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Abstract— Network flow control regulates the traffic
between sources and links based on congestion, and plays
a critical role in ensuring satisfactory performance. In
recent studies, global stability has been shown for several
flow control schemes. By using a passivity approach, this
paper presents a unifying framework which encompasses
these stability results as special cases. In addition, the new
approach significantly expands the current classes of stable
flow controllers by augmenting the source and link update
laws with passive dynamic systems. This generality offers
the possibility of optimizing the controllers, for example, to
improve robustness and performance with respect to time
delay, unmodeled flows, and capacity variation.

I. INTRODUCTION

Network flow is governed by the interconnection be-
tween the information sources and communication links
through the routing matrix, R, as shown in Fig. 1.
Packets from each source (with rate xi) are routed
through the links (with the aggregate link rates y�). Each
link has a fixed capacity c�, and based on its congestion
and queue size, a link price, p�, is computed. The link
price information is then sent back to each source to
regulate the traffic back into the links. Since the links
only feed back the price information to the sources that
utilize them, we have the relationship:

y = Rx, q = RT p (1)

where x ∈ RN is the source rate, y ∈ RL is the
aggregate rate, p ∈ RL is the link price, and q ∈ RN is
the aggregate price. In this paper, we assume that there is
no delay in the loop and the link capacity c is a constant
vector.

The flow control problem aims to find decentralized
source and link control algorithms (x as a function of
q, and p as a function of y) to achieve the following
objectives:

• Utilization: Maximize throughput by keeping y�

near c�.
• Fairness: All sources have “equitable” shares of

capacity.
• Stability: All signals converge to desired equilib-

rium values.

Fig. 1. Network Flow Control Model

• Robustness: Maintain stability and performance un-
der model variation, including time delays, unmod-
eled flows, and capacity variation.

A common approach to flow control is to decompose
the problem into a static optimization problem and a
dynamic stabilization problem [1], [2]. The static opti-
mization incorporates fairness, capacity constraint, and
utilization, and its solution provides the desired steady
state operating point (equilibrium of the closed loop
system), x∗, y∗, p∗, and q∗. The source rate and link
price update laws are then designed to guarantee stability
and robustness of the equilibrium.

The static optimization problem is to maximize the
sum of the utilization function Ui(xi) for the sources
while complying with capacity constraints in the links;
that is

max
x≥0

N∑

i=1

Ui(xi) subject to Rx︸︷︷︸
y

≤ c. (2)

By using the Lagrange multiplier, p, the inequality
constraint can be folded into the optimization problem:

min
p≥0

max
x≥0

L(x, p)

= min
p≥0

max
x≥0

N∑

i=1

Ui(xi) −
L∑

�=1

p�(y� − c�).
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If U is differentiable, the first order condition for the
maximization problem is

qi = U ′
i(xi). (3)

The condition for the Lagrange multiplier p is

p�

{
= 0 if y� < c�

≥ 0 if y� = c� .
(4)

If U is strictly concave, (3)-(4) is sufficient to determine
a unique equilibrium condition.

The utility function Ui(xi) for each source determines
the equilibrium condition, and consequently the steady
state fairness and utilization. The objective of source and
link update laws is now to drive the actual source rates
and link prices to their respective equilibrium values.
The constraints in this problem are:

• Decentralization: xi can only depend on qi, and p�

can only depend on y�.
• No routing information: The routing matrix R is

unknown to the sources and the links.
• No coordination among sources and links: The

sources do not have knowledge of the objective
functions of other sources, and the links do not
have information of the capacities of other links.
Therefore, the equilibrium value is unknown.

Among many congestion control methods surveyed in
[3]–[5], only a few can ensure global stability subject
to the structural and information constraints described
above. Motivated by the gradient update for the opti-
mization problem (2), a “primal” algorithm is proposed
in [1] which consists of a first order source update law
and a static link penalty function to keep the aggregate
rate below its capacity. A “dual” algorithm is also
proposed in [1] where the static source update is the
optimality condition (3) and the link uses a first order
dynamics of the price update. In [6], [7], the link update
is replaced by second order dynamics. Other strategies
consider only the first order queue dynamics [8]–[10].

In this paper, we develop a unifying framework for
stable network flow control by using the passivity ap-
proach [11]. This framework includes the primal and
dual control schemes in [1], [7] as special cases and
extends them to broader classes of flow control laws.
The passivity concept is motivated by physical systems
that conserve or dissipate energy, for example, passive
circuits [12] and mechanical structures [13]. Passivity
provides a useful tool in nonlinear stability analysis and
control design for feedback systems [14], [15]. The main
result is the celebrated passivity theorem which states
that the negative feedback connection of two passive
systems is passive. The storage functions (generalization
of energy in physical systems) for the subsystems in the
feedback interconnection can be combined and used in

the Lyapunov stability analysis [16]. By using the pas-
sivity approach, we show in this paper that the first order
source controller in the primal approach in [1], and the
first or second order link controllers in the dual approach
in [1], [7], [17] can be replaced by dynamic systems with
prescribed passivity properties. In addition, the static link
update in [1] and the static source update in [7], [17] can
be augmented with a class of dynamic systems motivated
by the Zames-Falb multiplier [18]. The dynamic source
update in the primal controller [1] can also be combined
with the dynamic link update in the dual controller [7] to
obtain a dynamic-source/dynamic-link stabilizing control
law. The single bottleneck congestion control algorithm
in [9] is a special case of this controller.

In addition to unifying the existing stabilizing con-
trollers in the literature, our result also offers the po-
tential for additional optimization for robustness with
respect to time delay, unmodeled flows, and capacity
variation. Time delay adds phase lag and compromises
stability in a feedback system [19]. From the linear
system point of view, to enhance robustness with respect
to the delay, the controller should add phase lead or
increase gain roll-off or do both (subject to the gain-
phase relationship imposed by the Bode integral formula
[19]). The controllers in this paper can provide additional
gain roll-off which may be exploited for robustness en-
hancement. Another consideration is network variation.
The model considered in this paper is highly ideal-
ized; real networks have constantly changing topology
and capacity. For the actual deployment of congestion
control, averaging is used to smooth out the variation
in various signals. Within our passivity framework, a
smoothing filter can be designed and optimized without
compromising stability.

This paper is organized as follows. Section II discusses
the passivity interpretation of the primal controller in
[1] and the generalization to passive source control and
multiplier-based link control. Section III presents the
passivity framework for the dual controller in [7] and
the generalization to passive link control and multiplier-
based source control. A combined primal/dual algorithm
is also shown in this section. Simulation results based
on a four-source/three-link network from are shown in
Section IV. Conclusion and future work are given in
Section V. Due to the space limitation, the readers are
referred to the complete version [20] for most of the
proofs.

Notation: Given a x and f(x), the positive projection of
f is defined as follows:

(f(x))+x
∆=






f(x) if x > 0, or
x = 0 and f(x) ≥ 0

0 if x = 0 and f(x) < 0 .

If x and f(x) are vectors, then (f(x))x is interpreted
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in the component-wise sense. When (f(x))+x = 0, we
say the projection is active. When (f(x))+x = f(x), the
projection is inactive.

II. PRIMAL FLOW CONTROL ALGORITHMS

In [1], a flow control law based on the primal approach
to the optimization problem (2) is proposed (see Fig. 2).
Given the utility function for each source, Ui(xi), the
source update law is given by

ẋ = K(U ′(x) − q)+x (5)

where K = diag {ki}, ki > 0, U ′(x) ∈ RN with ith
component U ′

i(xi). The link control is given by

p = h(y) (6)

where h(y) ∈ RL, with �th component h�(y�), is a
penalty function that enforces the link capacity con-
straint, y� ≤ c�. The equilibrium condition is computed
from

q∗ = U ′(x∗), p∗ = h(y∗), (7)

which approximately satisfies the desired condition (3)-
(4). We assume that each penalty function is monotoni-
cally non-decreasing, such as the following used in [1]:

h�(y) = (y − c� + ε)+/ε2. (8)

In order for the equilibrium condition to make physical
sense, we also assume x∗ > 0. It can be shown that the
positive projection in (5) does not change the equilibrium
of (5)-(6).

Fig. 2. Primal Flow Controller

A. Passivity Based Stability Analysis

We now present a stability argument by using the
passivity analysis. The advantage of this approach is that
it leads to an extended class of stabilizing control laws
to be discussed in Section II-B.

We express the interconnected system in Fig. 2 in an
equivalent form in Fig. 3 based on the deviation from
the equilibrium condition, and rewrite the link update as

h1(y − y∗) ∆= h(y − y∗ + y∗) − h(y∗). (9)

The following result shows that both the forward and
return systems are passive [20].

Fig. 3. Equivalent Representation of Primal Flow Controller

Proposition 1: Consider the feedback interconnection
shown in Fig. 3. The forward system from −(p − p∗)
to ẏ, and the return system from ẏ to p − p∗ are both
passive. Furthermore, the equilibrium x = x∗ is globally
asymptotically stable.

B. An Extended Class of Source Rate Control Laws

The advantage of the passivity perspective is that it
allows us to consider a broader class of stabilizing source
control laws. A natural generalization is to replace the
first order update (5) by a more general class of passive
systems. To motivate this extension, we express (5) as a
feedback system as in Fig. 4(a) where

g1(x − x∗) ∆= −U ′(x − x∗ + x∗) + U ′(x∗). (10)

Let us now replace the integrator in the forward system
by 1

s (D + C(sI − A)−1B) where (A,B,C,D) is a
positive real (PR) transfer function (for the definition of
positive realness, see [16]), as in Fig. 4(b). This system
can be transformed to an equivalent system as shown
in Fig. 4(c). The forward system is now passive by
design, and the feedback system is also passive since
g1 is a first/third-quadrant function. It then follows that
the system from −(q − q∗) to ẋ is passive.

The above argument does not take into account the
non-negativity restriction on x. The following theorem
shows that for certain class of U(x), the source rates
would remain positive and the overall system is globally
asymptotically stable.

Theorem 1: Consider the source rate control law for
source i, i = 1, . . . , N , given by

ξ̇i = Aiξi + Bi(U ′
i(xi) − qi), ξi ∈ Rni (11)

ẋi = Ciξi + Di(U ′
i(xi) − qi), (12)

where (Ai, Bi, Ci,Di) is strictly positive real (SPR), the
link update given by (6), and the routing connection
given by (1).

Assume Ui(xi) → −∞ as xi → 0 for i =
1, . . . , N . Then the equilibrium of the interconnected
system is globally asymptotically stable, that is, so-
lutions converge to the equilibrium from any initial
condition (x(0), ξ(0)) ∈ X × Rn1 × . . .RnN , X ∆=
{x : xi > 0, i = 1, . . . , N}.
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(a)

(b)

(c)

Fig. 4. Extension of Source Rate Update in Primal Flow Controller

As we show in the proof (see Appendix I), the as-
sumption on Ui ensures that X is positive-invariant,
i.e., if x is initially in X , it will remain in X for
all t ≥ 0. For commonly used utility functions such
as Ui(xi) = ailog(xi) (proportional fair, also TCP
Vegas) and Ui(xi) = −ai/xi (Variant of TCP Reno)
[5], this assumption is satisfied. However, for Ui(xi) =
aitan−1(bxi) (TCP Reno), the assumption does not hold.
In this case, we impose positive projections on (11)-(12):

ξ̇i = (Aiξi + Bi(U ′
i(xi) − qi))

+
ξi

(13)

ẋi = (Ciξi + Di(U ′
i(xi) − qi))

+
xi

, (14)

and restrict (Ai, Bi, Ci,Di) to

Ai =




−ai1 0

. . .
0 −aini



 Bi =




bi1
...

bi,ni





Ci =
[

ci1 . . . ci,ni

]
Di = di (15)

where aij , bij , cij , and di are positive constants. This
restriction eliminates the possibility of phase lead con-
trollers and is therefore of limited utility in terms of
enhancing robustness with respect to time delays.

C. An Alternate Class of Source Rate Control Laws

The passivity argument in Section II-A uses the fact
that the forward system cascaded with the derivative

block and the return system pre-multiplied by the in-
tegral block are both passive (as shown in Fig. 3). In
passivity theory, the derivative block is a special case of
multipliers [18] which means that its inverse (integral
block) preserves the passivity of the return system.
However, this approach limits the possibility of applying
a much broader class of multipliers (called Zames-Falb
multipliers [21]) to the return system to preserve its
passivity property. In this section, we use an alternative
passivity argument to show that the forward system is
passive without the addition of the derivative block. This
will then allow us to use dynamic link controllers and
still achieve global asymptotic stability.

The following result shows that −(p−p∗) to y−y∗ is
strictly passive (instead of −(p−p∗) to ẏ as in Section II-
A).

Proposition 2: Consider the feedback interconnection
shown in Fig. 2. The system from −(p − p∗) to y − y∗

is strictly passive.
As in Section II-B, we can also generalize the first

order control law (5) to a broader class of passive
systems:

ξ̇ = (Aξ − Bx)+ξ (16)

ẋ = (Cξ + D(U ′(x) − q))+x (17)

where (A,B,C,D) is as in Theorem 1. However, since
ξ always decays to zero, after the initial transient,
this controller is essentially the same as the first order
controller (5).

In the context of passivity-based stability analysis,
[21] and [18] showed that a monotone first-third quadrant
nonlinearity cascaded with a class of transfer functions is
passive. To use the result in link control, we first define
the following class of transfer functions:

Definition 1: A proper rational function H(s) is
called an inverse–ZF (Zames-Falb) function if

H(s) = (m0 − Z(s) + ηs)−1

where m0, η are positive constants and the impulse
response of Z(s), z(t), satisfies

z(t) > 0,
∫ ∞

0
z(t) < m0.

Examples of inverse-ZF functions include first-order lag
filters, 1/(a0s + a1) and (as + 1)/(s + a), 0 ≤ a < 1.
We can now extend the static link update Theorem 2
to the penalty function cascaded with an inverse-ZF
function. The main idea is to show that when the link
penalty function is modified by inverse-ZF functions as
in Fig.5(a), it is equivalent to the same modification
applied to the error system as in Fig. 5(b).

Theorem 2: If the source update law is given by (5)
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(a) (b)

Fig. 5. Link Controller Modified by Inverse-ZF Functions

and the update law for the �th link is replaced by

p� = h�(H�(s)y�), or (18)

p� = H�(s)h�(y�) (19)

where H�(s) is an inverse-ZF function and H�(0) = 1,
then the equilibrium of the closed loop system is the
same as in (7) and is globally asymptotically stable.

In (18), p is non-negative since the output of h is non-
negative. However, in (19), this is no longer guaranteed.
Since p represents only information feedback rather than
physical transmission rate as in x, negative values of p
may be acceptable.

III. DUAL FLOW CONTROL ALGORITHMS

The flow control algorithm in [1] is based on the
primal optimization in (2) and the link rate constraint is
enforced by using the penalty function (6). Though the
approach guarantees global stability, it does not take the
link queue dynamics into account. In [7], a dual approach
is proposed where the queue size, b, is explicitly modeled
and the rate of change of the link price, ṗ, is determined
by the combination of queue size and link rate:

ḃ = (y − c)+b (20)

ṗ = Γ(Λb + y − c)+p (21)

where Γ = diag{γ�}, γ� > 0, Λ = diag{λ�}, λ� > 0.
The source update is directly given by the primal solution
(3):

x = U ′−1(q) (22)

where the ith component of U ′−1(q) is U ′
i
−1(qi). The

overall closed loop system is shown in Fig. 6. By using
a Lyapunov function argument, the global asymptotic
stability of the system can be shown [7]. We can also
apply the same passivity argument as in Section III-A to
show that the link controller from (x− x∗) to q̇ and the
source controller from −q̇ to x−x∗ are both passive (see
Fig. 7 with g1 given by (10)); and the stability property
follows by combining the storage functions of the two
systems.

Fig. 6. Dual Flow Controller

Fig. 7. Equivalent Representation of Dual Flow Controller

A. An Extended Class of Link Price Control Laws

As in Section II-B, we now extend the second order
link update algorithm in (20)-(21) to a larger class of
passive dynamic systems. However, note that positive
projections are needed in (20)-(21) to ensure the equi-
librium condition (4). If the positive projections were
removed, the equilibrium condition would imply y� = c�

even for non-bottleneck links, which would in turn lead
to unbounded queues for those links. Therefore, as in
(15), we restrict the class of SPR filters in the link control
law extension. As a motivation of this extension, if we
ignore the positive projections, (20)-(21) can be regarded
as a first order PR transfer function from y� − c� to ṗ�

(see Fig. 8(a)). The result below shows that this transfer
function can be generalized to a class of PR transfer
function (see Fig. 8(b)), and, under suitable positive
projection, the closed loop system remains globally
asymptotically stable.

Theorem 3: Consider the link update law

η̇ = (ALη + BL(y − c))+η (23)

ṗ = (CLη + DL(y − c))+p (24)

where (AL, BL, CL,DL) are block diagonal, partitioned
according to each link, with the �th subsystem given by

A� =




−a�1 0

. . .
0 −a�,n�



 B� =




b�1
...

b�,n�





C� =
[

c�1 . . . c�,n�

]
D� = d� (25)

where a�m is non-negative, and b�m, c�m and d� are
positive constants. Then the equilibrium (η, p) = (0, p∗),
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(a)

(b)

Fig. 8. Extension of Link Rate Update in Dual Flow Controller

with p∗ satisfying (4), of the interconnected system
described by (22), (23)-(24), and (1) is globally asymp-
totically stable.
Proof: The proof is given in Appendix II.

Note that the link controller (20)-(21) is a special case
of (23)-(24) with n� = 1, a�,1 = 0, b�,1 = 1, c�,1 = γ�λ�,
d�,1 = γ�. Our extended class also encompasses the first
order link control law used in [9], [17]

ṗ = Γ(y − c)+p (26)

by setting n� = 0, c�,1 = 0, d�,1 = γ�.
The steady state queue size in (20)-(21) and (26) is

zero. Since the queue dynamics is not directly modeled
in our extended controller (23)-(24), the steady state
queue size may be non-zero. A non-zero queue may
be desirable to ensure the full utilization of the link.
However, the queue should not be too large in order to
avoid excessive queuing delay. If the zero queue size is
desired, then at least one of the a�,m should be set to
zero to emulate the queue dynamics.

B. An Alternate Class of Link Price Control Laws

In Section II-C, we have shown that the first order
primal source control is passive from −(q−q∗) to x−x∗,
and this property allows dynamics to be introduced into
the link control by using inverse Zames-Falb functions.
In this section, we present the dual result where the link
controller is passive from (x − x∗) to q − q∗.

Proposition 3: Consider the link control law (26). The
return system from y − y∗ to p − p∗ is passive.

This passivity property can be extended [20] to the
adaptive virtue queue link controller in [22]:

η̇� = γ�(y� − c�)+η�
, p� = f�(y�, η�) (27)

where f is non-negative and strictly increasing in both
variables. In [10], a nonlinear γ� is needed to show
stability; here we only require γ� to be a positive

constant. The above passivity property does not hold for
the second order controller in [7]. This is not surprising
since, as shown in Fig. 8(a), if we ignore the positive
projection, the transfer function from y� − c� to p� − p∗

�

has two poles in the origin, which cannot be PR.
As in Theorem 2, we can make the same modification

for the source control by using the inverse-ZF function:
Theorem 4: If the link update law is (26) and the

source update law is

xi = Hi(s)U ′
i
−1(qi) (28)

xi = U ′
i
−1(Hi(s)qi) (29)

where Hi(s) is an inverse-ZF function and Hi(0) = 1,
then the equilibrium of the closed loop system is the
same as in (3)–(4) and is globally asymptotically stable.

Note that in (28), the source rate may become negative
making it physically unrealizable.

C. A Combined Primal/Dual Algorithm

In Section II-C, we showed passivity of the first order
source rate controllers from −(p−p∗) to (y−y∗), and in
Section III-B, we showed passivity of the first order link
price controller from (y − y∗) to (p − p∗). As a direct
consequence of the passivity analysis, we can combine
these two classes of controllers together to achieve global
asymptotic stability as in Fig. 9. Among the congestion
control laws in the literature which guarantee global
asymptotic stability, either the source rate update or
the link price update is static. When both are dynamic,
stability has only been shown using singular perturbation
in [10] and for the single-bottleneck case in [8], [9]. With
our passivity approach, extension from single to multiple
bottlenecks is straightforward because pre-multiplication
by RT and post-multiplication by R as in Fig. 9 does
not change the passivity property of the forward system.

Fig. 9. Primal/Dual Congestion Control

IV. SIMULATION RESULTS

To illustrate the new classes of stable flow controllers
presented in this paper, we consider a simple 4-source/3-
link example shown in Fig. 10. The corresponding
routing matrix is

R =




1 0 1 0
1 1 1 0
1 1 0 1



 .
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We assume that all source utility functions are Ui(xi) =
log(xi) and the link capacities are all 1. For this choice
of Ui, the assumption in Theorem 1 is satisfied. The
solution to the optimality condition (3)-(4) is

x∗ =
[

0.25 0.25 0.5 0.5
]T

q∗ =
[

4 4 2 2
]T

y∗ =
[

0.75 1 1
]T

p∗ =
[

0 2 2
]T

.

The initial source rate is set to

x(0) =
[

0.4 0.6 0.8 1.0
]T

.

The initial link price is set to zero.

Fig. 10. A Network Example

To facilitate discussion, we summarize the various
flow control laws discussed in this paper in Tables I–
III.

Combined Primal/Dual Control (Section III-C)
source ẋ = K(U ′(x) − q)+x

link ṗ = Γ(y − c)+p

TABLE III

PRIMAL/DUAL FLOW CONTROL LAW

A. Robustness with respect to Time Delays

1) Dynamic-Source/Static-Link Case: We first show
that the robustness with respect to time delays can be
enhanced by augmenting the first order source controller
in [1] with an SPR filter as in (11)-(12). We use the
following controller parameters:

(A1) Flow control in [1] with ki = 0.01 and ε = 0.1.
(B1) Flow control in Theorem 1 with Ai = −4, Bi =

0.04, Ci = −1, Di = 0.01 and ε = 0.1.

Both controllers work well when no delay is present.
However, when a delay of 2 sec is introduced in each
link feedback channel, the source rates for controller
A2 show persistent oscillations, while for controller B2,
they remain well behaved (the source rate comparison

is shown in Fig. 11). The loop gain of the linearized
system (about the source rate x) is

GS(s) = −s−1W (s)(U ′′(x) − RTh′(Rx)R). (30)

where W (s) = ki for controller A1, and W (s) =
Di + Ci(sI − Ai)−1Bi for controller B1. The Bode
plots of s−1W (s) for both controllers are shown in
Fig. 12. It is evident that the SPR filter in B1 adds
a significant amount of phase lead, thus improving the
stability robustness with respect to the time delay.
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0.4
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0.5

time

x

source rate comparison
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Fig. 11. Source Rate Comparison under 2 sec Delay: Flow Controller
in [1] vs. Controller based on Theorem 1

Bode Plot comparison between controllers A1 and B1
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Fig. 12. Loop Gain Bode Plot Comparison: Flow Controller in [1]
vs. Controller based on Theorem 1

2) Static-Source/Dynamic-Link Case: We next com-
pare the delay robustness of the second-order link
controller in [7] with a modified controller based on
Theorem 3:

(A2) Flow control in [7], with γ� = 2 and λ� = 2.
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flow control in [1] flow control in Theorem 1 flow control in Theorem 2

source ẋ = K(U ′(x) − q)+x
ξ̇ = (Aξ + B(U ′(x) − q))+ξ
ẋ = (Cξ + D(U ′(x) − q))+x .

ẋ = K(U ′(x) − q)+x

link p = h(y) p = h(y)
p = H(s)h(y) or p = h(H(s)y)

H is inverse-ZF

TABLE I

PRIMAL FLOW CONTROL LAWS

flow control in [7] flow control in Theorem 3 flow control in Theorem 4

source x = U ′−1(q) x = U ′−1(q)
x = H(s)U ′−1(q) or x = U ′−1(H(s)q)

H is inverse-ZF

link
ḃ = (y−c)+

b

ṗ = Γ(y−c+Λb)+p .

η̇ = (Aη + B(y − c))+η
ṗ = (Cη + D(y − c))+p .

ṗ = Γ(y − c)+p

TABLE II

DUAL FLOW CONTROL LAWS

(B2) Flow control in Theorem 3, with A� = −1, B� = 1,
C� = 2, D� = 2.

Note that the only difference between (A2) and (B2)
is that A� is zero in (A2) and negative in (B2). With
a constant delay of 1 second introduced in all source
to link channels, a persistent oscillation appears with
(A2) while a stable response is maintained with (B2),
as shown in the link rate comparison in Figure 13. This
difference in robustness can again be explained by the
phase margin comparison of the linearized system. The
loop gain of the linearized system (about the source rate
x) is

GL(s)=−RU ′′(x)−1RTs−1(DL+CL(sI−AL)−1BL).
(31)

Figure 14 shows the Bode plot comparison of the (1,1)
element of the loop gain transfer matrix with x = x∗

(other channels are similar). The phase margin cor-
responding to Controller B2 is much larger than the
phase margin of Controller A2, and both controllers have
comparable bandwidth. This indicates that B2 should
have better performance in the presence of time delays.

B. Disturbances Rejection

To illustrate the effect of our augmented controller on
disturbance rejection, we add a sinusoidal disturbance to
the link rate:

y = Rx + ny, ny = A sin(ωt)

with A = 0.4 and ω = 0.4π. We consider the first order
rate controller from [1] and the inverse-ZF augmented
controller (last column in Table I) below:

(A3) Flow control in [1] with ki = 0.001 and ε = 0.1.
(B3) Flow control in Theorem 2 with ki = 0.001, ε =

0.1, and H�(s) = 1/(s/0.02 + 1).
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Fig. 13. Link Rate Comparison under 1 sec Delay: Flow Controller
in [7] vs. Controller based on Theorem 3

The transfer function of the linearized system (about x)
from ny to x and y are

Gx,ny
(s) = −GH(s)(I + RGH(s))−1

Gy,ny
(s) = (I + RGH(s))−1

where

GH(s) ∆= (sI − Gs(s)U ′′(x))−1Gs(s)RTh′(Rx)H(s).

The singular value plots of Gx,ny
(s) for controllers A3

and B3 in Figure 15 (with x = x∗) shows that for
disturbance frequency higher than 0.2rad/sec, we expect
B3 to perform better than A3. This is indeed confirmed
by the source rate plots shown in Figure 16, in which,
after a larger initial transient, B3 removes most of the
higher frequency disturbance. Controller B3 also reduces
the bandwidth of the closed loop system which has the
negative side effect of large transient fluctuations in the
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Bode Diagram
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Fig. 14. Bode Plot Comparison of Linearized System: Flow Controller
in [7] vs. Controller based on Theorem 3

source rate. Note that the effect of noise on x and y is
complementary, i.e., if ny has a small effect on x, then
it will strongly influence y, and vice versa.

V. CONCLUSION
Network flow control is commonly decomposed into

two steps: a static optimization that incorporates uti-
lization and fairness to establish the desired equilib-
rium, and dynamic source and link control to ensure
stability and robustness of the equilibrium. This paper
addresses source and link control which can guarantee
global asymptotic stability of the desired equilibrium.
By using the passivity approach in nonlinear analysis,
we have developed a unifying framework for stabilizing
source and link control laws which encompass existing
algorithms in [1], [7], [9], [10], [17] as special cases.
In our approach, we first interpret the existing results
in a passivity perspective and then augment the source
and link control laws with suitable passive systems. The
global asymptotic stability of the closed loop system
then follows from the passivity-based stability analysis.
In addition to unifying and extending the existing results,
we have shown that the added design freedom in flow
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Fig. 15. Singular Value Comparison of Gx,ny (jω) for Controllers
A3 and B3
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Fig. 16. Source Rate Comparison under Sinusoidal Disturbance for
Controllers A3 and B3

control can be exploited to improve the disturbance
rejection property and robustness with respect to time
delays. The performance improvement and robustness
enhancement potential is illustrated through linearized
analysis and simulation. We are currently developing a
systematic flow control design strategy with this passiv-
ity framework and investigating stability and robustness
under discrete time implementations.
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APPENDIX I
PROOF OF THEOREM 1

From [23], [24], (Ai, Bi, Ci,Di) is SPR if and only
if there exists Pi > 0, Li > 0, Qi, Wi such that
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PiAi + AT
i Pi = −Li − QT

i Qi (32)

BT
i Pi − Ci = WT

i Qi (33)

WT
i Wi = Di + DT

i . (34)

For the forward system, let

V1(x−x∗,ξ)=
∑

i

(
1
2
ξT
i Piξi−(Ui(xi)−Ui(x∗

i ))+q∗
i (xi−x∗

i )).

Since Ui is strictly concave, V1 is a positive definite
function. The derivative of V1 along the solution is

V̇1 =
∑

i

[1
2
ξT
i (PiAi + AT

i Pi)ξi

+ξT
i PiBi(U ′

i(xi) − qi) + (−U ′
i(xi) + q∗

i )T ẋi

]
.

Adding and subtracting qi to q∗
i , and using (12) and (32)–

(34), we get (note that Di and Wi are scalars)

V̇1 =
∑

i

[1
2
ξT
i (PiAi + AT

i Pi)ξi

+(Ciξi + QiξiWi)(U ′
i(xi) − qi)

−(U ′
i(xi) − qi)(Ciξi + Di(U ′

i(xi) − qi))

−(qi − q∗
i )ẋi

]

=
∑

i

[
−1

2
ξT
i Lξi − 1

2
(Qiξi)

2

+QiξiWi(U ′
i(xi) − qi)

−1
2

(Wi(U ′
i(xi) − qi))

2 − (qi − q∗
i )ẋi

]

=
∑

i

[
−1

2
ξT
i Lξi − 1

2
(Qiξi − Wi(U ′

i(xi) − qi))
2

−(qi − q∗
i )ẋi

]

≤
∑

i

[
−σmin(Li) ‖ξi‖2 − (qi − q∗

i )ẋi

]
.

Because the first term is negative semidefinite, the for-
ward system from −(q − q∗) to ẋ is passive.

Now consider the return system, and let

V2(y − y∗) =
∑

�

(∫ y�

y∗
�

(h(σ) − h(y∗
� )) dσ

)
,

Since h(y�) − h(y∗
� ) is first-third quadrant, V2 is a non-

negative definite function. The return system from ẋ to
q − q∗ is passive since

V̇2 = (h(y) − h(y∗))T ẏ = (p − p∗)T ẏ = (q − q∗)T ẋ.

We can now use V = V1 + V2 as a Lyapunov function
and obtain

V̇ ≤ −
∑

i

σmin(Li) ‖ξi‖2
. (35)

Since Ui(xi) → −∞ as xi → 0, the level
sets of V are confined in X × Rn1 × . . .RnN ,

X ∆= {x : xi > 0, i = 1, . . . , N}. Thus, X is positive-
invariant.

It follows from (35) and LaSalle’s Invariance principle
(see [16] for a detailed discussion) that (x(t), ξ(t))
converges to the largest invariant set contained in

Ω = {(x, ξ) : ξ = 0} .

On Ω, ξ̇i = 0 for all i, therefore, from (11), U ′
i(xi) = qi.

Because x = x∗ is the unique equilibrium of (5)-(6), we
conclude that Ω = {(x∗, 0)}; that is, (x∗, 0) is globally
asymptotically stable.

APPENDIX II
PROOF OF THEOREM 3

We first show that the modified return system (23)-
(24) is passive. Consider the following positive definite
function for the �th link:

V2�
=

{
∑

m

c�m

2b�m
η2

�m

}
+ (c� − y∗

� )p�.

The derivative along the solution is (after adding and
subtracting y� from y∗

� ):

V̇2�
=

∑

m

c�m

b�m
η�m (−a�mη�m + b�m(y� − c�))

+
η�m

+(c� − y�)

(
∑

m

c�mη�m + d�(y� − c�)

)+

p�

+(y� − y∗
� )ṗ�. (36)

First observe that
c�m

b�m
η�m (−a�mη�m + b�m(y� − c�))

+
η�m

= −a�mc�m

b�m
η2

�m + c�mη�m(y� − c�). (37)

This follows because, if the projection is inactive then
both sides of the equality are equal, and if the projection
is active, η�m = 0, and both sides of the equality are
zero.

Next we claim that

(c� − y�)

(
∑

m

c�mη�m + d�(y� − c�)

)+

p�

≤ (c� − y�)
∑

m

c�mη�m. (38)

If the projection is inactive, the inequality holds since
d�(y� − c�)2 ≥ 0. If the projection is active, then

∑

m

c�mη�m + d�(y� − c�) ≤ 0

which implies that η�m = 0 for all m if d� = 0 or
y� − c� = 0 if d� > 0; in either case the left hand side
of (38) is zero and the right hand side is non-negative.
Hence, (38) is true.
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Substitute (37) and (38) in (36), we obtain

V̇2� ≤

{
∑

m

−a�mc�m

b�m
η2

�m

}
+ (y� − y∗

� )ṗ�.

Summing V2� over all links and using the condition (1),
it follows that the return system from −(x− x∗) to q̇ is
passive.

Now consider the forward system, and let

V1(q − q∗) =
∑

i

∫ qi

q∗
i

(
x∗

i − U ′
i
−1(σ)

)
dσ.

where V1(0) = 0, ∇V1(0) =
∑

i(x
∗
i − U ′

i
−1(q∗

i )) = 0,
and ∇2V1 = −

∑
i U

′′
i

−1(qi) > 0, so V1 is a positive
definite function. The forward system from −q̇ to x−x∗

is passive since

V̇1 =
∑

i

(
x∗

i − U ′
i
−1(qi)

)
q̇i =

∑

i

(x∗
i − xi) q̇i.

We now use V = V1 + V2 as a Lyapunov function to
obtain

V̇ ≤
∑

�

{∑

m

c�mη�m(y� − c�)

+(c� − y�)

(
∑

m

c�mη�m + d�(y� − c�)

)+

p�

}

which is non-positive as shown before. Using the LaSalle
Invariance Principle, it follows that (η�m, p�) converges
to the largest invariant set Ω within the set

{
(η�m, p�) : W (η�m, p�) =

∑

m

c�mη�m(y� − c�)

+(c� − y�)(
∑

m

c�mη�m + d�(y� − c�))+p�
= 0

}
.

First consider the projection being inactive, p� > 0,
then W (η�m, p�) = −d�(y� − c�)2, and, therefore, y� =
c� on Ω. From (23), it follows that η�m → 0 for all m
on Ω.

Next consider the projection being active (p� = 0 in
this case), then on Ω, η�m(y�−c�) = 0. The case y� = c�

is the same as before, so consider η�m = 0 only. Since
Ω is invariant, η̇�m = 0 also. This implies y� − c� ≤ 0
or y� ≤ c�.

Combining the two cases, we conclude that Ω consists
of the equilibrium (η, p) = (0, p∗) where p∗ satisfies (4).
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