored
and incoming packets is dropped. The sender will retransmit
the dropped packet at a later time.

Cr

Sender Receiver

Cs

T

b

X + T

Fig. 1. Our network model

The causes for packet mis-ordering in the network can
be many and are not precisely known at the present. As
stated previously, retransmission of lost packets and multi-
path routing, whether deliberate or not, may be among them in
today’s or future networks. Many previous studies in fact treat
these two causes separately. Mis-ordering caused by packet
retransmission is studied under the name of automatic repeat
request (ARQ) protocol [17] [11] [13] [16] [1] [14] [15].
It is typically assumed that ARQ is a link layer protocol
between a sender-receiver pair over a link with constant
propagation delay. When the communication channel from the
sender to the receiver is noisy, the sender needs to retransmit
corrupted packets based on the feedback information it gets
from the receiver. Researchers have mainly been concerned
with the throughput of ARQ protocols. Several papers deal
with the resequencing delay at the receiver caused by packet
retransmissions [14] [15]. Note that the end-to-end reliable
transport protocols, such as TCP, resemble the link-layer ARQ

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



protocol in the areas of packet retransmission at the sender
and resequencing at the receiver. In this paper, we borrow the
term ARQ even though what we have is not the same as the
link layer ARQ. In particular, we allow causes for packet mis-
ordering other than packet retransmission.

The studies that deal with packet mis-ordering due to multi-
path routing (also including parallel processing or load balanc-
ing, etc.) typically analyze an open queueing network, with
no feedback and no retransmission. Figure 2 shows a generic
model, where packets (or customers) numbered sequentially
arrive at the system following some stochastic process, get
mis-ordered by the mis-ordering network and resequenced
at the resequencing buffer. In some studies, a FIFO queue
follows the resequencing buffer. The mis-ordering network
is also modeled as a queueing system, whose type typically
distinguishes different studies. For instance, the mis-ordering
network is an M/M/∞ queue in [10], an M/GI/∞ queue in
[7], a GI/GI/∞ queue in [2], an M/M/2 queue in [12], an
M/M/K queue in [18], an M/H2/K queue in [4], an M/M/2
queue with a threshold-type server assignment policy in [8],
two parallel M/M/1 queues with additional fixed propagation
delays in [6], and K parallel M/GI/1 queues in [9]. A survey
is given in [3]. Most of these studies are concerned mostly
with finding the distribution and/or mean of the resequencing
delay or end-to-end delay. Several also give results about the
number of packets in the resequencing queue.

Resequencing
Buffer

FIFO Queue

Mis−ordering
Network

Fig. 2. Resequencing network model followed by a GI/GI/1 queue

Even though we talk about packet retransmission in the
paper, our analysis never handles that aspect. Therefore, from
analytical point of view, our model falls in the class of models
shown in figure 2. We choose to model the causes for packet
mis-ordering by adding IID random delays to each packet for
both simplicity and for generality. This is equivalent to saying
that the packet mis-ordering network is a D/GI/∞ queue. In
reality, the variable packet delays are most likely correlated.
For instance, multi-path routing is probably better modeled as
K parallel ·/GI/1 queues. However, we do not know the value
of K, the dispatching policy to each of the queues, and the
server rates of the queues that give a realistic model.

A natural question is what distribution we should choose for
the random delay. We choose the exponential and the Pareto
distributions, whose tail probabilities have very different de-
caying behaviors. We will see that the tail probability is very
important to the resequencing buffer requirement.

B. Summary of Results

We analyze two different variations of the model shown in
figure 1. In the first case, discussed in section II, we assume

the sender’s capacity, Cs, is very large so that it can dump
many packets onto the network almost instantaneously. Here, it
makes sense to consider the Stop-and-Wait-n ARQ (automatic
repeat request) protocol 1, where, at the beginning of each
fixed time interval, the sender transmits a block of n packets
simultaneously. The receiving status of the packets reaches
the sender at the end of the interval. The main result is, for
large n, if we want to accept a fraction α in each block of n
packets, the resequencing buffer size must be αn. As a result,
for any fixed buffer size, the fraction of accepted packets in
each block becomes vanishingly small when the block size n
approaches infinity.

When the sending capacity is limited, we introduce the
Selective-Repeat ARQ, as discussed in section III. In this
case, the sender transmits one packet in each time slot. When
a packet is rejected at the receiver due to buffer overflow,
this information is fed back to the sender. The sender always
transmits the rejected packet with the smallest packet sequence
number on each time slot and only transmits new packets when
there are no rejected packets. For the Selective-Repeat ARQ,
we have results for the buffer requirement to achieve small
packet rejection ratio, or equivalently, near 100% throughput.
When the variable packet delay is exponential with mean 1/λ,
we show that

P{Q̄(t) > m} ≈ e−(m+2)λτ

1 − e−λτ
(1)

where Q̄(t) is an upper bound on the resequencing queue size
and τ is the packet transmission time at the sender. Here,
τ = 1/Cs if the unit of Cs is packet per second, or τ = U/Cs

if Cs is in bits per second and U is the packet size in bits. For
the Pareto delay distribution with CDF F (x) = 1 −Kαx−α,
where x ≥ K, we have

P{Q̄(t) > m}

≈ Kα

(α− 1)τ
((k∗ − ko +m+ 2)τ)−α+1 (2)

where k∗ − ko is a small number compared with the queue
size m for which the above approximation holds.

Our analysis in section III assumes the buffer size is infinite.
This simplifies the analysis since no packets ever get rejected
at the resequencing queue. We use the probability that the
queue size exceeds a threshold, b, as the approximation for
the packet rejection (or loss) ratio when the buffer size is b.
This approximation can be expected to be accurate only when
the buffer size is large, and hence, the probabilities involved
are very small. As a result, we do not have results for the
packet loss ratio for small buffer sizes. We supplement this
deficiency with a set of simulation results for the finite buffer
case in section III-C.

Again assuming the resequencing buffer is infinite, the
packet’s waiting time in the queue before it is accepted, also
called the resequencing delay, can be computed in principle.

1In this paper, we borrow the term ARQ from the commonly known link-
layer ARQ. Stop-and-Wait-n ARQ is a variation of the link-layer Stop-and-
Wait ARQ.
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We do not have concise expressions for it in either the
exponential or the Pareto case. For the exponential case, we
do have a simple approximation for the expected waiting time
at the resequencing buffer.

E[W ] ≈ 1
λ

(log(
1

2(1 − e−λτ )
) + 0.5) (3)

where W is the waiting time. When Cs ≥ 10 Mbps, we can
further approximate E[W ] and get

E[W ] ≈ 1
λ

(log(
Cs

2λU
) + 0.5) (4)

where U is the packet size in bits. We see that the mean
waiting time of a packet scales logrithmically with the link
capacity. We also see that, at a given link speed, reducing the
packet size, and hence, the packet transmission time, increases
the mean waiting time.

The above analysis for the expected waiting time uses
the memoryless property of the exponential distribution. The
technique does not apply to the case where the packet prop-
agation delay is Pareto. With simulation, we can show that
the expected waiting time can be very large in this case. To
reduce the resequencing waiting time, it is very helpful to
add a bound, say d, to the Pareto delay by retransmitting the
packets that have not arrived at the receiver after d seconds.

A feature of our paper is, when possible, we rely on ap-
proximations and bounds to get simple and easily interpretable
results. This is complementary to many previous studies whose
solutions are exact but are in complicated terms and are hard
to construe.

II. STOP-AND-WAIT-n ARQ

In this section, we assume that the sender’s capacity and
the receiver capacity are both infinite. That is, a packet can
be transmitted instantaneously at the sender, and when it is
ready to be accepted by the receiver, it can be accepted
instantaneously. We also assume that the propagation time,
T , is zero.

Data packets originated at the sender are numbered by a
packet ID, 1, 2, 3, ..., so on, and are transmitted in that
order. We require that the receiver consumes those packets
in increasing order of the packet IDs. Suppose we use a Stop-
and-Wait-n ARQ protocol with block size n, where 1 ≤ b ≤ n.
More specifically, let the time be divided into intervals of
identical length. At the beginning of each interval, the sender
sends a block of n packets simultaneously. These packets
experience IID random network delays. When they reach the
receiver buffer, they can be mis-ordered. The receiver re-orders
the received packets in the receive buffer, and immediately
accepts all packets that do not leave sequencing gaps in
the accepted packets. When an incoming packet finds the
resequencing buffer full, the receiver drops the packet with
the largest sequence number. Let us also assume the random
delay X is bounded by the length of the interval, so that all n
packets in the block will arrive at the receiver before the end of
the interval. At the end of the interval, the receiver drops any
packet that might be in the buffer but cannot be accepted due

missing packets with smaller packet IDs. The receiver sends
perfect feedback to the sender during the interval. By the end
of the interval, the sender knows which packets have been
received successfully and which ones have been dropped. In
the next interval, the sender sends n more packets, contiguous
in sequence number, starting from the next packet expected
by the receiver.

Take the example of n = 3. Suppose b = 1 and suppose
the order of packet arrival at the receiver is 2, 1 and 3. Packet
2 will be dropped when packet 1 arrives because it is out-of-
order and there is no additional buffer space to hold it. Packet 1
will be accepted immediately when it arrives. Packet 3 cannot
be accepted because 2 is missing. In our case, we will drop
it at the end of the current interval. In the next interval, the
sender will transmit packet 2, 3 and 4.

Let the number of packets accepted by the receiver in
interval i be Ni, i = 1, 2, .... The above algorithm makes
{Ni} an IID random sequence. Let the interval length be L.
Then, the long time throughput of the communication system
is simply ENi/L. To improve the throughput, one can increase
ENi or reduce L. We investigate what quantities ENi depends
on. Define the packet acceptance ratio ρ(n, b) = ENi/n. The
main result is the following theorem.

Theorem 1: Let integer n ≥ 1 be the block size and let
integer b be the buffer size. Then, for 1 ≤ b ≤ n,

ρ(n, b) =
1
n

(
n∑

k=b

b! bk−b

k!
+ b− 1) (5)

Proof: Let Jk be the set {1, 2, ..., k}, where k can vary
from 1 to n. First, note that the order of packet arrival at the
receiver during each interval is the random permutation of the
set Jn with a uniform probability distribution. To compute
EN 2, we will use

EN =
n∑

k=1

P{N ≥ k}

The event {N ≥ k} is the same as the event
{all i ∈ Jk are accepted}, denoted by Ek. Given an arrival
sequence of the n packets, denoted by Π, we only need to
focus on the sub-sequence of Π generated by restricting Π to
the set Jk, when we consider the event Ek. Denote this sub-
sequence Πk. It is easy to see that the event Ek occurs in Π
if and only if it occurs in Πk, due to the rule of rejecting the
packet with the largest ID when the buffer is full.

For any set S ⊆ Jn of contiguous packets, a permutation
of S is said to be b-acceptable if they can be arranged in
sequence with the help of a resequencing buffer of size b.
For instance, the permutation (3, 2, 4) of S = {2, 3, 4} is 2-
acceptable, but not 1-acceptable. It is b-acceptable for any
b ≥ 2. We will count the number b-acceptable permutations
of Jk. Denote this number by Ak. Note that a permutation on
Jk is b-acceptable if and only if none of the packets in Jk is
dropped. We claim,

2We have omitted the index to the interval, i.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



Ak =
{

k! for 1 ≤ k ≤ b
b! bk−b for b < k ≤ n

(6)

For 1 ≤ k ≤ b, it is obvious that, any of the k! permutations
of Jk is b-acceptable, since the buffer size is large enough to
hold all of them.

For b < k ≤ n, a permutation Π on Jk can be accepted
if and only if (1) packet 1 is in one of the first b positions
in Π and (2) Π\{1} is b-acceptable. Here, Π\{1} denotes
the permutation Π with 1 removed, which is an permutation
on the set {2, 3, ..., k}. Since the number of b-acceptable
permutations on {2, 3, ..., k} is Ak−1 and packet 1 can be
in any of the first b positions, we have, for b < k ≤ n

Ak = bAk−1

By iterating the index k from b, we get (6).
Since all permutations of the set Jk are equally likely to be

the packet arrival orders, we have

EN =
n∑

k=1

P{N ≥ k} =
n∑

k=1

Ak

k!

=
n∑

k=b

b! bk−b

k!
+

b−1∑

k=1

k!
k!

=
n∑

k=b

b! bk−b

k!
+ b− 1

We next study some features of the function ρ(n, b).
Theorem 2: For any 0 ≤ α ≤ 1, let b = �αn 3. Then,

ρ(n, b) → α, as n → ∞.
Proof: The proof uses a standard convergence argument

and is omitted for brevity.
Theorem 2 says, in order to achieve reasonable acceptance

ratio, the buffer size has to scale linearly with the block
size, n. As an easy corollary, for any fixed buffer size b,
limn→∞ ρ(n, b) = 0. These asymptotic results can be good
approximations for large n. We will use numerical examples
to show how large the block size n has to be and what happens
when n is not so large.

Figure 3 shows the acceptance ratio ρ versus the buffer size
for block size n = 10 and 100, respectively. In these plots,
the label “limit” refers to the asymptotic limit of the ρ as in
Theorem 2, and the label “exact” refers to the exact value of ρ.
We see that the asymptotic result becomes good approximation
for n > 100 at all buffer sizes. Even at very small values of
n, say, n ≤ 10, the asymptotic result is not too far from the
exact value.

In figure 4, we show the convergence of ρ to the limit as n
increases to infinity while b = 0.5n. In this case, the limit is
0.5.

3�x� stands for the floor of x, i.e., the largest integer less than or equal to
x.
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Fig. 3. Acceptance ratio vs. buffer size for block sizes (a) n = 10; (b)
n = 100
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Fig. 4. Acceptance ratio converges to 50%: buffer size b = 0.5n

III. SELECTIVE-REPEAT ARQ

In this section, we will study a more realistic refinement
to the Stop-and-Wait-n ARQ, called Selective-Repeat ARQ,
and find its throughput-buffer relationship. We assume that
Cs is finite and the propagation delay, T , can be non-zero. In
every packet time slot, the sender either sends a new packet
or retransmits a previously rejected packet. More specifically,
the sender maintains a list of packets rejected by the receiver,
and retransmits them in increasing order of the packet IDs.
When this list is empty, it sends the next new packet. The
receiver behavior and the packet-dropping rule are similar to
those for the Stop-and-Wait-n ARQ. Selective-Repeat ARQ
resembles the retransmission and resequencing behaviors of
typical transport and link-layer protocols.
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A. Buffer Size to Achieve Near 100% Throughput

In this section, we wish to approximate the required buffer
size for near 100% throughput by considering an infinite-
buffer queue and finding the the queue size m for which
Prob{Q ≤ m} ≈ 1. Note that when the buffer size is infinite,
no packets will be retransmitted. The sender simply transmits
new packets one after another. Then the Selective-Repeat ARQ
is the same as the Stop-and-Wait-n ARQ with infinite block
size (with finite sending capacity, Cs). Suppose the sender
has been transmitting forever and suppose the sender starts
transmitting packet 1 at time 0 4. Then packet k leaves the
sender at t = kτ , for k ≥ 1, where τ is the packet transmission
time at the sender. Let the random delay for packet k be Xk,
where the {Xk}’s are IID random variables. Packet k arrives
at the receiver at time Ak = kτ +T +Xk, for k = ..., 1, 2, ....

At time t, let S(t) be the set of packets that have arrived at
the queue, let M(t) be the largest packet in S(t), and let L(t)
be the largest packet that has been accepted by the receiver.
They can be expressed as

S(t) = {i : Ai ≤ t}
M(t) = max{i : Ai ≤ t}

L(t) = max{i : max{..., Ai−1, Ai} ≤ t}
The queue size at time t is Q(t) = |S(t) − {..., L(t) −

2, L(t)−1, L(t)}|. It does not seem easy to keep track the set
S(t). Instead of computing the distribution of Q(t), we will
compute the distribution of an upper bound for Q(t), denoted
by Q̄(t) = (M(t) − L(t) − 1)+. In order for Q̄(t) be a tight
upper bound, there should be no or few gaps from L(t) to
M(t). When the queue size is large, we have good reason to
believe this is the case. For, large queue size is typically due
to a large delay of a very early packet, say j, which will arrive
after packet j + 1, j + 2, ...,M(t). For m = 0, 1, 2, ...,

P{Q̄(t) ≤ m} = P{L(t) ≥ M(t) −m− 1}
We can partition the above probability with the event {M(t) =
k}, for k ≤ k∗, where k∗ = �(t− T )/τ is the largest packet
that can possible arrive before time t.

P{Q̄(t) ≤ m}
=

∑

k≤k∗
P{..., Ak−m−2 ≤ t, Ak−m−1 ≤ t,M(t) = k}

=
∑

k≤k∗
P{..., Ak−m−2 ≤ t, Ak−m−1 ≤ t, Ak ≤ t,

Ak+1 > t, ..., Ak∗ > t}
=

∑

k≤k∗
P{..., Ak−m−2 ≤ t, Ak−m−1 ≤ t}

·P{M(t) = k} (7)

where

P{M(t) = k} = P{Ak ≤ t, Ak+1 > t, ..., Ak∗ > t}
Since the Ai’s are independent random variables, it is easy to
write an expression for the above probability.

4Packet ID numbers can be negative.

1) Computation of P{M(t) = k}: For exponential delay
with mean 1/λ,

P{M(t) = k} = (1 − e−λ(t−kτ−T ))
·e−(k∗−k)λ(t−(k+1+k∗)τ/2−T ) (8)

For Pareto delay with parameter K > 0 and α > 1.

P{M(t) = k}

= (1 − Kα

(t− kτ − T )α
)

Kα

(t− (k + 1)τ − T )α
...

Kα

(t− k∗τ − T )α
(9)

Since this number decays to 0 geometrically fast as k de-
creases, we can find a ko < k∗ so that P{M(t) = k} is
negligible for k < ko. For practical purpose, the sum in (7)
involves a small number of terms. Suppose we set P{M(t) =
k} ≤ ε for some 0 < ε < 1. In the case of exponential
distribution, let us ignore the factor (1 − e−λ(t−kτ−T )) in (8)
since it is no greater than 1. Using k∗ = �(t−T )/τ, we get,

k∗ − k ≥
√

−2 log ε
λτ

+ 1 (10)

Table I shows the lower bounds on k∗ − k obtained by using
(10) (labeled “Analysis”) and by using (8) (labeled “Exact”).
It shows that the values of the lower bound on the right hand
side of (10) are not very large for very small ε’s. Expression
(10) shows that these values grow very slowly as ε decreases
or as λτ increases.

TABLE I

LOWER BOUND ON k∗ − k TO ACHIEVE P{M(t) = k} ≤ ε FOR THE

EXPONENTIAL DISTRIBUTION: 1/λ = 20 MS

Lower Bound on k∗ − k: Analysis/Exact
Cs(Mbps) ε = 10−5 ε = 10−10 ε = 10−20

1 8/6 10/9 14/13
10 21/20 29/28 41/40
100 63/58 89/87 125/124

We can do similar analysis for the Pareto case. We do not
have a more compact expression for (9). Hence, we will show
at what value k the factor Kα

(t−(k+1)τ−T )α in (9) becomes small,
say 0.1. From that point on, as k continues to decrease, the
value of P{M(t) = k} will rapidly decrease to nearly zero.
By setting Kα

(t−(k+1)τ−T )α ≤ ε, we get,

k∗ − k ≈ K

τε1/α
(11)

The approximation above is due to rounding real numbers
to integers. For the case where α = 1.1, EX = 20 ms,
and ε = 0.1, the results are shown in table II. With exact
numerical analysis on (9), the lower bound on k∗−k to achieve
P{M(t) = k} ≤ ε is in fact very small. The results are shown
in Table III.
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TABLE II

LOWER BOUND ON k∗ − k TO ACHIEVE Kα

(t−(k+1)τ−T )α ≤ ε FOR THE

PARETO DISTRIBUTION: MEAN DELAY = 20 MS

Cs(Mbps) Lower bound on k∗ − k

1 2
10 13
100 123

TABLE III

LOWER BOUND ON k∗ − k TO ACHIEVE P{M(t) = k} ≤ ε FOR THE

PARETO DISTRIBUTION: MEAN DELAY= 20 MS

Lower Bound on k∗ − k
Cs(Mbps) ε = 10−5 ε = 10−10 ε = 10−20

1 6 9 14
10 12 17 25

100 37 48 65

2) Asymptotic behavior of P{Q̄(t) ≤ m}: In order to
compute P{Q̄(t) ≤ m} as in (7), we next turn to the
calculation of a(k,m) := P{..., Ak−m−2 ≤ t, Ak−m−1 ≤ t}.
For each m, as k decreases, a(k,m) increases to 1 for the
delay distributions we are considering. We will first study the
asymptotic behavior of P{Q̄(t) ≤ m} for large values of m.
From the previous analysis, we can assume the summation in
(7) is over a small number of terms, ko, ko + 1, ..., k∗. Since
a(k,m) increases as k decreases, we get,

a(k∗,m) ≤ P{Q̄(t) ≤ m} ≤ a(ko,m) (12)

The key is to compute a(k,m).
First, let us consider the exponential case. We will use the

following result.
Lemma 3: For x ≥ 2 log 2,

log(1 − e−x) ≥ −e−x/2 (13)
Proof: Form a function g(x) := log(1 − e−x) + e−x/2

on (0,∞). We see that limx→∞ g(x) = 0. Next,

g′(x) =
e−x + e−3x/2 − e−x/2

1 − e−x

≤ e−x(2 − ex/2)
1 − e−x

When 2−ex/2 ≤ 0, or equivalently, when x ≥ 2 log 2, g′(x) ≤
0. Since g(x) decreases to 0 on [2 log 2,∞), it must be true
that g(x) ≥ 0 on [2 log 2,∞).

We use this lemma in the following derivation with x =
λ(t− (j −m)τ − T ).

log a(k∗,m) =
∑

j<k∗
log(1 − e−λ(t−(j−m)τ−T ))

≥ −
∑

j<k∗
e−λ(t−(j−m)τ−T )/2

= −e−λ(t−(k∗−m−1)τ−T )/2

1 − e−λτ/2 (14)

The condition for the above inequality is λ(t − (j − m)τ −
T ) ≥ 2 log 2 for j < k∗. This is satisfied if (k∗ − j + m) ≥
2 log 2/(λτ) for j < k∗. A weaker condition is simply m ≥
2 log 2/(λτ). When 1/λ = 20 ms, m ≥ 3, 24 and 232 for
the link speed Cs = 1, 10 and 100 Mbps, respectively. We’d
like to point out that these are very loose bound. In practice,
we expect the inequality (14) to hold for much smaller m.
Combining (12) and (14), we get

P{Q̄(t) ≤ m} ≥ exp(−e−λ(t−(k∗−m−1)τ−T )/2

1 − e−λτ/2 ) (15)

Or, using the fact ex ≥ 1 + x for all x, we get

P{Q̄(t) > m} ≤ 1 − exp(−e−λ(t−(k∗−m−1)τ−T )/2

1 − e−λτ/2 )

≤ e−λ(t−(k∗−m−1)τ−T )/2

1 − e−λτ/2

≤ e−(m+2)λτ/2

1 − e−λτ/2 (16)

Thus, for large enough m, P{Q̄(t) > m} converges to zero
very rapidly, at a rate no slower than exponential in m. In the
above analysis, if we suppose λ(t − (j − m)τ − T ) is large
enough, we can write

log a(k∗,m) =
∑

j<k∗
log(1 − e−λ(t−(j−m)τ−T ))

≈ −
∑

j<k∗
e−λ(t−(j−m)τ−T )

= −e−λ(t−(k∗−m−1)τ−T )

1 − e−λτ
(17)

Furthermore, since ex ≈ 1 + x, for x near 0,

P{Q̄(t) > m} ≤ 1 − exp(−e−λ(t−(k∗−m−1)τ−T )

1 − e−λτ
)

≈ e−λ(t−(k∗−m−1)τ−T )

1 − e−λτ

≈ e−(m+2)λτ

1 − e−λτ
(18)

The approximation in (18) turns out to be very good. Figure
5 (a) compare values of P{Q̄(t) > m} obtained with (18)
(labeled as “Approximation”) with numerical results of (7)
(labeled as “Numerical”) 5. The mean delay, 1/λ, is 20 ms
for figure 5 (a). The approximation agrees extremely well
with the numerical results. In figure 5 (a), we also compare
the distribution of Q̄(t) with that of Q(t), the real queue
length, obtained by simulation (The curves are labeled as
“Simulation”). We see that the two distributions agree very
well when the queue size is large enough. In figure 5 (b),
we show a comparison between two different mean delays:
1/λ = 10 ms and 20 ms. The link speed for figure 5 (b) is
Cs = 100 Mbps.

5Throughout section III, all simulation results are for the real queue size,
Q. All analytical and numerical results are for Q̄.
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Fig. 5. Tail probability for queue size for the exponential distribution (a)
Cs = 10 Mbps; (b) comparison of different mean delays, Cs = 100 Mbps.

Next, we will show a similar analysis for the Pareto case.
For k ≤ k∗,

log a(k,m)

=
∑

j<k

log(1 − Kα

(t− (j −m)τ − T )α
)

≤ −
∑

j<k

Kα

(t− (j −m)τ − T )α

≤
∫ k−1

−∞
− Kα

(t− (x−m− 1)τ − T )α
dx

=
−Kα

(α− 1)τ
(t− (k −m− 2)τ − T )−α+1 (19)

By P{Q̄(t) ≤ m} ≤ a(ko,m),

P{Q̄(t) ≤ m}

≤ exp{ −Kα

(α− 1)τ
(t− koτ − T + (m+ 2)τ)−α+1}

≤ exp{ −Kα

(α− 1)τ
((k∗ − ko +m+ 2)τ)−α+1} (20)

P{Q̄(t) > m}

≥ 1 − exp{ −Kα

(α− 1)τ
((k∗ − ko +m+ 2)τ)−α+1}

≈ Kα

(α− 1)τ
((k∗ − ko +m+ 2)τ)−α+1 (21)

Formula (21) shows that the tail probability decays as a
power tail. In figure 6, we show an example of the tail

probability, P{Q̄(t) > m}, based on the approximation in
(21), and compare the result with those based on numerical
analysis. As will be explained in section III-A.3, numerical
analysis of the queue length distribution for the Pareto case
is difficult. The numerical results in figure 6 are for Pareto
distributions “truncated” at large values, denoted by d. In
these plots, we see extraordinary good match between the
approximation and the numerical results. We believe that
the slight discrepancy between the two is because the delay
bounds, d, are not large enough.
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Fig. 6. Tail probability for queue size for the Pareto distribution: Cs = 10
Mbps

In figure 7, we compare the distribution of Q̄(t) with that
of Q(t), obtained through simulation. The Pareto distribution
is truncated at d = 1000 seconds. We see that they are very
close to each other for large queue size.
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Fig. 7. Tail Probability for Queue Size for the Pareto Distribution:
Comparison of Q̄(t) with Q(t). Cs = 1 Mbps, α = 1.9 and d = 1000
seconds

After we establish enough confidence on the “goodness”
of the approximation, we use the approximation to investigate
dependency of the tail probability of the queue size on various
parameters. The results are shown in figure 8 in log-log scale.
We use the tail probability of the queue size, P{Q̄(t) > m},
as an approximation of the packet loss ratio when the buffer
size is m. From figure 8 (a) and (b), we notice that to
achieve low packet loss probability, the buffer size must be
large. For instance, to achieve less than 1% packet loss ratio,
or equivalently 99% of throughput, m > 102, 104, and 106

for α = 1.9, for Cs = 1, 10 and 100 Mbps, respectively.
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As illustrated in figure 8 (b) and (c), the loss ratio depends
crucially on the parameter α, but less crucially on the mean
variable delay.
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Fig. 8. Tail Probability for Queue Size for the Pareto Distribution: Log-Log
Plot (a) α = 1.9, Mean Delay = 20 ms; (b) Cs = 1 Mbps, Mean Delay =
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3) Numerical computation of P{Q̄(t) ≤ m}: Because we
do not know the value of each a(k,m), it is not easy to say
how many Ai’s we need in order to compute each a(k,m) with
enough accuracy. The fact that the variable delays are always
bounded in practice can help us. Specifically, in the case of
Pareto distribution, we consider the corresponding “truncated”
Pareto distribution.

P{X ≤ x} =
{

1 − (K
x )α for K ≤ x < d

1 for x >= d

When the variable delay is bounded by d, any packet i ≤
k(d) := �(t− T − d)/τ� must have arrived by time t. Hence,

the computation of a(k,m) involves only a finite number of
Ai’s.

We show the tail probability of the queue size for “trun-
cated” Pareto distribution in figure 9. We also compare the
“truncated” case with the “not-truncated” case (labeled as
“Pareto”). We see that truncating the Pareto random variable
significantly alters the resulting queue size distribution, leading
to a much faster decay. We also see that the delay bound, d,
dictates the buffer requirement for low loss probability. That
is, the buffer size must be as large as the worst case delay, d,
multiplied by the sending capacity, Cs.
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Fig. 9. Tail probability for queue size for the “truncated” Pareto distribution:
log-log Plot, mean delay = 10 ms. α = 1.1, Cs = 1 Mbps.

B. Waiting Time in the Queue

Packets are often delayed at the receiver queue for them to
be accepted in order. In this section, we analyze the waiting
time distribution. Again, suppose the buffer size b is infinite.
Let the waiting time for packet i be Wi. Packet i will be
accepted immediately after all packets j ≤ i arrive at the
queue. Therefore, packet i’s waiting time is,

Wi = max
j≤i

Aj −Ai

= max
j≤i

{Aj −Ai}

Hence, for t ≥ 0,

P{Wi ≤ t}
= P{Aj −Ai ≤ t, for all j < i}
=

∏

j<i

P{Aj −Ai ≤ t}

=
∫ ∏

j<i

F (x+ (i− j)τ + t)dF (x) (22)

When the variable delay is bounded by d,

P{Wi ≤ t} =
∫ d

0

i−1∏

i−�(d−t−x)/τ�

F (x+ (i− j)τ + t)dF (x)

The mean waiting time of a packet i is

EW = Emax
j≤i

Aj − EAi (23)
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1) Waiting time for exponential variable delay: In the case
of exponential variable delay, we can find an expression that
can approximate the expected waiting time. When packet i
arrives at the queue, let Gi be the number of sequence gaps
in the received packets prior to i. In other words, Gi is the
number of packets that are transmitted before i but have not
arrived at the receiver.

Gi = |{j < i : Aj > Ai}|

Packet i needs to stay in the queue until all these Gi packets
arrive. Due to the memoryless property of the exponential
distribution, the remaining time in the network of each packet
is still exponentially distributed. Hence,

Wi = max{Yj : j = 1, 2, ..., Gi}

where the Yj’s are IID exponential random variables repre-
senting packets’ remaining times in the network. We know
from [5] (page 49) that the kth order statistics for a collection
of n IID exponential random variables has the expectation

EX(k) =
1
λ

k∑

i=1

1
n− i+ 1

(24)

where 1/λ is the mean of the exponential distribution and
k = 1, 2, ..., n. Conditional on Gi and using (24), we get

E[Wi|Gi] =
1
λ

Gi∑

j=1

1
j

For Gi > 1, the sum can be approximated by

E[Wi|Gi] ≈ 1
λ

(logGi + 0.5)

Then

E[Wi] ≈ 1
λ

(E logGi + 0.5) ≤ 1
λ

(log EGi + 0.5)

Since the log function is fairly flat over the range of values
of practical interest, we will use the following approximation.

E[Wi] ≈ 1
λ

(log EGi + 0.5) (25)

The expected value of Gi can be computed as follows.

E[Gi] = E[
∑

j<i

1(Aj>Ai)]

=
∑

j<i

P{Aj > Ai}

=
∑

j<i

P{Xj −Xi > (i− j)τ}

=
∑

j<i

1
2
e−λ(i−j)τ

=
1 − e−λiτ

2(1 − e−λτ )

Substituting the result for E[Gi] into (25) and let i goes to
infinity, we get the stationary mean waiting time.

E[W ] ≈ 1
λ

(log(
1

2(1 − e−λτ )
) + 0.5) (26)

In table IV, we compare the mean waiting times derived
from the above analysis with those from simulation. The
analytic approximation becomes quite good when the link
speed exceeds 10 Mbps. When the link speed is smaller, it
appears that the approximation is not accurate. The reason is
that, at 1 Mbps, G is very close to 1 on average, making the
two approximations we use in deriving (26) less appropriate.
However, at this link speed, the packet transmission time, τ ,
is 12 ms. So the inaccuracy in the approximation of E[W ] at
1 Mbps is no greater than one packet transmission time. In
any case, we are more interested in situations where the link
speed, and hence, the waiting time, are large. At link speed
Cs = 10 Mbps and 1/λ = 10 ms, we have E[G] = 4.4, which
is not a very large number. We see that the approximation of
E[W ] is already quite good. When Cs ≥ 10 Mbps, we can
further approximate E[W ] by noticing that e−λτ ≈ 1 − λτ
when λτ is small. Then,

E[W ] ≈ 1
λ

(log(
Cs

2λU
) + 0.5) (27)

where U is the packet size in bits. We see that the mean
waiting time of a packet scales logrithmically with the link
capacity. We also see that, at a given link speed, reducing the
packet size, hence, the packet transmission time, increases the
mean waiting time.

TABLE IV

MEAN WAITING TIME FOR EXPONENTIAL DELAY: ANALYSIS VS.

SIMULATION

E[W ]: Analysis/Simulation (ms)
Cs(Mbps) 1/λ = 10 1/λ = 20

1 1.65/0.2 12.1/0.2
10 19.9/17.5 53.0/48.5
100 42.3/40.0 98.5/94.0

2) Waiting time for Pareto variable delay: Table V shows
the simulation results for the expected waiting time, EW ,
for “truncated” Pareto delays. The delay bounds are d =
0.2, 0.5, 2, 10 and 1000 seconds. We see that EW depends d,
α and Cs in significant ways. In many cases, this resequencing
delay is non-trivial. When the Pareto distribution has “heavy”
tail, e.g., α = 1.1, and when the sending rate is fairly large,
e.g., Cs = 100 Mbps, EW is close to the delay bound, d. If the
delay bound is determined by a time-out mechanism similar
to the one used in TCP, then it is typical d ranges from 0.5 to
2 seconds. The resequencing delay ranges from 232 ms to 1.8
seconds for Cs = 100 Mbps, and is expected to be higher for
larger Cs. Luckily, the delay increases much more slowly than
Cs increases. Also notice that reducing d to 0.2 seconds can
greatly reduce the expected delay. In the case of TCP, there is
incentive to reduce the time-out value, which depends on the
round-trip time of the transmission path. Therefore, it pays to
accurately estimate the round-trip time.
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TABLE V

MEAN WAITING TIME FOR PARETO DELAY: SIMULATION RESULTS

E[W ]: Simulation (ms)
Cs(Mbps) d = 0.2 s d = 0.5 s d = 2 s d = 10 s d = 1000 s

EX = 20 ms 1 33.12 81.82 279.15 1093.49 51403.21
α = 1.1 10 129.39 327.84 1223.43 5434.29 342886.45

100 172.83 458.22 1859.36 9183.65 826939.37

EX = 20 ms 1 11.56 20.02 34.52 59.00 71.81
α = 1.9 10 74.67 135.29 257.73 431.85 677.99

100 152.28 351.43 988.85 2433.43 4416.03

EX = 10 ms 1 3.73 6.08 9.92 16.89 20.02
α = 1.9 10 37.50 58.27 94.60 158.44 211.46

100 121.30 232.90 519.41 1079.91 1205.94

C. Throughput for finite buffer sizes

This section shows some simulation results of the through-
put under finite buffer sizes. Figure 10 is for the exponential
delays. Figure 11 shows similar result for the “truncated”
Pareto distributions on semi-log scale. We see that the delay
bound, d, severely affects the throughput-buffer characteristics.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

%
)

Buffer Size

EX = 10 ms
EX = 20 ms

Fig. 10. Throughput versus buffer size for the exponential distribution. Cs =
10 Mbps, T = 30 ms.
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IV. CONCLUSION

This paper studies the required buffer size and extra delay
for resequencing mis-ordered packets at the receiver. The re-
sults are summarized in section I-B. We have shown that both
quantities can be significant. Besides requiring extra resource,
the delay caused by packet resequencing negatively affects the
performance of delay-sensitive applications. A network that
causes severe packet mis-ordering, such as one that allows
multi-path routing, must employ mechanisms to reduce the
resequencing delay. Fast detection and feedback about packet
that are delayed by the network and retransmission of these
packets can be very helpful or even necessary. The implication
of our results on network engineering, besides the cautionary
notes on multi-path routing, is suggested by fact that the mean
resequencing delay is proportional to log(Cs/U) (See equation
(4).) for the exponential propagation delay. As the sources
become faster, the resequencing delay increases. Moreover,
making the packet size smaller also increases the resequencing
delay.
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