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Abstract—This paper analyzes a communication network with
heterogeneous customers. We investigate priority queueing as a
way to differentiate between these users. Customers join the
network as long as their utility (which is a function of the
queueing delay) is larger than the price of the service. We
focus on the specific situation in which two types of users
play a role: one type is delay-sensitive (‘voice’), whereas the
other is delay-tolerant (‘data’); these preferences are reflected in
their utility curves. Two models are considered: in the first the
network determines the priority class of the users, whereas the
second model leaves this choice to the users. For both models
we determine the prices that maximize the provider’s profit.
Importantly, these situations do not coincide. Our study uses
elements from queueing theory, but also from microeconomics
and game theory (e.g., the concept of a Nash equilibrium). We
conclude the paper by considering a model in which throughput
(rather than delay) is the main performance measure. Again the
pricing strategy exploits the heterogeneity in required service and
willingness-to-pay.

Key words—Packet networks, differentiated services, pricing,
congestion, microeconomics, negative externalities, game theory

I. INTRODUCTION

Current usage of data-networks, such as the Internet, is still
dominated by ‘traditional’ data services: web browsing, file
transfer, remote terminal, electronic mail, etc. These applica-
tions do not impose severe requirements on the network, in
that they tolerate relatively large packet delays. New Internet
applications, e.g., real-time applications such as interactive
voice and video, can be characterized as delay-sensitive,
and are consequently considerably more demanding. This
heterogeneity of the service requirements makes it necessary
that the delay-tolerant and delay-sensitive users are handled
differently — otherwise all traffic must be handled according
to the requirements of the most demanding class, i.e., the real-
time class, which will inevitably lead to a network running at
a relatively poor utilization level. A possible solution is to
give priority to the delay-sensitive traffic in the queues of the
network. Shenker [13] further motivates this prioritization and
related design issues for the Internet.

Pricing. Without an appropriate pricing scheme, any prioriti-
zation is useless; if there were no price difference between the
priority classes, all users would opt for the high-priority class.

Part of this work was done while at Bell Laboratories/Lucent Technologies,
P.O. Box 636, Murray Hill, NJ 07974, United States.

In other words: the prices of the priority classes should give
users an incentive to join the ‘right’ priority class. In terms
of the delay-tolerant user (or, shortly, the data user) and the
delay-sensitive user (or, shortly, the voice user): voice users are
encouraged to use the high-priority class, whereas data users
are given an incentive to join the low-priority class. This is
done by imposing a higher charge on the high-priority class.
A next question is: how should the network provider choose
the prices for both classes in order to maximize its profit?
Here two models can be distinguished. In the first model
the provider assigns a priority class to each user type – for
instance, the provider can decide that the voice customers
are directed to the high-priority queue, and the data users to
the low-priority queue. This model of ‘dedicated classes’ (or
‘implicit supply of service’, in Shenker’s [13] terminology) is
relatively simple to analyze, as the network users have only
two alternatives: joining the network or not.
The harder, but perhaps more realistic, model is the model
with ‘open classes’ (or ‘explicit supply of service’, as it is
called in [13]), in which the users can choose between the
priority classes. It is not clear beforehand whether the prices
that optimize the profit in the dedicated-classes model, are
also profit optimizing for the open-classes model. The reason
is that the prices found in the dedicated-classes model might
lead to a situation in which data (voice) users might appreciate
the high-(low-)priority class more. In other words: it is not a
priori clear whether the optimal prices from the dedicated-
classes model lead to an incentive-compatible situation in the
open-classes model.

Incentive-compatibility. In economic terms, in the model
with open classes, the users of the network are agents, who
individually choose between the three alternatives offered, that
is, joining the high-priority class, joining the low-priority class,
or not using the network at all. The situation in which no user
has any incentive to unilaterally change his policy is called a
Nash equilibrium [14].
It is not obvious that by making high-priority transfer more
expensive than low-priority transfer the voice customers will
use the high-priority class and the data customers will use the
low priority class; this strongly depends on the price difference
between the queues, and the delay performance of both queues.
This statement can be made more precise as follows. Let
for both types of traffic the mean delay determine the utility
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experienced by the users. Now the utility curves for data and
voice are denoted by ud(·) and uv(·), respectively, and are
decreasing in their argument, i.e., the mean delay. Clearly,
this mean delay is affected by the number of customers of
both types who join both service classes. Suppose that data
(voice) customers are assigned to the low-(high-)priority class,
leading to mean delays EDL and EDH, respectively. Assume
that customers are ‘infinitely divisible’, i.e., we do not restrict
ourselves to integer numbers of customers. Then we have a
Nash equilibrium if

ud(EDL) − pL ≥ max {ud(EDH) − pH, 0} ;
uv(EDH) − pH ≥ max {uv(EDL) − pL, 0} . (1)

Literature. The problems of price selection and incentive-
compatibility in priority queues were dealt with in Mendelson
and Whang [10]. They consider the special case in which the
penalty functions — which can be interpreted as minus the
utility functions — are linear in the mean delays. Conditions
(1) become

vd · EDL + pL ≤ min {vd · EDH + pH, 0} ;
vv · EDH + pH ≤ min {vv · EDL + pL, 0} .

In [10] prices are derived which are optimal and incentive
compatible: the prices maximize the system’s ‘net value’,
where the choice what class to join is left to the individual
users (and the solution is a Nash equilibrium). Importantly,
[10] shows that the optima for dedicated classes and open
classes coincide.
We believe that some aspects of the model of [10] do not apply
to the situation of competing data and voice users described
above. In the first place, clearly the choice of the penalty
functions in [10] is restrictive. As argued above, for low values
of the delay the delay-sensitive voice users have a higher utility
than the delay-tolerant, whereas for high delay the opposite
holds. This cannot be modeled in the framework of [10], as
it is not clear whether vd should be larger than vv or vice
versa. In other words, the utility curves (and hence the penalty
functions) should not have a monotonous relation: they should
intersect.
Another interesting approach to service differentiation can be
found in Odlyzko [11], [12]: he proposes to offer multiple
qualities by using multiple logically separated networks with
different prices. The idea is that the expensive network attracts
the delay-sensitive users, whereas the delay-tolerant users opt
for the cheap network. Using game-theoretic techniques, [2]
argues that this mechanism, known as Paris Metro Pricing,
does not work if there are multiple competing providers: in
order to maximize profits the providers rather focus on one
user type. Principles behind congestion pricing are given in,
e.g., [3], [6]; the former reference explicitly covers hetero-
geneous users. There are many references with more practical
reflections on pricing in multiservice networks, see for instance
[1], [15], and several articles in [8].

Contribution and organization. This paper looks at the
situation in which the utility curves do intersect: for ED ∈
(0, 1) it holds that uv(ED) > ud(ED), whereas for ED > 1

the opposite holds: ud(ED) > uv(ED). First we look at the
situation in which there are large populations of ‘potential’
voice and data users sharing a FIFO queue. We see that,
depending on the value of the link speed µ, the network popu-
lation will consist of just one class. For small µ (i.e., the link is
relatively slow) data will dominate, whereas for fast links voice
will push aside data. This situation is considered in Section II.
We focus on prices that maximize the provider’s profit, which
is slightly different from the ‘net value’ maximization problem
solved in [9], [10] (cf. social welfare maximization).
An important conclusion of our paper is that under our
utility curves the solutions of the open-classes model and the
dedicated-classes model do not coincide (which did hold in the
setting of [10]). Section III analyzes the profit maximization
problem for the model with dedicated classes, whereas Section
IV focuses on the situation with open classes. As could be
expected, Section 4 is more involved: the customers have more
options, and therefore the incentive-compatibility requirement
is more involved. We find that, depending on the value of the
link rate µ, different regimes are optimal: for small µ only data
users will be present, for moderate µ the high-priority class is
used by voice and the low-priority class by data, whereas for
large µ voice users dominate.
Strikingly, even in the cases where only one type of traffic is
present (i.e., small and large µ), it is optimal (i.e., profit max-
imizing) to use both the high-priority and low-priority queue.
In other words, even for homogeneous users it is beneficial
to introduce service differentiation (and price differentiation).
This somewhat counterintuitive result is further explained in
Section V. This section also contains a discussion on the
specific shape of the utility function, as well as a numerical
example.
The paper is concluded by a model in which throughput
(rather than packet delay) is the main performance measure.
We consider a stream of jobs that is served according to
the processor sharing discipline [5, Ch. IV]. For a job of
given size x, we can (given the load of the queue and the
service speed) compute the required transmission time, and
hence the throughput during the transmission. The utility is
an increasing function of the throughput; we assume that the
utility curve Ux(·) is parametrized by the job size x. Section
VI analyzes the situation in which a volume charge is imposed
on the jobs (i.e., a fixed price per byte). It shows that under
specific assumptions on the ordering of the utility curves, it is
beneficial to discriminate the jobs on the basis of their size:
if Ux(·) decreases in x, the small jobs (usually referred to as
web mice) are preferred over the larger jobs (elephants).

II. NO SERVICE DIFFERENTIATION –
TRAGEDY OF THE COMMONS

Data and voice users – utility. Consider a system with an
infinite population of (potential) customers. The utility they
get depends on the level of congestion. Obviously, generally
speaking, the larger the number of users in the network, the
lower the utility. Throughout this paper we will use the mean
packet delay, ED, as the measure of congestion, unless stated
otherwise.
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The price per packet transmission is p. Customers want to use
the service as long as utility minus price – or compensated
utility – is positive. When customers join the level of conges-
tion increases. In other words, customers join as long as the
compensated utility is positive, cf. [9].
A complication is that we have two types of users. In the first
place there are users who strongly prefer low congestion or,
equivalently, low packet delay. We will refer to these users as
to voice users. On the other hand, there are users who do not
mind so much about the delay: they assign less utility to low
delay, but more utility to high delay compared to voice users.
We call these customers data users. To model these specific
preferences, we define the (compensated) utility curves of both
types of users by

Ud(ED) := ud(ED) − p, with ud(y) := y−αd ;

Uv(ED) := uv(ED) − p, with uv(y) := y−αv ,

with 0 < αd < αv. Notice that both expression are equal for
ED = 1.

A system without service differentiation. Both data and
voice users generate information packets that they feed into
the system. Each data (voice) user generates packets at rate
λd (λv, respectively). In this section we let both types of
customers use a single server queue that does not make any
distinction between the packets of both sorts, a FIFO queue.
We assume that the service times of the individual packets are
i.i.d. exponentially distributed random variables, with mean
µ−1.
In an M/M/1 queue, with N (independent) customers that
generate packets according to a Poisson process with rate λ,
and service times that are i.i.d. exponential with mean µ−1,
the mean delay is

ED =
1

µ− λN ,

provided that λN < µ [5]. We now compute how many users
of each type will subscribe to the network, as a function of
the packet transmission price p.

Equilibrium for fixed price. Consider first two hypothetical
cases.

• Suppose there are only data users. They enter as long as
their (compensated) utility is non-negative. For simplicity,
we don’t restrict ourselves to an integer number of
customers. It is not hard to show that this number equals

Nd(p) =
µ− αd

√
p

λd
. (2)

This holds if p < µαd ; otherwise Nd(p) = 0.
• Similarly, with only voice users,

Nv(p) =
µ− αv

√
p

λv
.

This holds if p < µαv ; otherwise Nv(p) = 0.
Now consider the situation that both groups are competing for
service. Suppose Nd(p) customers are present, with Nd(p)
given by (2). We may ask ourselves if there is any incentive

for voice users to join? Notice that the utility an infinitesimally
small voice user would experience is

Uv :=
(
µ− λd

(
µ− αd

√
p

λd

))αv

− p = pαv/αd − p.

Using that αv > αd, it is easily seen that if p > 1 this number
is positive, so voice users would join. If p < 1 there is no
incentive for voice users to enter when Nd(p) data users are
present. Conversely, if Nv(p) voice customers are present, data
users join if and only if p < 1. In fact we have found a Nash
equilibrium [14].

Tragedy of the commons. From the above, we conclude that
if prices are low, data users dominate over voice users; the
opposite happens when prices are high.
This describes, albeit it in a stylized sense, the current situation
in the Internet. Prices are low, or, more precisely, there is a
usually a flat fee, i.e., the amount of money charged does not
depend on usage. Customers who require low packet delay
(voice) are excluded. In fact, so many delay-indifferent users
join, that the congestion is unacceptably high for the delay-
averse users. This phenomenon is commonly referred to as the
tragedy of the commons [4].

The price selection problem. The network operator will
choose the price such that profit is maximized. The customers
pay for every packet they transmit. We define profit as the
expected number of packets sent (by the users who subscribe
to the network) per unit time, multiplied by the price per
packet. From the above, this profit function Π(p, µ), for a
given price p > 0 and service rate µ, reads{
λd ·Nd(p) · p = fd(p) :=

(
µ− αd

√
p
)
p if p ∈ (0, 1];

λv ·Nv(p) · p = fv(p) :=
(
µ− αv

√
p
)
p if p ∈ (1,∞).

Notice that in fact this profit function Π(·, ·) should have been
decreased by the provider’s costs. Important components of
these costs are

• The service costs, for instance the costs related to the
billing and invoicing process. These are increasing in the
usage (most notably the numbers of customers N ). We
neglect these costs, as taking them into account does not
really provide additional insight, whereas it makes the
resulting expressions less explicit.

• The equipment costs, i.e., the costs of (the purchase of)
the router. These are increasing in the link rate µ. We
assume that the time scale on which the provider can
adapt his capacity µ is relatively long, so µ is not a
decision variable.

Hence the provider wishes to maximize Π(p, µ) over p ≥ 0.
Notice that this function is continuous in p = 1.

Proposition 2.1: The profit is given by Π�(µ) :=

max
p>0

Π(p, µ) = max
{
pd

(
µ

αd + 1

)
, pv

(
µ

αv + 1

)}
;

pd :=
(
µαd

αd + 1

)αd

; pv :=
(
µαv

αv + 1

)αv

Proof. We prove this proposition in two steps.
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STEP 1. We first derive an elementary expression for the profit
as a function of service rate µ.

• It is not hard to verify that, on p ∈ R+, the function fd(p)
attains its maximum at p = pd. Notice that pd is indeed
smaller than µαd , as desired. Hence, with µd := 1+αd

−1,

max
p∈[0,1]

Π(p, µ) =

{
fd(µ) := pαd

d

(
µ

αd+1

)
if µ < µd;

µ− 1 otherwise.

• Similarly, on R+, fv(p) is maximized by p = pv , which
is smaller than µαv . Hence, with µv := 1 + αv

−1,

max
p∈[1,∞)

Π(p, µ) =

{
fv(µ) := pαv

v

(
µ

αv+1

)
if µ > µv;

max{0, µ− 1} otherwise.

Recalling that µv < µd; we get that Π�(µ) = g(µ), with

g(µ) :=




max {µ− 1, fd(µ)} if 0 ≤ µ ≤ µv;
max {fd(µ), fv(µ)} if µv ≤ µ ≤ µd;
max {0, µ− 1, fv(µ)} if µ ≥ µd.

STEP 2. We now prove the following two properties.
• It is trivial to show that fd(µd) = µd − 1. Also, f ′d(µ) =
pαd

d < 1 on [0, µd). So both curves cannot intersect. This
proves that fd(µ) ≥ µ− 1 for µ ∈ [0, µd].

• Also fv(µv) = µv − 1. As, on [µv,∞), it holds that
f ′v(µ) = pαv

v > 1, this yields fv(µ) ≥ µ− 1.
We arrive at Π�(µ) = g(µ) = max {fd(µ), fv(µ)} . ✷

The following corollary states that for small (large) link
rates data users (voice users, respectively) dominate. We can
compute the critical service rate µ� at which the system
changes from the data-regime to the voice-regime.

Corollary 2.2: With µ� ∈ [µv, µd] defined by

µ� :=
((

αd

αd + 1

)αd

·
(
αv + 1
αv

)αv

· αv + 1
αd + 1

) 1
αv−αd

,

for all
• µ < µ� it holds that fd(µ) > fv(µ). This implies that
λdNd = µ/(αd + 1) > 0 and Nv = 0, and the price per
packet transmission p equals pd < 1;

• µ > µ� it holds that fd(µ) < fv(µ). This implies that
Nd = 0 and λvNv = µ/(αv + 1) > 0, and the price per
packet transmission p equals pv > 1.

III. SERVICE DIFFERENTIATION BY PRIORITY QUEUEING:
DEDICATED CLASSES

In the previous section we concluded that – in case of
heterogeneous traffic classes – the network will serve only
one of them. It depends on the specific values of the link
rate µ and the ‘utility-parameters’ αd and αv which type of
customers will dominate. In this section we concentrate on
ways to satisfy the demands of both classes. Adhering to the
principles explained in [13], we do this by using a priority
queueing system. We will argue that this solution is beneficial
for the network (as its profit increases compared to the FIFO
solution), the dominating class (as the service will be offered
against a lower price), and the excluded class (as it will receive
service).

A priority queueing model; dedicated and open classes.
Let us assume that we are in the regime that µ < µ�, so in
a FIFO system the voice users would not get any service. We
now suppose that they get strict service priority over the data
sources. We assume that the voice users are directed to the high
priority queue, and the data users to the low priority queue
We call this a model with dedicated classes; this is in contrast
with the model with open classes, in which the customers
themselves choose the most attractive queue (based on the
expected delays in both queues and the respective prices). We
return to the issue of dedicated and open classes in Section IV.
Standard queueing theory [5] gives that the mean packet delay
for both classes is given by EDv = (µ− λvNv)−1 and

EDd =
µ

(µ− λvNv)(µ− λvNv − λdNd)
.

Here we assume that the service of a low-priority packet can
be interrupted when high-priority packets arrive; the service is
resumed as soon as the high-priority queue gets empty.

Equilibrium for fixed price. Suppose a packet in the high
priority queue is charged an amount pH, and a packet in
the low priority queue pL. Clearly, as seen in Section II, the
number of voice users joining is given by

Nv(pL, pH) =
µ− αv

√
pH

λv

if pH < µαv and 0 otherwise. Similarly, data users join as
long as their compensated utility exceeds 0. HenceNd(pL, pH)
equals

λd

−1
(

αv
√
pH − µ αd

√
pL/ αv

√
pH

)
if pL < p

2αd/αv

H /µαd

and pH ≤ µαv ;
λd

−1
(
µ− αd

√
pL

)
if pL < µαd

and pH > µαv ;
(3)

and 0 otherwise. Notice that Nd(pL, pH) decreases in pL and
increases in pH, as expected.

The price selection problem. Again the provider wants to
achievemaximum profit. Notice that the priority system cannot
lead to lower profits than the FIFO system. The reason for this
is that the FIFO queue is a special case of the priority queue
– this is seen by taking pH ≡ µαv or pL = p2αd/αv

H /µαd .
To obtain the optimal prices, we have to solve

Π�
D(µ) = max

pL>0,pH>0
ΠD(pL, pH, µ), with

ΠD(pL, pH, µ) := λd ·Nd(pL, pH) · pL + λv ·Nv(pL, pH) · pH;

here the subscript ‘D’ denotes the regime of dedicated classes.
Let us for the moment assume that both services are in a
regime in which customers get service. We get

max
pL>0,pH>0

(µ− αv
√
pH)pH +

(
αv
√
pH − µ

αd
√
pL

αv
√
pH

)
pL. (4)

We compute this maximum in two steps. First we find the op-
timizing value of pL for given pH. Subsequently, we maximize
over pH.
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STEP 1. First find the optimal pL for a given value of pH.
Differentiation to pL and equating to 0 yields

pL(pH) =
(

αd

µ(αd + 1)

)αd

p
2αd/αv

H ,

which is indeed smaller than p2αd/αv

H /µαd . Directly from (3)
and (4), we get that Π�

D(µ) = max0<pH≤µαv g(pH), with
g(p) :=

(µ− αv
√
p) p+

(
αd

µ(αd + 1)

)αd

· 1
αd + 1

· p(2αd+1)/αv . (5)

STEP 2. Now we find the profit-maximizing value of pH. It is
straightforward that g(0) = 0 and g′(0) > 0. It is not hard to
verify that the function g′′(·) changes sign at

p̄ :=

((
µ(αd + 1)

αd

)αd

· αd + 1

2αd + 1
· αv + 1

2αd − αv + 1

) αv
2αd−αv

if 2αd + 1 > αv; if 2αd + 1 ≤ αv there is not such a point.
More detailed inspection yields the following corollary.

Corollary 3.1: The function g(·), as defined in (5), increases
in the origin. Also,

• if 2αd < αv < 2αd + 1 the function g(·) shifts from
convexity to concavity at p̄;

• if 2αd > αv the function g(·) shifts from concavity to
convexity at p̄;

• if 2αd + 1 ≤ αv the function g(·) is concave on [0,∞).
We are now in a position to characterize the optimizing pH;
we do this in Lemma 3.2 and Lemma 3.3. We first define

µ�
− :=

((
αd

αd + 1

)αd

· 2αd + 1
αd + 1

) 1
αv−αd

.

It is easy to verify that µ�
− < µ

� and that µ�
− < 1.

Lemma 3.2: For µ ∈ (µ�−, µ�) the function g(·) is first
increasing and then decreasing on the interval p ∈ [0, µαv ].

Proof. Applying Corollary 3.1, it suffices to show that
g′(µαv) < 0 for µ ∈ (µ�−, µ�). This is a matter of straightfor-
ward calculus. ✷

Lemma 3.3: For µ ∈ (0, µ�−) the function g(·) is non-
decreasing on the interval p ∈ [0, µαv ].

Proof.We prove this lemma by considering the cases that 2αd

is smaller and larger than αv separately.
• First observe that for 2αd < αv , Corollary 3.1 entails that
g′(µαv) > 0 for µ ∈ (0, µ�

−) implies the stated. This is easy
to verify.
• Now consider 2αd > αv. Write for ease p ≡ βαvµαv .
We have to show that g′(βαvµαv ) ≥ 0 for all β ∈ [0, 1].
Elementary calculations give that equivalently

(β − (1 − β)αv) · µαv−αd ≤(
αd

αd + 1

)αd

· 2αd + 1
αd + 1

· β2αd−αv+1, (6)

for all β ∈ [0, 1] and µ ∈ (0, µ�
−). The stated is clearly true

for β < βv := αv/(αv + 1); in this case the left hand side of
(6) is negative, whereas the right hand side is positive.
Now concentrate on β ∈ [βv, 1]. Because the left hand side
of condition (6) is increasing in µ, we have to verify it only
for µ = µ�

−. For this value of µ, the condition reduces to
η(β) := (β − (1 − β)αv) − β2αd−αv+1 ≤ 0. As η(βv) =
−β2αd−αv+1

v < 0 and η(1) = 0, it is sufficient to prove that
η′(β) ≥ 0 for β ∈ [βv, 1]. Since 2αd > αv,

η′(β) = 1 + αv − (2αd − αv + 1) · β2αd−αv

≥ 1 + αv − (2αd − αv + 1) = 2(αv − αd) > 0.

This proves the lemma. ✷

The following proposition follows immediately from the Lem-
mas 3.2 and 3.3.

Proposition 3.4: Assume µ ∈ (0, µ�) and suppose that the
provider can prioritize voice. We distinguish between two
cases.

• µ ∈ (0, µ�−): A FIFO queue is optimal for the provider.
Only data users enter.
On the interval [0, µαv ], the function g(·) attains its
maximum at the upper limit, µαv . The profit-maximizing
prices are

pH := µαv and pL :=
(
µαd

αd + 1

)αd

.

• µ ∈ (µ�−, µ�): The provider gives voice priority over data.
Both types of users enter.
On the interval [0, µαv ], the function g(·) attains its
maximum in the interior; there is a unique p̄H ∈ [0, µαv ]
with g′(p̄H) = 0. The profit-maximizing prices are

pH := p̄H and pL :=
(

αd

µ(αd + 1)

)αd

p̄
2αd/αv

H .

The proposition implies that for µ ∈ (0, µ�−) the provider
maximizes profit by having just a FIFO queue. Prices will
be relatively low, so that only data users enter the system.
In fact, the system is so slow that prioritizing voice does not
help increasing the provider’s profit. For µ ∈ (µ�

−, µ
�) profit

is increased by giving voice priority over data.

A similar analysis can be done for the situation in which voice
is dominant, i.e., µ > µ�. Again we find that it is not always
benificial to prioritize traffic: for very fast link rates a ‘voice-
only solution’ generates higher profit; there is a threshold link
speed µ�

+.

IV. SERVICE DIFFERENTIATION BY PRIORITY QUEUEING:
OPEN CLASSES

In the previous section, an essential assumption was that the
network (i.e., the provider) selects the queue for both types of
users; more specifically: the voice customers are forced to use
the high-priority queue, whereas the data users are directed
to the low-priority queue. In other words: we focused on the
situation of dedicated classes.
The opposite situation relates to open classes. There the
provider offers a network with a certain queueing discipline
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and prices, and the customers have to decide themselves what
class to join. In the situation of a priority queue, the customers
can select the queue (or decide not to join any queue at all)
based on the prices of high priority and low priority pH and
pL, and the expected quality of service (i.e., delay): they select
the queue with the highest compensated utility.
It is easy to check that if pH < 1 the high priority queue
will be used exclusively by data users, and if pH > 1 by
voice users; the same holds for the low priority queue. The
procedure of Section III does not guarantee that pL < 1 and
pH > 1. For that reason, if the customers were to choose the
most attractive queue themselves, the solution of Proposition
3.4 would not persist. Put in a game-theoretic language [14]:
unilateral changes may lead to increase of the compensated
utility, and for that reason the solution is possibly not a Nash
equilibrium. If for instance both pL and pH are smaller than
1, in the model with open classes, the data users would drive
away the voice users from both queues.

Equilibrium for fixed price. Like in Section II and III, we
first analyze what the network population is for given prices.
For all combinations of prices (pL, pH) we may wonder what
kind of situation will arise.
• Trivially if both prices are smaller (larger) than 1, the
network will be populated exclusively by data (voice) users.
Hence in this regime both types of users will not coexist in the
system. If both prices are smaller than 1, the profit function
reads

ΠO(pL, pH, µ) := (µ− αd
√
pH)pH +

(
αd
√
pH − µ αd

√
pL
pH

)
pL,

to be maximized over the set R− with prices pL < 1 and
pH < 1 such that pL ≤ p2H/µαd and pH ≤ µαd . The subscript
‘O’ refers to the situation of open classes. If both prices are
larger than 1, αd is replaced by αv:

ΠO(pL, pH, µ) := (µ− αv
√
pH)pH +

(
αv
√
pH − µ αv

√
pL
pH

)
pL,

to be maximized over R+ with prices pL > 1 and pH > 1
such that pL ≤ p2H/µαv and pH ≤ µαv .
• First consider pL > 1 and pH < 1. Hence, the low-priority
queue will be used by voice customers, and the high-priority
queue by data customers. Similarly to the analysis of Section
III, both types of users are present if

pH < µ
αd and pL <

p
2αv/αd

H

µαv
. (7)

If µ is smaller than 1, suppose that the first condition in (7)
is met. Then the second requirement is violated:

p
2αv/αd

H

µαv
<
µ2αv

µαv
= µαv < 1.

If µ is larger than 1, the first condition in (7) is automatically
satisfied, whereas the second is violated: p2αv/αd

H /µαv <
µ−αv < 1.
• The remaining regime is pL < 1 and pH > 1. It is not hard
to verify that in this case the an equilibrium is possible in
which voice users (in the high-priority queue) and data users

(in the low-priority queue) coexist only if µ > 1. We have to
maximize ΠO(pL, pH, µ) :=

(µ− αv
√
pH)pH +

(
αv
√
pH − µ

αd
√
pL

αv
√
pH

)
pL,

over a region R0 that is given by

pL ∈
(

0,min

{
1,
p
2αd/αv

H

µαd

})
, pH ∈ (1, µαv ]. (8)

The price selection problem. ¿From the above, it is clear that
we have to evaluate

Π�
O(µ) := max

{
Π�

O,−(µ),Π�
O,+(µ),Π�

O,0(µ)
}
,

with Π�
O,i(µ) := max(pL,pH)∈Ri

ΠO(pL, pH, µ), for i ∈
{−,+, 0}.We now compute these three maxima subsequently.
First three auxiliary results are proven in Lemmas 4.1, 4.2 and
4.3.

Lemma 4.1: Π�
O(µ) is non decreasing and convex in µ.

Proof. It suffices to prove that the Π�
O,i(µ) are non decreasing

and convex in µ, i ∈ {−,+, 0}.
• First notice that ΠO(pL, pH, µ) is linear in µ.
• The Πo(pL, pH, µ) are non decreasing in µ. This is seen
as follows for R0 (a similar reasoning applies to R− and
R+). In R0 the coefficient of µ is given by

pH −
αd
√
pL

αv
√
pH
pL ≥ pH − pαd/αv

H > 0,

as follows from pH ≥ 1 in conjunction with

pL ≤ p2αd/αv

H /µαd = pαd/αv

H · (pαd/αv

H /µαv ) ≤ pαd/αv

H .

As the Π�
O,i(µ) are maxima (over (pL, pH) ∈ Ri) of non

decreasing, linear (and hence convex) functions, they are non
decreasing and convex as well. ✷

Lemma 4.2: For all x > 0,

f(x) :=
(
x

x+ 1

)x

· 2x+ 1
x+ 1

< 1.

Proof. Some tedious calculus yields for x > 0,

f ′(x) = f(x) ·
(

1
x+ 1

+ log
(
x

x+ 1

))

< f(x) ·
(

1
x+ 1

+
(
x

x+ 1
− 1

))
= 0;

here the standard inequality log x < x − 1 is applied, in
conjunction with f(x) > 0 for x > 0. The stated now follows
from f(0) = 1 and f ′(x) < 0 for all x > 0. As an aside we
remark that f(x) → 2/e for x→ ∞. ✷

Lemma 4.3: For all µ > 0 and α > 0, the function f̄(·)
defined by

f̄(x) := (µ− α
√
x)x+ α

√
x− µ

α
√
x

is concave on [1,∞). In addition, f̄ ′(µα/2) > 0.
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Proof. Differentiating twice yields that f̄ ′′(x) equals

−x
1/α−2

α

(
x− 1
α

+ x+ 1
)
− µ
α
·
(

1
α

+ 1
)
· x−1/α−2.

Notice that this is negative for x > 1, which proves the first
part of the lemma.
Furthermore, we have to prove that

α√
µ
f̄ ′

(
µα/2

)
= α

√
µ+

2
µα/2

− α− 1 > 0. (9)

This inequality clearly holds for µ = 1. The second claim in
the lemma follows from the fact that (9) increases in µ, as is
checked easily. ✷

A. Maximization over R−
The maximum over R− reduces to maximizing g−(pH) over
0 < pH ≤ min{µαd , 1}, where

g−(p) :=
(
µ− p1/αd

)
p+

(
αd

µ(αd + 1)

)αd

· 1
αd + 1

·p2+1/αd .

(10)
The price for the low priority service is given by

pL(pH) = βd(µ)p2H, with βd(µ) :=
(

αd

µ(αd + 1)

)αd

.

Now distinguish between µ smaller and larger than 1.

• Case A1: µ ∈ (0, 1]. In this case the optimum has to be
computed over the interval (0, µαd ]. Now g′−(0) > 0 and
g′−(µαd) = (f(αd) − 1)µ/αd < 0 follow immediately from
Lemma 4.2. It also follows that g−(·) is concave on (0, µαd ],
as g′′−(p) equals

αd + 1
α2

d

· p1/αd−1

((
αd

µ(αd + 1)

)αd

· 2αd + 1
αd + 1

· p− 1
)
,

which is negative for all p ∈ (0, µαd ], again invoking Lemma
4.2.

� For µ ∈ (0, 1] the optimum over R− is reached at a price p̄H
in the interior of (0, µαd ]; this p̄H is the unique solution of
g′−(p) = 0 in (0, µαd ]. Also, p̄L = βd(µ)p̄2H.

• Case A2: µ ∈ (1,∞). Now the optimum has to be
computed over the interval (0, 1]. Recall that g−(·) is concave
on (0, µαd ], and g′−(0) > 0 and g′−(µαd) < 0. Hence the
optimum is reached at pH = 1 if g′−(1) ≥ 0, and in the
interior of (0, µαd ] if g′−(1) < 0. Denote ζ−(µ) := g′−(1) =

µ− 1 +
1
αd

((
αd

µ(αd + 1)

)αd

· 2αd + 1
αd + 1

− 1
)
.

Now note that ζ−(1) = (f(αd) − 1)/αd < 0 (apply Lemma
4.2!), and ζ−(µ) → ∞ as µ → ∞. Applying Lemma 4.2
again, together with the fact that µ > 1, we see that ζ−(·)
increases:

ζ′−(µ) = 1 − µ−αd−1 ·
(
αd

αd + 1

)αd

· 2αd + 1
αd + 1

> 0.

� Let ν− be the unique solution to ζ−(µ) = 0 in (1,∞). For
µ ∈ (1,∞) the optimum over R− is reached at a price p̄H

(i) in the interior of (0, 1] if µ ∈ (1, ν−); this p̄H
is the unique solution of g′−(p) = 0 in (0, 1]. Also,
p̄L = βd(µ)p̄2H;
(ii) equal to 1 if µ ∈ (ν−,∞). Also, p̄L = βd(µ).

B. Maximization over R+

The region R+ is empty if µ ≤ 1; therefore concentrate on
µ > 1. Then pL(pH) = max

{
1, βv(µ)p2H

}
, with

βv(µ) :=
(

αv

µ(αv + 1)

)αv

.

With µv := 1 + α−1
v , we consider two cases.

• Case B1: µ ∈ (1, µv). It is not hard to see that the
optimal pL equals 1. The maximizing pH should be found
from maxµαv/2<pH<µαv ḡ+(pH), with

ḡ+(p) := (µ− αv
√
p) p+ αv

√
p− µ 1

αv
√
p
.

By Lemma 4.3, ḡ+(·) is concave on (µαv/2, µαv), and
ḡ′+(µαv/2) > 0. Hence, the maximum is attained in µαv if
ḡ′+(µαv ) > 0; otherwise it is attained in the interior of the
interval. Define

ζ+(µ) := ḡ′+(µαv ) =
1
αv

(
µ−αv (µ+ 1) − µ) .

First observe that ζ+(1) = α−1
v > 0, and that ζ+(µv) =

(f(αv) − 1)µv/αv < 0 (Lemma 4.2). Elementary calculus
shows that ζ+(·) decreases on [1, µv) is equivalent to

(1 − αv)µ− αv ≤ µαv+1.

This last inequality follows from the fact that there is equality
at µ = 1, in conjunction with the fact that the derivative of
the right hand side (i.e., (αv +1)µαv ) majorizes the derivative
of the left hand side (i.e., 1−αv) for all µ > 1. We arrive at:

� Let ν+,1 be the unique solution to ζ+(µ) = 0 in (1, µv). For
µ ∈ (1, µv) the optimum over R+ is reached at a price p̄H

(i) equal to µαv if µ ∈ (1, ν+,1). Also, p̄L = 1;
(ii) in the interior of [µαv/2, µαv ] if µ ∈ (ν+,1, µv);
this p̄H is the unique solution of ḡ′+(p) = 0 in
[µαv/2, µαv ]. Also, p̄L = 1.

• Case B2: µ ∈ (µv,∞). It turns out that

pL(pH) =
(

αv

µ(αv + 1)

)αv

p2H if pH ∈ [q+(µ), µαv ],

with q+(µ) :=
(
µ(αv + 1)
αv

)αv/2

,

and pL(pH) = 1 if pH ∈ [µαv/2, q+(µ)]. Define g+(·) as in
(10), but with αd replaced by αv; the concavity of g+(·) and
g′+(µαv ) < 0 follow like in Case A1. We have to solve

max
{

max
µαv/2<pH<q+(µ)

ḡ+(pH), max
q+(µ)<pH<µαv

g+(pH)
}
.

From (i) the concavity of both functions, (ii) ḡ+(µαv/2) >
0, (iii) g′+(µαv ) < 0, and (iv) ḡ′+(q+(µ)) = g′+(q+(µ)), we
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derive that the optimal pH lies in (q+(µ), µαv ) if g′+(pH) > 0,
whereas pH ∈ (µαv/2, q+(µ)) otherwise. Define ξ+(µ) :=
g′+(q+(µ)) =

µ−
(
αv + 1
αv

)3/2√
µ+

(
αv

µ(αv + 1)

)(αv−1)/2

· 2αv + 1
αv + 1

· 1
αv
.

We now prove that ξ+(µ) = 0 has a unique zero in (µv,∞). To
this end, first observe that that ξ+(µv) = (f(αv)−1)µv/αv <
0 (due to Lemma 4.2) and ξ+(µ) → ∞ as µ→ ∞. Also, using
Lemma 4.2, it is straightforward to prove that ξ′′+(µv) > 0.
If αv > 1 the function ξ′′+(·) does not change sign at all; so
ξ+(·) is convex. Therefore concentrate on αv ≤ 1. In this case,
ξ′′+(·) changes sign at

µ̄v :=
αv

αv + 1
αv

√(
2αv + 1
αv + 1

)2

· (1 − αv)2.

Some calculus gives that µ̄v < µv reduces to

(1 − αv) ·
(
αv

αv + 1

)αv

· 2αv + 1
αv + 1

< 1,

which holds due to Lemma 4.2. We conclude that ξ+(·) is
convex on the domain [µv,∞). Notice that a function F (·),
convex (or concave) on interval [a, b], has exactly one zero in
this interval if F (a)·F (b) < 0. We have proven the following:

� Let ν+,2 be the unique solution to ξ+(µ) = 0 in (µv,∞). For
µ ∈ (µv,∞) the optimum over R+ is reached at a price p̄H

(i) in the interior of [µαv/2, q+(µ)] if µ ∈ (µv, ν+,2);
this p̄H is the unique solution of ḡ′+(p) = 0 in
[µαv/2, q+(µ)]. Also, p̄L = 1;
(ii) in the interior of [q+(µ), µαv ] if µ ∈ (ν+,2,∞);
this p̄H is the unique solution of g′+(p) = 0 in
[q+(µ), µαv ]. Also p̄L = βv(µ)p̄2H.

C. Maximization over R0

Again we first perform the optimization over pL for given pH.
It is straightforward to obtain that the optimum is attained at

pL(pH) = min
{
1, βd(µ)p

2αd/αv

H

}
.

With µd := 1 + α−1
d , we distinguish two cases.

• Case C1: µ ≤ µd. It is not hard to verify that for these µ it
holds that(

αd

µ(αd + 1)

)αd

p
2αd/αv

H ≤ 1 for all pH ∈ (1, µαv ],

so that the optimization reduces to max1<pH≤µαv g0(pH),
where g0(·) is defined as g(·) in (5). Using that µ�

− < 1 < µ,
and invoking Proposition 3.4, we know that g0(·) first increases
and then decreases on (0, µαv ]. In other words: a price pH > 1
is optimal iff ζ0(µ) := g′0(1) =

µ− 1 +
1
αv

((
αd

µ(αd + 1)

)αd

· 2αd + 1
αd + 1

− 1
)
> 0; (11)

otherwise the maximum is attained at pH = 1.

For µ = 1, condition (11) is not met; this is because of Lemma
4.2. Notice that

ζ0(µd) =
(

1
αd

− 1
αv

)
+

1
αv

·
(
αd

αd + 1

)2αd

· 2αd + 1
αd + 1

> 0,

and ζ′0(µ) > 0 for all µ > 1. Hence, ζ0(·) has a unique root
in (1, µd).

� Let ν0,1 be the unique solution to ζ0(µ) = 0 in (1, µd). For
µ ∈ (1, µd) the optimum over R0 is reached at a price p̄H

(i) equal to 1 if µ ∈ (1, ν0,1). Also, p̄L = βd(µ);
(ii) in the interior of [1, µαv ] if µ ∈ (ν0,1, µd); this
p̄H is the unique solution of g′0(p) = 0 in [1, µαv ].
Also, p̄L = βd(µ)p̄

2αd/αv

H .

• Case C2: µ ∈ (µd,∞). Then βd(µ)p
2αd/αv

H ≤ 1, iff

pH ≤ q0(µ) :=
(
µ(αd + 1)
αd

)αv/2

.

Notice that q0(µ) is smaller than µαv (as follows from µd =
(αd + 1)/αd < µ). So we get the optimization

max
{

max
1<pH≤q0(µ)

g0(pH), max
q0(µ)<pH≤µαv

ḡ0(pH)
}
,

where ḡ0(·) = ḡ+(·). Define ξ0(µ) := g′0(q0(µ)) =

µ− αv + 1

αv
·
√

µ(αd + 1)

αd
+

(
αd

µ(αd + 1)

)(αv−1)/2

· 2αd + 1

αd + 1
· 1

αv
.

With an analysis that is analogous to Case B2, we prove:

� Let ν0,2 be the unique solution to ξ0(µ) = 0 in (µd,∞). For
µ ∈ (µd,∞) the optimum over R0 is reached at a price p̄H

(i) in the interior of [1, q0(µ)] if µ ∈ (µd, ν0,2); this
p̄H is the unique solution of g′0(p) = 0 in [1, q0(µ)].
Also, p̄L = βd(µ)p̄

2αd/αv

H ;
(ii) in the interior of [q0(µ), µαv ] if µ ∈ (ν0,2,∞);
this p̄H is the unique solution of ḡ′0(p) = 0 in
[q0(µ), µαv ]. Also, p̄L = 1.

Characterization of the solution. We are now in a position
to prove that there are two possible situations. In the first
there are service rates ν�

− and ν�
+ such that (for the profit-

maximizing prices) voice will dominate in the network for
all µ < ν�

−, data will dominate for µ > ν
�
+, and there is a

‘mixed scenario’ (with priority for voice) for µ ∈ (ν�
−, ν

�
+).

The second possibility data dominates for µ smaller than some
ν�, and voice dominates otherwise.

Theorem 4.4: For µ < νmin := min{ν0,1, ν+,2}, ‘data-only’
maximizes the profit: Π�

O(µ) = Π�
O,−(µ); for µ > νmax :=

max{ν−, ν0,2}, ‘voice-only’ maximizes the profit: Π�
O(µ) =

Π�
O,+(µ).

Proof. First notice that ν0,1 < ν0,2, implying that νmin <
νmax. The stated follows immediately from the inequalities (i)
Π�

O,0(µ) ≥ Π�
O,−(µ) for µ > ν−, (ii) Π�

O,0(µ) ≥ Π�
O,+(µ)

for µ < ν+,2, (iii) Π�
O,0(µ) ≤ Π�

O,−(µ) for µ < ν0,1, and
(iv) Π�

O,0(µ) ≤ Π�
O,+(µ) for µ > ν0,2. These inequalities are
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Fig. 1. Profit as a function of link speed, for µ ∈ (0, 4].

almost trivial to prove from the maximizations over R−, R+,
and R0 that were described above.
Consider for instance the first inequality. For µ larger than
ν−, the optimum Π�

O,−(µ) over R− is attained at p̄H = 1
and a p̄L < 1, with profit g−(1). As this price vector lies
on the boundary of R− and R0, it equals g0(1), which is, by
definition, majorized by Π�

O,0(µ). The other inequalities are
proven similarly. ✷

Theorem 4.4 in conjunction with Lemma 4.1 (i.e., the convex-
ity of the functions Π�

O,i(·), with i ∈ {−,+, 0}) implies the
following corollary.

Corollary 4.5: The global profit maximization can be charac-
terized as follows. Two regimes are possible:

• There exist service rates ν�
− and ν�

+ such that

Π�
O(µ) =




Π�
O,−(µ), µ ∈ (0, ν�

−);
Π�

O,0(µ), µ ∈ (ν�
−, ν

�
+);

Π�
O,+(µ), µ ∈ (ν�

+,∞).

• There exists a service rate ν� such that

Π�
O(µ) =

{
Π�

O,−(µ), µ ∈ (0, ν�);
Π�

O,+(µ), µ ∈ (ν�,∞).

V. DISCUSSION AND EXAMPLE

In this section we start by giving a numerical example that
demonstrates the theory of the previous sections. Then we
motivate the somewhat paradoxical fact that in this model it
is beneficial to use both queues, even if the user population
is homogeneous. Finally we provide some reflections on the
utility functions and the queueing model.

Example. This example gives numerical results for the model
with open classes. We choose αv = 2αd = 2. The values of
the ‘critical’ service rates, as introduced in Section IV, are
given by ν− = 1.500; ν+,1 = 1.325; ν+,2 = 2.422; ν0,1 =
1.183; and ν0,2 = 3.948. Applying the inequalities used in the
proof of Theorem 4.4, it is not so hard to prove that, due to
ν0,1 < ν− < ν+,2 < ν0,2, five regimes can be distinguished:

Π�
O(µ) =




Π�
O,−(µ), µ ∈ (0, ν0,1);

max{Π�
O,−(µ),Π�

O,0(µ)}, µ ∈ (ν0,1, ν−);
Π�

O,0(µ), µ ∈ (ν−, ν+,2);
max{Π�

O,0(µ),Π
�
O,+(µ)}, µ ∈ (ν+,2, ν0,2);

Π�
O,+(µ), µ ∈ (ν0,2,∞).

✻

✲
1

1

• •
•

•

•

p̄H

p̄L

Fig. 2. Relation between p̄L and p̄H. The bullets correspond to µ = 1, · · · , 5.

In Figure 1 the three lines depict the maxima over R−, R+,
and R0, respectively. For µ < 1.31 ‘data-only’ is optimal (i.e.,
maximum profit is achieved in R−), for µ > 2.96 ‘voice-
only’ is optimal (i.e., maximum profit is achieved in R+), and
in between a ‘mixed scenario’ – with priority for voice – is
optimal (i.e., maximum profit is achieved in R0). Figure 2
displays the optimizing prices for various values of µ.

A paradox. Consider a single type of traffic, with utility
function U(·); for ease, assume that the packet arrival rate
λ equals 1. U(·) is a positive, decreasing function of ED.
Assume that U(·) has inverse V (·) with derivative V ′(·). Then

NH(pL, pH) = µ− 1
V (pH)

,

under the proviso that V (pH) ≥ µ−1, or pH ≤ U(µ−1).
Similarly,

NL(pL, pH) =
1

V (pH)
− µ · V (pH)

V (pL)
,

requiring that V (pL) ≥ µV 2(pH). So, for a given value of pH,
the largest admissible pL equals p�L(pH) := U(µV 2(pH)). We
get the admissible region

R :=
{
(pL, pH) | pL ≤ U(µV 2(pH)

)
, pH ≤ U(µ−1

)}
.

Notice that for all (pL, pH) ∈ R it holds that pL ≤ pH, due to
the fact that V (·) decreases and

V (pL) ≥ µV 2(pH) ≥ V (pH).

This is of course what was expected: the price of the low-
priority service is lower than the high-priority service.

We have to solve the following maximization problem:

max
pL,pH∈R

pHNH(pL, pH) + pLNL(pL, pH).

Differentiating (for given pL) to pH yields:

M(pL, pH) := NL(pL, pH) + pL · ∂NL

∂pL

= NL(pL, pH) + µpL · V (pH)
V 2(pL)

· V ′(pL).

As N(p�L(pH), pH) = 0, inserting pL = p�L(pH) gives

M(p�L(pH), pH) = µpL · V (pH)
V 2(p�L(pH))

· V ′(p�L(pH));

notice that this quantity is negative, as V (·) is positive and
decreasing, just like its inverse U(·). Apparently M(·, ·) is
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negative in the neighborhood of pL = p�L(pH). In other words:
a value of pL smaller than p�L(pH) gives a higher profit than
p�L(pH) itself. This entails that under the profit-maximizing
prices both queues will be used! In other words: even if
the customers have a homogeneous aversion to delay, it is
beneficial to create performance differentiation. Of course, the
compensated utility at both queues equals 0.

On the choice of the utility curves. The above analysis
(featuring the situation with only one type of users) suggests
that the qualitative results of this paper do not depend critically
on the utility curves chosen. The advantage of the specific
hyperbolic functions, as introduced in Section II, is that almost
all results can be derived explicitly, and hence offer much
insight. A next step that is called for by our results is the
generalization to less specific utility curves. An interesting
question could be: is it possible to characterize the solution
to the profit maximization problem (both for the model with
dedicated classes and the model with open classes), if we
somewhat relax the requirements on the utility curves. Rather
than assuming a hyperbolic shape a priori, we could for
instance consider the class of utility curves that are such that
the voice users appreciate the service more for ED < 1, and
the data users for ED > 1.

On the choice of the queueing model. It can be expected that
our results can be extended to M/G/1 priority systems (rather
than M/M/1), given the results on the mean delay in this type
of networks [5]. Another interesting direction is the extension
of the number of priority classes (i.e., queues). Above, we
already saw that having two queues, rather than just one,
increases the profit (given that there are no costs associated
with having an additional queue), even for homogeneous users.
The next question is, of course, is it beneficial to have even
more queues?We expect that the profit increases as the number
of priority classes increases, but remains bounded. It would be
of interest to verify this conjecture.

VI. COMPETITION BETWEEN ELASTIC FLOWS

This last section focuses on the situation in which the
users’ utility is primarily determined by throughput, rather
than packet delay. One could think of files arriving at a
network node, competing for service. Loosely speaking, in
the Internet the Transfer Control Protocol (TCP) divides the
available capacity equally among the active users. Hence,
during congestion the transmission rate will be low, whereas
jobs can claim a more significant part of the link bandwidth
during more quiet periods. The corresponding type of traffic
is commonly called elastic, as the source transmission rate
adapts to the level of congestion. Due to these properties, the
node can be modeled as an M/G/1 processor sharing queue
[5, Ch. IV], if the jobs arrive according to a Poisson process,
and their sizes are i.i.d. samples (independent of the arrival
process), as argued by Massoulié and Roberts [7].

Where in the model of Sections 2-5 the heterogeneity between
the delay-tolerant and delay-sensitive users played a crucial
role, we here assume that the utility curves depend on the size
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Fig. 3. Load ρ as a function of the price p; the upper (lower) curve
corresponds to exponential (Pareto) files

of the job. The underlying idea here is the following. When
retrieving an extremely large file the user’s expectation of the
throughput will be different than when retrieving small files.
One could imagine that the retrieval of large files (for instance
non-real-time audio and video) usually does not bring about
the expectation of a ‘real-time response’ — this might be in
contrast with the retrieval of smaller files (for instance web
surfing) for which some kind of direct response is required. If
the user preferences are indeed ordered in this way, it would
suggest that the Ux(·) curves are decreasing in x. Loosely
speaking, it would mean that users are willing to pay more
per byte for small jobs than for large jobs.
However, notice that the (decreasing) ordering of the utility
curves suggested above is just one possibility; we emphasize
that the framework below does not require any specific order-
ing.

The parametrization by job size is inspired by a phenomenon
recently observed in traffic measurements: most of the Internet
connections are short in terms of the amount of traffic they
carry (commonly referred to as ‘mice’), while a small fraction
of the connections are carrying a large portion of the traffic
(‘elephants’). If there is no usage charge, the presence of the
(few) long files might deteriorate the performance experienced
by the (many) short files. This gives rise to the idea of some-
how ‘protecting’ the small files by imposing (for instance) a
volume charge (i.e., a fixed price per volume unit, say, byte).

Suppose that, without any pricing, jobs would arrive at the
network node as a Poisson process with rate λ. The job sizes
are i.i.d. samples from a general distribution F (with EF <
∞). The queue has a constant service speed C. We do not
explicitly impose the stability condition λ · EF < C.
Suppose there is a volume charge of p. In the M/G/1 processor
sharing queue, the throughput is uniform for all users, namely
C − ρ, where ρ is the offered load, see for instance [5]. This
entails that a customer of file size x joins if Ux(C − ρ) > p.
Assume for ease that F has a continuous distribution; then
these customers cause load

ρ = λ
∫ ∞

0

1{Ux(C − ρ) > p}xdP(F ≤ x).

The value of ρ = ρ(p) can be solved from this (fixed-point)
equation — notice that the right hand side is decreasing in ρ.
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Fig. 4. Profit Π(p) ≡ p ·ρ(p) as a function of the price p; the upper (lower)
curve corresponds to exponential (Pareto) files

In fact the provider wants to optimize Π(p) ≡ p ·ρ(p) over all
prices p > 0. If λ · EF � C this possibly leads to a situation
in which all traffic is accepted.

It is clear that the ‘policy’ (i.e., which jobs join the queue,
and which jobs do not) strongly depends on the behavior of
Ux(·) as a function of x. If indeed the utility curves decrease
in x, as suggested above, the pricing policy entails that there
is a certain threshold, up to which files join the queue. In
other words, it excludes the ‘elephants’. The reason is that
these large files ‘yield lower utility per byte’. Obviously, other
orderings of the utility curves lead to different policies.

Example. Assume that Ux(t) ≡ βxt, with βx defined as (x+
1)−1, i.e., βx is decreasing in x. Then files join according to
a threshold policy, as argued above. The fixed point equation
for ρ (with p given) reduces to

ρ = λ
∫ f(ρ,p)

0

xdP(F ≤ x),

with f(ρ, p) := max {(c− ρ)/p− 1, 0} . We take λ = 2,
C = 1, and EF = 1, i.e., a situation of severe overload.
We compare two different file size distributions: (i) Pareto file
sizes with density bp(x) = (x+1)−α, and (ii) exponential file
sizes with density be(x) = e−x. Notice that α = (3 +

√
5)/2

to get EF = 1.
As illustrated in Figures 3 and 4, for exponential job sizes
the optimum 0.132 is attained at p = 0.32 (with ρ = 0.41),
whereas for Pareto files the optimum is 0.105, attained at p =
0.33 (with ρ = 0.32). In the former case all files up to size
0.84 have the incentive to join the queue, whereas in the latter
case all files up to 1.06.
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