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Abstract— Existing peer-to-peer search networks generally fall
into two categories: Gnutella-style systems that use arbitrary
topology and rely on controlled flooding for search, and systems
that explicitly build an underlying topology to efficiently support
a distributed hash table (DHT). In this paper, we propose a
hybrid scheme for building a peer-to-peer lookup service over
arbitrary network topology. Specifically, for each node in the
search network, we build a small DHT consisting of nearby
nodes and then provide an intelligent search mechanism that can
traverse all the small DHTs. Our hybrid approach can reduce the
nodes contacted for a lookup by an order of magnitude compared
to Gnutella, allows rapid searching of nearby nodes through
quick fan-out, does not reorganize the underlying overlay, and
isolates the effect of topology changes to small areas for better
scalability and stability.

Methods Keywords: System Design, Peer-to-Peer

I. INTRODUCTION AND RELATED WORK

We study the problem of building a peer-to-peer lookup
service on top of an arbitrary dynamic peer-to-peer (P2P)
overlay network over which we have no control. A lookup
service is one that maintains a dynamic set of key-value
associations (usually multiple values for a single key), and
permits queries that request values associated with a key. A
query that requests all the values associated with a key is a
total lookup. Similarly, a query that requests some values for
a key is a partial lookup.

Traditionally, there have been two flavors of P2P lookup
services. The first kind consists of systems like Gnutella[1] and
FastTrack[2] that do not organize the content in the network.
If a peer node has some 〈key, value〉 pairs it wants to “insert”,
it simply stores them itself. Consequently, answering a total
lookup (i.e., getting all the values of a key) requires flooding
the entire network to search every node. In practice, queries
are treated as partial lookups that don’t need retrieval of all
the available answers. Since there are usually a large number
of answers available for each query, the search radius can be
limited and the query reaches only a portion of the entire
network.

These Gnutella-style networks are deployed in real life
because of their simplicity and the lack of complex state
information at each peer. When a node goes down, the
system loses the 〈key, value〉 associations that this node
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“inserted” and nothing else, which is perfectly acceptable.
Hence, frequent network topology changes have very little
impact on performance. Moreover, these systems can operate
on any type of P2P overlay network, thus allowing others
to construct an “optimal” overlay. For example, Raghavan
suggested a low diameter overlay with high connectivity in
[3]; Cohen suggested constructing overlays where nodes with
similar content are neighbors in [4]. When there are significant
bandwidth differences between clients, Morpheus [5] (a client
using FastTrack) changes the topology so that high bandwidth
super-peers are at the core of the overlay and low bandwidth
clients are on the edge of the overlay.

The flooding-based search algorithm in Gnutella-style net-
works can also be replaced by more efficient alternatives.
Among the suggested algorithms are the iterative deepening
technique to slowly increase the flooding radius [6], using
random walks instead of radial flooding for search [7], and
aggregating and distributing local search indices to guide
search direction [8].

In contrast to Gnutella-style networks, the second kind
of systems such as CAN [9], Chord [10], Pastry [11] and
Tapestry [12] build a distributed hash table (DHT) on top of
the overlay to provide efficient querying. In DHTs, keys are
hashed into a keyspace, and each peer is assigned a small
segment of this space. Therefore, a lookup request for a key
simply entails finding the peer responsible for the key’s hash
value. Notice that, by the construction of the DHT, there is no
distinction in performance between partial and total lookups
since there is one node that has all the values for a key. So if
there are many clients interested in doing partial lookups on a
particular key, then DHT-based systems cannot take advantage
of the partial lookup and might have a hot-spot problem where
the one node responsible for the key is overloaded. Hence,
DHTs are more suited to searching for rare items (a key with
very few values) than popular items (a key with huge number
of values).

In building DHTs, these systems have to impose strict
constraints on the overlay topology to guarantee efficiency
in their search protocol. For instance, CAN imposes a d-
dimensional torus structure while Chord creates a ring with
long-distance hop pointers. Since key-value pairs are not
stored locally at each node, special care is needed to preserve
data when nodes leave the system. Moreover, in order to
maintain the strict topology, node joins and departures may
force state changes at many other nodes.
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Given the advantages and disadvantages of the Gnutella-
style and DHT-based systems, our objective is to design a hy-
brid system, YAPPERS (Yet Another Peer-to-PEeR System),
that operates on top of an arbitrary overlay network, just as
Gnutella does, while providing DHT-like search efficiency.
There are many applications where such operation on an
arbitrary overlay network is either critical or can come in
handy. For example, one might wish to utilize an overlay that
maps closely to the underlying wired or wireless network layer
in order to maximize messaging efficiency. Another interesting
application, especially with the increasing focus on wireless
roaming internet access, is the use of P2P for providing local
directory information. In this case, the system needs to support
queries requiring answers that are near the source of the query,
with the notion of nearness being dictated by the location of
content on the overlay network itself. Applications on social
networks, where a node can interact only with its friends, again
require the ability to work with the given overlay and do not
afford the lookup service the luxury of building its own overlay
network. We examine these and other applications in greater
detail in [13].

Our four main design goals in designing our lookup service
are:

1) impose no constraints on topology.
2) optimize for partial lookups where there are many values

for a key and clients are satisfied by a small subset of
the values.

3) contact only nodes that can contribute to the search
result rather than flooding blindly.

4) minimize the effect of topology changes so that the
maintenance overhead is independent of the overlay size.

In the remainder of the paper, we first state our assumptions
and give an overview of YAPPERS in Sections II and III.
We then present the details of our algorithm that meets the
above design goals in Section IV. In particular, we prove
the correctness of our algorithm and discuss how to handle
dynamic node arrivals and departures. We also evaluate the
performance of YAPPERS on a Gnutella-network snapshot and
synthetic regular graphs in Section VI.

II. PROBLEM DEFINITION AND ASSUMPTIONS

We assume the following model for each of the peer nodes:

• When a node is created, there is a third-party network
layer that determines a set of live nodes as its new
neighbors in the overlay.

• Each node “owns” a (possibly empty) set of 〈key, value〉
pairs. When the node joins the network, it registers these
pairs with the lookup service. The node may choose to
register additional pairs with the service, or delete some
registered pairs at any point in time.

• A node may initiate either partial-lookup or total-lookup
queries at any point in time.

• When a node leaves the system, it may or may not leave
gracefully.

• When a node leaves the system, the 〈key, value〉 pairs
that it “owns” do not need to be preserved in the system.

• A node may establish connections to other nodes directly,
even if they are not neighbors in the overlay network.

The final assumption is not strictly necessary but helps in im-
proving the efficiency of the system. With these assumptions,
let S be the set of 〈key, value〉 pairs registered with the lookup
service. We define:

• TotalLookup(N, k) as the set of values returned by the
service for a total-lookup query on key k originating at
node N .

• PartialLookup(N, k, n) as the set of n values returned
by the service for a partial-lookup query on key k
originating at node N . If the total number of values
for k is less than n, the partial lookup is defined to be
equivalent to the total lookup.

• V alues(k) = {v|〈k, v〉 ∈ S}
Then the lookup service is correct if and only if:

1) TotalLookup(N, k) = V alues(k) for all nodes N and
keys k.

2) PartialLookup(N, k, n) ⊆ V alues(k) and
|PartialLookup(N, k, n)| ≥ min(n, |V alues(k)|)
for all nodes N , keys k and integers n.

When nodes join or leave, we do allow temporary inconsis-
tency in lookup results while their presence in the network are
being updated.

III. OVERVIEW OF YAPPERS

Intuitively, YAPPERS works as follows: The keyspace of
all the keys that need to be stored is partitioned into a
small number of buckets. For ease of exposition, consider an
example where the keyspace is divided into two buckets. Let
us say that keys are either white or gray. Every node in the
network is also assigned a color, white or gray, based on some
criterion. For example, we could hash the IP address of a node
to determine whether it should be white or gray. Consider the
white node A in Figure 1. If it wants to register a value for a
white key 〈kw, v1〉, this pair can be stored at A itself, since A
is also white. If on the other hand, node A wants to register a
gray key and its value 〈kg, v2〉, then A looks for a neighboring
gray node. In this case, its neighbor B is a gray node. So, A
stores this pair at node B.

Now, consider what happens at query time. A query for a
gray key needs to be forwarded only to gray nodes in the
network, and a query for a white key only to the white nodes.
In order to exploit the partitioning of the data, we need some
way of confining queries on gray (resp., white) keys to the gray
(resp., white) nodes in the network. If the query originates at
a white node, we forward the query to a gray neighbor of the
node. Notice that some white nodes in the network might not
have any gray neighbors at all. In Figure 1, if A’s neighbor
B had also turned out to be white, A wouldn’t have a gray
neighbor. In the next section, we explain how to avoid this
problem by expanding neighborhoods and assigning multiple
colors to nodes. Once the query makes its way into one gray
node, we forward the query to all the gray nodes that the
current node knows about. To guarantee that gray queries end
up being forwarded to all the gray nodes, we require that each
node knows all nodes within 3 hops of it, and forwards a gray
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Fig. 1. Using both the immediate (denoted by IN ) and the extended (denoted by EN ) neighborhood information, a lookup for key kg at node A can reach
all nodes that stores key kg .

query to all the gray nodes it knows about in this 3-hop radius.
An example of a search for a gray key is shown in Figure 1.
The search starts at the white node A, which forwards the
query to one of its gray neighbors, B. Node B then forwards
it to all the gray nodes that it knows within 3 hops, and the
process continues. Our protocols ensure that this forwarding
terminates only after all the gray nodes have been reached.

More generally, if we permit a node to store a 〈key, value〉
pair at an appropriately-colored node within h hops of it
(instead of within 1 hop of it), it is sufficient for a node
to know all its neighbors within (2h + 1) hops in order to
guarantee that we can exhaustively hop through all the gray
nodes without touching any white node. This statement holds
when we have nodes and keys of any number of colors, not
just for the simple case of 2 colors. We call the nodes within
h hops the immediate neighborhood of a node, and the nodes
within 2h + 1 hops the extended neighborhood of the node.
We discuss the concept of the immediate neighborhood in
Section IV-A and the extended neighborhood in Section IV-B.
We then proceed to define the search protocol based on these
concepts and prove that the protocol is correct. Section IV-C
discusses node arrivals and departures.

IV. BASIC ALGORITHM

YAPPERS divides a large overlay network into many
small and overlapping neighborhoods (the immediate neigh-
borhoods). The data within each neighborhood is partitioned
among the neighbors like a distributed hash table. When
a lookup occurs and the neighborhood cannot satisfy the
request, YAPPERS intelligently forwards the request to nearby
neighborhoods, or the entire network if necessary. These for-
wardings require each node to know a larger set of nodes (the
extended neighborhood) that covers its neighbors’ neighbors.

A. The Immediate Neighborhood

The immediate neighborhood of a node A, denoted by
IN(A), is the set of nodes where A may store its 〈key, value〉
pairs. In managing the immediate neighborhood IN(A), we
need to address two questions:

1) Given a node A, which nodes should be included in
IN(A)?

2) Given IN(A), how do we partition the key space
into multiple colors and assign each color to nodes in
IN(A)?

Moreover, the solution must strive to maintain the following
two useful characteristics:

• Consistency: If a node X is in two different neighbor-
hoods IN(A) and IN(B), both A and B assign the same
color to node X .

• Stability: If a node X is in IN(A), then X is assigned the
same color regardless how IN(A) changes dynamically
when nodes enter or leave the system.

Both characteristics are desirable because they improve the
overall system efficiency. Consistency avoids costly synchro-
nizations among nearby nodes to determine which nodes
have which colors. Stability reduces data relocation when the
underlying overlay network changes.

With these desired characteristics in mind, YAPPERS ad-
dresses the first question by defining the immediate neighbor-
hood of node A, IN(A), in the overlay network G as

• IN(A) = {v | δG(v,A) ≤ h} where δG returns the
minimum distance between two nodes in G. In other
words, IN(A) contains all nodes within h hops of A
in the overlay network, including node A itself.

Specifically, our YAPPERS implementation uses h = 2. We
chose a small immediate neighborhood in order to provide
long-term stability to the system. If the immediate neigh-
borhood is large, then frequent node arrivals and departures
within the network will incur large overheads in maintaining
an accurate view of the immediate neighborhood and reduce
the efficiency of searches when the view is incorrect. To make
this observation more concrete, consider the Chord network. In
essence, Chord has a single immediate neighborhood that con-
tains every node in the network. However, lookup efficiency in
Chord will degrade when nodes enter and leave the network
frequently because the system takes a long time to reach a
stable configuration where all the finger pointers, used by the
lookup process, are accurate.

Addressing the second question, YAPPERS partitions the
key space among the nodes in IN(A) using the hash values
of the node IP addresses. Formally,

• a node X with IP address IPX is assigned key k if
HASH(k) ≡ (HASH(IPX) mod b) where b is the
number of distinct hash buckets we use.

In other words, the keyspace is divided into b hash buckets, or
b different colors C0, C1, . . . , Cb−1. We say that a key k is of
color C (or hashes to color C) if the hash function assigns k
to bucket C. If a node IP address hashes to bucket C, we say
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the node is of color C. Note that by using nodes’ IP addresses,
the partitioning is consistent across different but overlapping
immediate neighborhoods and is stable within an immediate
neighborhood.

With this simple hashing-based assignment, any nodes in
YAPPERS can insert and delete 〈key, value〉 pairs into the
system. For example, suppose node X wishes to insert a pair
〈k, v〉. Then for each node Y ∈ IN(X), X locally computes
whether HASH(k) ≡ (HASH(IPY ) mod b). If Y has the
same color as the key k, X then sends a message to Y for
storing the pair 〈k, v〉. Upon receiving such a message, Y is
required to store the pair. Similarly, a lookup request for a key
k is sent directly to a node responsible for k.

When a node X executes the hashing-based assignment
described above, there are two potential pitfalls:

1) multiple nodes in IN(X) have the same color as the
key k

2) no nodes in IN(X) have the same color as the key k.

We avoid pitfall 1 by allowing X to pick any one of these
nodes to store the key. We avoid pitfall 2 through a backup
assignment scheme. Specifically,

• (Backup): When there are no nodes in IN(X) that
have color Ci, color Ci is assigned to a node with
color C(i+1)mod b. If there are multiple nodes of color
C(i+1)mod b, choose the node with the smallest IP ad-
dress.

For example, if a key k hashes to color C5 and no IP addresses
of the nodes in IN(X) hash to color C5, then k will be stored
on a node with color C6. If no such nodes exist as well, we
try nodes with color C7 and so on. This approach is similar to
Chord’s consistent hashing [10] except that we use b distinct
hash values as opposed to all real numbers between 0 and 1.

To distinguish between the multiple colors of node X , we
say a color C is the primary color of node X if X’s IP address
hashes to color C. Similarly, a color C ′ is a secondary color of
node X if there is some node Y that may assign X , through
the backup assignment, the color C ′. Note that Y need not
to have a key of color C ′ to store at X for X to have the
secondary color C ′. As long as Y could potentially have stored
a C ′ key at X , then X must be searched when looking for C ′

keys, and hence X is considered to have the color C ′. Thus
by construction, every node has exactly one primary color and
zero or more secondary colors.

In resolving the pitfalls mentioned above, our solution is no
longer consistent and stable as envisioned earlier. For example,
suppose node X is in two different immediate neighborhoods
IN(A) and IN(B) and X’s IP address hashes to color C5.
Suppose that in IN(A), no nodes have color C4. Then node A
thinks X is responsible for both colors C4 and C5. However,
node B might only know X is responsible for color C5
assuming that another node in IN(B) has color C4, thus
causing an inconsistency. Similarly, if a node Y with color
C4 joins A’s immediate neighborhood, then we need to move
all keys of color C4 from X to Y , thus reducing stability.

Despite this setback, the limited size of the immediate
neighborhood isolates the impact of inconsistency and instabil-
ity in YAPPERS. In reality, inconsistency and instability only

occur in poorly connected portions of the overlay network
(e.g., a chain of nodes) where the immediate neighborhood is
small. By probabilistic analysis [14], it can shown that if a
node A has b log b nodes in IN(A) where b is the number of
hash buckets, then, with high probability, there exists a node
of each color.

B. The Extended Neighborhood

Since YAPPERS only stores 〈key, value〉 pairs in the owner
nodes’ immediate neighborhoods, the answers for a key search
are scattered throughout the overlay network in many different
neighborhoods. Thus to support a Total Lookup, i.e., all
answers must be retrieved for a lookup, YAPPERS must have
a mechanism for searching through all the neighborhoods.

Obviously, flooding the overlay network like Gnutella is a
solution. However, such flooding disturbs many nodes that do
not actually have any answers for the search. To avoid these
disturbances, a node A keeps track of a bigger neighborhood
than its immediate neighborhood so that it can make bigger
“jumps” and avoid flooding its direct neighbors. Call this
bigger neighborhood the extended neighborhood and denote
it by EN(A) for node A.

Before defining EN(A), we first define the frontier of node
A, denoted by F (A), as all nodes that are not in IN(A) but
are directly connected to a node in IN(A). Formally, if N(v)
is the set of nodes directly connected to node v, then

• F (A) =
⋃

v∈IN(A)

N(v) − IN(A)

With the frontier, the extended neighborhood EN(A) is then
simply the union of the immediate neighborhoods of all nodes
in the frontier of A. Formally,

• EN(A) =
⋃

v∈F (A)

IN(v)

Figure 2 illustrates the relationships between the immediate
neighborhood IN(A), the frontier F (A), and the extended
neighborhood EN(A). In this figure, h = 2. So nodes B and
C are in IN(A). Nodes D and E are in the F (A) because they
are connected to B and C respectively. Therefore, EN(A)
includes H (part of IN(D)) and J (part of IN(E)).

Because YAPPERS defines IN(A) as all nodes within h
hops of A, the above definition of EN(A) means that the
extended neighborhood of A consists of all nodes within
2h+1 hops of A. Using this extended neighborhood, we now
describe the protocol for searching through all the neighbor-
hoods, and provide a proof that guarantees all nodes of a given
color are searched.

1) Searching with the Extended Neighborhood: Informally,
when a node A wants to look up a key k of color C(k), it
picks a node with color C(k) in IN(A). If there are multiple
such nodes, pick one at random. So say node B has color
C(k) in IN(A). Node A then tags the lookup request with a
unique identifier and sends the request to node B.

Node B, upon receiving the query, returns its local answers
to A. Afterwards, node B determines which nodes are in its
frontier F (B). The frontier nodes are important because they
do not store the key k at B. Hence by finding out where its
frontier nodes store the key k, node B can find other nodes of
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Fig. 2. The extended neighborhood of node A, EN(A), is the union of the
immediate neighborhood of nodes in the frontier of A.

color C(k). Moreover, the computation of finding other nodes
of color C(k) can be done locally at node B without any
communication because EN(B), by construction, contains the
immediate neighborhoods of all the frontier nodes. Therefore,
we can flood only a subset of the nodes and not disturb any
nodes that could not have any answers. To avoid cycles in the
forwarding step, the unique identifier, provided by the source
of the lookup request, is cached and used to break the cycles.

The example in Figure 1 in Section III (where h = 1)
illustrates this search pattern. When node A initiates the
search, node A finds that B is colored gray. Thus A contacts
B. Now B returns its local content and examines node D—its
frontier node that is 2 hops away. Since E is the only gray
node in IN(D), node B forwards the request to node E. Node
E forwards the request to F . Node F , after examining at its
frontier node H , reaches I .

Notice that when a node X determines another node Y has
the same color, we allow X to contact Y directly to forward
a request, even if X and Y are not neighbors in the original
overlay. So we are augmenting the overlay with additional
connections. However, these connections respect the original
overlay. Moreover, we do not create a new overlay by adding
these forwarding connections between nodes of the same
color, hence they cannot be used for any other purposes such
as constructing immediate and extended neighborhoods. This
approach is different from Chord or CAN where connections
between nodes can be created at random and become part of
a new overlay.

The pseudocode for performing total lookup, described
informally above, is given in Figure 3. The lookup routine uses
two helper functions select and forward to determine which
nodes have a specific color C and which nodes to forward the
request to respectively. To do partial lookups, we can modify
total lookup to include a hop count limit or use random
walks. For completeness, we also include the pseudocode for
inserting a 〈key, value〉 pair. Deleting a 〈key, value〉 pair is
similar to inserting one.

2) Completeness: The total lookup algorithm guarantees
that a search for a key eventually reaches all nodes storing the

total_lookup(x, k):
// find nodes that may have key k
S = select(HASH(k), IN(x));
choose a random Y in S;
// start the search
result = forward(Y, k, unique_tag());
return result;

end

forward(x, k, tag):
if tag not in cache then // check cycle

answer = local_lookup(k);
cache += tag;
// find other nodes with key k
for each node v in (IN(x) + F(x))

S = select(HASH(k), IN(v));
// forward request
for each node w in S
answer += forward(w, k, tag);

endfor
endfor
return answer;

endif
end

// find the subset of nodes in S
// that has color Ck
select(Ck, S):
retval = {};
// find nodes with hash value Ck
for each v in S

if HASH(v) = Ck mod b then
retval += v;

endif
endfor
if retval == {} then // if no nodes,

// resort to the backup scheme
backup = select(Ck+1, S);
// however, only need one backup
retval = Y in backup with smallest IP;

endif

return retval;
end

insert(x, k, v):
// find nodes that can store <k,v>
S = select(HASH(k), IN(x));
choose a random Y in S;
store(Y, k, v); // tell Y to store <k, v>

end

Fig. 3. Pseudo code for total lookup and insert in YAPPERS. Both
procedure uses the helper functions select and forward.

key. In other words, starting from any node of color C, we
can reach all other nodes of color C using only the forward
routine described in Figure 3. Stated formally,

Theorem 1: (Completeness) For any two nodes A and
B of color C, there exists a sequence of nodes A =
Z0, Z1, Z2, . . . , Zw−1, Zw = B such that for all i < w, Zi has
color C and Zi forwards the request to Zi+1 when executing
the forward routine.

Proof: Without loss of generality, suppose there are two
colors, white and black. We prove by contradiction. Suppose
our claim is false. Then, there exist pairs of black nodes X and
Y where we cannot go from X to Y by following a sequence
of black nodes using the forward routine. Since there are a
finite number of such pairs of black nodes, we pick a pair of
nodes A and B such that the distance between A and B in
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. . .
F(A)

... d(F(A), B) = s−h−1

d(A, B) = s

Z d(Z, F(A)) <= h

Fig. 4. Assuming two black nodes A and B are the closest nodes that cannot
reach each other and is at least h + 1 hops away, we can construct another
pair Z and B where Z is even closer to B and cannot reach B.

the overlay is the smallest among all pairs of nodes that do
not satisfy our claim.

Now consider the shortest overlay network path
p0, p1, . . . , ps from A to B where p0 = A and ps = B. There
are two cases: s ≥ h + 1 and s < h + 1. We show that both
cases lead to contradictions, hence prove our claim.

Case 1: s ≥ h + 1. This case corresponds to the scenario
shown in Figure 4. Consider the frontier node F (A) = ph+1.
There exists a black node Z ∈ IN(F (A)) (through the
backup assignment in the worst case). Since Z is at most
h hops away from F (A), Z �= A because s ≥ h + 1.
Also, there does not exist a sequence of black nodes from
Z to B using the forward routine because otherwise we can
construct a sequence from A to B going through Z, which is
a contradiction.

Now consider δ(Z,B), the distance between Z and B. By
the triangle inequality, δ(Z,B) ≤ δ(Z,F (A)) + δ(F (A), B).
By construction, we know δ(Z,F (A)) ≤ h and δ(F (A), B) =
s−h− 1. Therefore, δ(Z,B) ≤ h+ s−h− 1 = s− 1, which
means Z is closer to B than A and is a contradiction to our
choice that A and B are the closest pair of black nodes that
do not satisfy our claim. Hence, the case s ≥ h + 1 cannot
happen.

Case 2: s < h+1. First note that this case can only occur if
node B has multiple colors and its primary color (based on the
IP address) is not black. Otherwise, node A would forward the
request directly to node B when checking its own immediate
neighborhood IN(A). Figure 5 captures the scenarios for this
case where node X is the culprit that assigned the extra black
color to node B. As the figure depicts, node B does not have
to be on the overlay path from A to X .

To prove that case 2 is also a contradiction, we explicitly
construct a sequence of black nodes that allows node A to
reach B. Let t = δ(A,X), the distance between A and X . If
t ≤ h + 1, then X ∈ IN(A) ∪ F (A) and node A would
have learned that node B is also black when determining
where X stores black keys. Thus, node A will directly reach
B, a contradiction. So it must be that t > h + 1. In this
case, consider the frontier node F (A) in Figure 5. If F (A)
has assigned the color black to B, then again we have a
contradiction. (When A examines its frontier nodes, it would
discover that B is black, and again, A would directly reach B.)

X

..

B

..

.
. . .

F(A)
. . .

A

Z

d(A, F(A)) = h+1
d(F(A), Z) < h+1

1

Fig. 5. Node X assigns the color black to node B using the backup
mechanism, thus causes a pair of black nodes (A and B) to be within h
hops while not knowing about each other.

So we assume that F (A) has not assigned B the color black.
By the backup assignment scheme, F (A) must know of at
least one black node in IN(F (A)), call this node Z1(�= B).
Note that δ(F (A), Z1) ≤ h, and node A will reach Z1.

For the same reason as t > h + 1, δ(Z1,X) > h + 1.
However, δ(Z1,X) ≤ δ(Z1, F (A)) + δ(F (A),X) ≤ h+ (t−
h − 1) = t − 1 < t = δ(A,X). Therefore if we repeat the
step above (with A replaced by Z1), we can find Z2 such that
Z1 forwards the request to Z2 and δ(Z2,X) ≤ t − 2. Since
each step brings us at least one node closer to X , eventually,
in a finite number of steps i ≤ t− h− 1, we get δ(Zi,X) ≤
h+1. When this happens, X ∈ IN(Zi)∪F (Zi) which means
node Zi can infer node B is a black node and forward B the
lookup request. Therefore, we can forward the request from A
to B via the sequence A,Z1, Z2, . . . , Zi, B. This contradicts
the assumption that there exists no sequence of black nodes
between A and B using forward.

C. Maintaining Topology

So far we have assumed that each node in YAPPERS
has enough local overlay-network topology information to
determine its immediate and extended neighborhoods. We now
focus on propagating topology changes as nodes enter and
leave the overlay. We first discuss edge deletion and insertion
and then proceed to node departure and arrival.

1) Edge Deletion: When an edge (X,Y ) is deleted from
the topology, distances between some nodes might increase
which, in turn, may cause some YAPPERS nodes to shrink
their immediate and extended neighborhoods. This behavior
implies that we can limit the propagation of an edge deletion
event to nodes that have both X and Y in their extended
neighborhoods. Since YAPPERS uses a 2h+1 hops extended
neighborhood, an edge deletion requires both X and Y to
broadcast the deletion event to its surviving neighbors with a
time-to-live field of 2h hops.

Upon receiving the broadcast, each YAPPERS node updates
the topology and adjusts its immediate and extended neigh-
borhood accordingly. Note that changes in extended neigh-
borhood has no effect on the node other than in determining
future query-routing decisions. However, if the immediate
neighborhood changes, the affected node may have to re-
add some 〈key, value〉 pairs. For example, suppose node X
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is no longer in node A’s immediate neighborhood after the
edge is deleted, then A will have to find a node in the new
immediate neighborhood to re-add A’s 〈key, value〉 pairs that
were previously stored on X .

2) Edge Insertion: Unlike edge deletions, broadcasting a
new edge’s presence is not sufficient for YAPPERS nodes to
maintain the topology. Consider the case where two nodes X
and Y were previously unknown to each other. When the new
edge (X,Y ) is added,X needs to know about Y ’s neighbors to
rebuild its immediate and extended neighborhood. Moreover,
nodes previously connected to X may also needs to know
about Y ’s neighbors.

The naive solution is to do the same thing as edge deletion
but append both X’s and Y ’s new extended neighborhood
information in the broadcast. However, note that if Z was
previously connected to X , Z only needs the topology in-
formation that is within 2h − 1 hops of Y because Z only
cares about nodes that are 2h+ 1 hops away and these nodes
are at most 2h− 1 hops away from Y . Similarly, if node W
was previously connected to Z, then W only needs topology
information for nodes that are 2h−2 hops away from Y . Using
this observation, each YAPPERS node can “trim” the topology
information appended to the edge insertion broadcast and pass
along only useful topology to downstream nodes. Similar to
edge deletion, if the immediate neighborhood changes, then
data relocation might be necessary if secondary colors can be
moved to the newly added nodes.

3) Node Departure and Arrival: When a node X with w
edges leaves the network, we treat the departure as w edge
deletions. Each of X’s neighbors is responsible for initiating
a broadcast for the appropriate edge. As a side benefit of this
approach, we do not require node X to depart gracefully.

A node arrival is only slightly more involved. As node X
appears on the network, it first asks its new neighbors for
their current views of the topology. Node X then merges these
views to create its own extended neighborhood. Afterwards,
node X initiates an edge insertion broadcast to each of its new
neighbors appended with the appropriately trimmed subset of
the new topology.

Since both node arrival and departure only affect other
nodes within 2h hops and is independent of the rest of overlay,
YAPPERS should scale better and be more stable than systems
such as Chord that support one overarching hash table. For
instance, in Chord, multiple node arrivals or departures will
interact with each other and cause complicated reorganization
whereas YAPPERS isolates each arrival or departure to a small
neighborhood.

D. Summary

In short, YAPPERS builds a hybrid network that retains the
advantages of both unstructured P2P networks and structured
DHT networks. Specifically, within an immediate neighbor-
hood, YAPPERS behaves like a DHT where pinpoint lookup
queries are very efficient. When using extended neighborhoods
to navigate between nodes of the same color, YAPPERS acts
like Gnutella but with more intelligence. Notice that, unlike
pure DHT-based systems, all nodes in YAPPERS participate

A

B

D

CE

Fig. 6. In a Star topology, the central node A is overloaded by the fringe
nodes B, C, D, and E as they assign large chunks of key space to A.

to resolve searches even if there are more nodes than keys,
which means hot spots (where many requests go to one node)
are less common in YAPPERS.

V. ENHANCEMENTS

In experiments we performed to evaluate our basic YAP-
PERS design (see Section VI), we observed some perfor-
mance shortcomings when running YAPPERS on networks
with highly variable node degrees (e.g., a power-law type
overlay). Specifically, we noticed two problems: the fringe
node problem and the large fan-out problem.

In the fringe node problem, a low connectivity node, through
the use of backup assignment, allocates a large number of
secondary colors to its high-connectivity neighbor which has
no desire for the extra colors. Consider the star example in Fig-
ure 6. Suppose the keyspace is divided into 36 colors. Then the
central node A, having 9 nodes in its immediate neighborhood,
expects to handle its own primary color and three secondary
colors, for 1

9 th of the total colors. However, the four fringe
nodes B,C,D, and E will each assign 11 secondary colors to
node A because their immediate neighborhood only has three
nodes. As a result, node A is routing lookup requests for 12
out of the 36 colors, or one third of the total colors, which is
much larger than the expected 1

9 th of the total colors.
The large fan-out problem captures a different challenge

when forwarding search requests to other neighborhoods.
Recall that YAPPERS uses frontier nodes to decide where to
forward the request. So when a node A does the forwarding,
each of A’s frontier nodes may point to one or more different
forwarding nodes. Consequently, the forwarding fan-out de-
gree at node A is proportional to the number of the frontier
nodes. If an overlay network’s average node degree is 5, then
the fan-out degree is O(5h+1) (which is 125 for h = 2). As we
will discuss more in the evaluation section, this large fan-out
is desirable when doing partial lookup because we can reach
more nodes quickly. On the other hand, for total lookup, large
fan-out can be undesirable due to duplicate requests when
forwarding.

A. Prune Fringe Nodes

One obvious solution to the fringe node problem is to prune
away low connectivity nodes. For example, we can recursively
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prune all nodes with degree 1 from the overlay network to
get rid of leaf nodes. With a small risk of disconnecting
the overlay, we can also prune away nodes with degree
2 to eliminate long chains of nodes connecting two large
components.

To implement pruning in YAPPERS, a nodeX , upon arrival,
determines whether it is a fringe node based on its local
topology information. If X is a fringe node, then X does
not participate in YAPPERS directly. Instead, node X selects
a nearby high connectivity node Y as its proxy. So when X
wants to register a 〈key, value〉 pair or do a lookup search,
node X sends the request to node Y and asks Y to perform
the task on its behalf.

The trade-off in using pruning is the extra workload on the
proxy node Y , generated by the nearby fringe nodes. However,
this extra workload is smaller than handling an extra color
C and forwarding requests for color C in the entire overlay
network. Note that this approach is similar to organizing a
Gnutella network with super-peers. The distinction here is that
super-peers, in general, are determined based on bandwidth
constraints whereas connectivity is the criterion used in YAP-
PERS.

B. Biased Backup Node Assignment

An alternative solution to the fringe node problem is to bias
the backup assignment scheme so that high connectivity nodes
do not get extra colors. Formally,

• (Bias): Node X can assign a backup color to node Y if
and only if α · |IN(X)| > |IN(Y )|, where α controls
the relative sizes of the neighborhoods.

In other words, we forbid a node with a small immediate
neighborhood assigning backup colors to a node with a large
immediate neighborhood. In the worst case, if a node X is
unable to assign any backup colors to any nodes in IN(X),
then node X manages these extra colors itself.

The drawback of using the bias is the increase in the number
of nodes we must contact for a lookup. For the star example in
Figure 6, suppose without the bias, all the fringe nodes assign
a secondary color C to the central node A. Then a lookup for
a key of color C will hit only node A. However, if we are
using bias where α = 2, then all four fringe nodes have to
retain color C themselves. So a lookup for C will hit 4 nodes
instead of 1.

C. Reducing Forward Fan-out

For the large fan-out problem, we can apply three steps
to reduce the fan-out degree, thus reducing the number of
duplicate messages in query broadcasts. Specifically, when
node A forwards a lookup request for color C,

1) If a frontier node F assigns C to node B via the backup
mechanism, then forward the request to B.

2) If a frontier node F assigns C to a set of nodes S, do not
forward to any nodes in S if S∩IN(A) �= ∅. Otherwise,
only forward to one of the nodes in S.

3) In step (2), when choosing one node from S, try to pick
common nodes between multiple frontier nodes.

Step (1) is necessary because the only way of reaching a
backup node B could be through the frontier node F . If no
backups are necessary, then steps (2) and (3) try to avoid
forwarding to far-away nodes if a closer one exists.

There are several other alternatives. For example, after node
A has decided to forward the request to a set of nodes S, node
A can include S in the forwarded message to help other nodes
in reducing the fan-out. Another solution is to run an additional
pass on the set S to see if two nodes A,B ∈ S will forward
the request to each other through some other path. If so, we
pick only one node to forward the query to. Finally, we can
move away from the idea of using query flooding for total
lookups. For example, when a node desires to initiate a query,
it contacts a fixed number of random nodes in the network and
forwards the query to them. Each of these random nodes can
then forward the query to their neighbors with a TTL of 1. By
carefully controlling how many nodes are contacted in the first
step, and how they are chosen, we can provide probabilistic
guarantees on the total number of nodes contacted for the
query.

VI. EVALUATION

To estimate statistics on YAPPERS running over a real
overlay network, we simulated YAPPERS on a snapshot of
the Gnutella network [15] containing 24, 702 connected nodes
and several synthetically-generated regular graphs. In our
YAPPERS implementation, we use h = 2. For h > 2, the
extended neighborhood is too large because it includes all
nodes within 2h + 1 hops. On the other hand, for h = 1,
the immediate neighborhood is too small to efficiently support
more than 4 or 5 colors.

With our implementation, we examine the search efficiency
with respect to the expected fraction of nodes contacted per
query, the search overhead in terms of the fan-out degree for
forwarding search messages, and the optimal b (number of
hash buckets) to use. We focus our discussion of the results on
the Gnutella snapshot and will mention relevant points about
regular graphs when appropriate.

In our experiments, we compare YAPPERS to the simple
Gnutella protocol. In reality, most Gnutella-based systems use
a 2-tier architecture, with low-bandwidth clients maintaining
a single connection to a supernode, and the supernodes them-
selves forming a standard Gnutella network. We note that we
can adapt YAPPERS to this architecture by involving only the
supernodes in YAPPERS.

A. Search Efficiency

The efficiency of executing a total-lookup request is cap-
tured in the expected fraction of nodes contacted, denoted by
F̄ , during the search. This fraction F̄ is equal to C̄

b , where C̄
is the average number of colors assigned to each node and b is
the number of hash buckets (colors) used. To see this, notice
that N · C̄ = (N · F̄ ) · b because N · C̄ is the total number
of colors in the system, (N · F̄ ) counts the number of nodes
having a particular color, and hence (N · F̄ ) · b also counts the
number of colors in the system.
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Enhancements Nodes in Overlay Avg Colors per Node (C̄) Avg Nodes Contacted per Query (F̄ )
None 24,702 3.73 11.6%
Pruning (Degree 1) 15,785 3.10 9.6%
Pruning (Degree 2) 12,081 2.64 8.2%
Bias (α = 2) 24,702 5.90 18.5%

Gnutella 24,702 (N/A) 100%
TABLE I

SEARCH EFFICIENCY OF RUNNING YAPPERS WITH b = 32 ON GNUTELLA SNAPSHOT AND VARIOUS ENHANCEMENTS

Table I illustrates how different enhancements of YAPPERS
affect C̄ and F̄ when running over the Gnutella snapshot
with b = 32. The last line in the table provides the baseline
comparison of running straight Gnutella. From the table, notice
that to execute a total lookup, Gnutella has to contact every
node. In contrast, YAPPERS only contacts 8% to 18% of the
nodes depending on the enhancement.

More specifically, Table I show that as we prune away
more fringe nodes, F̄ decreases from 11.6% to 9.6% and then
to 8.2%. Accordingly, C̄ also decreases from 3.73 to 2.64.
This observation correlates with our intuition of the fringe
node problem (described in Section V) where fringe nodes are
assigning extra secondary colors to highly connected nodes.
Also as expected, using the bias enhancement increases C̄
since a color previously assigned to a highly connected node
has been moved to many fringe nodes. Consequently, a larger
fraction of the nodes are contacted during a lookup. Despite
this increase, in the next section we show biasing actually
incurs less overhead in terms of messages generated when a
search must reach every node in the overlay.

For completeness, we show the cumulative distribution of
colors per node for YAPPERS in Figure 7. The x-axis shows
the number of colors assigned to a node and the y-axis shows
the percentage of nodes with equal or fewer colors. From the
figure, we note that there is a small fraction of nodes with
a large number of colors. Upon close examination of these
nodes, we found that without using bias, this small fraction is
composed of high-degree nodes. With biasing, this fraction
consists of leaf nodes that are unable to give away extra
colors due to the bias constraint. Figure 7 also provides further
evidence that pruning indeed reduces the number of colors on
the high degree nodes as we reach the 100 percentile at 11
colors per node with pruning as opposed to 27 without.

For a regular graph with the same number of nodes and
edges, we found similar savings in the number of nodes
contacted. However, the distribution of colors per node is not
heavy-tailed in that only 1.1% of the nodes have more than 8
colors and the maximum is 13 colors per node. Also, applying
pruning or biasing has no impact since there are no fringe
nodes in a regular graph.

B. Search Overhead

As we have seen, YAPPERS is more efficient for searching
than Gnutella in the sense that a lookup is processed by
fewer nodes, specifically, an order of magnitude fewer nodes
than Gnutella. However, YAPPERS propagates a lookup much
more “aggressively” through the original overlay. In particular,
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Fig. 7. Cumulative distribution plot of number of buckets per node for
YAPPERS with b = 32 and no enhancements running on Gnutella snapshot.

Enhancements Avg Fan-out Degree
None 835.3
ReduceFanOut 140.8
Pruning (Deg. 2), ReduceFanOut 160.9
Bias (α = 2), ReduceFanOut 82.5

Gnutella 5.2
TABLE II

THE FANOUT DEGREE WHEN RUNNING YAPPERS WITH b = 16 ON

GNUTELLA SNAPSHOT AND VARIOUS ENHANCEMENTS

when a YAPPERS node forwards a lookup to nodes in other
neighborhoods, the fan-out degree is large due to the large
number of frontier nodes. To capture this fan-out degree, for
each node X and color C, we determine the fan-out degree
in the number of nodes X would forward the request to when
looking up a key of color C. We then average over all colors
and all nodes.

Table II shows the average fan-out degree for YAPPERS
with various enhancements. Notice that the basic version has a
high fan-out degree of 835. As we apply the fan-out reduction
techniques and avoid overloading high connectivity nodes with
extra colors, the fan-out is reduced to 82. For a regular graph
of comparable size, the average fan-out degree is 62.

Large fan-out degree has both positive and negative impact
on performance. On one hand, lookups are propagated much
faster through the network in YAPPERS. On the other hand,
we need extra state information to keep track of these nodes
in the extended neighborhood and connection states (if any).
Also, when flooding the entire overlay of a given color, many
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forward messages could potentially be duplicates.
Fortunately, for partial lookups, large fan-out is actually

desirable. Consider an example where a lookup wants 50
values for a particular key. In Gnutella, that means flooding all
nodes within 5 or 7 hops. In YAPPERS, such a lookup can be
answered in one forwarding step to the 80 or so nodes because
these 80 nodes contain data from nearly all nodes within 5
hops. Thus we not only get the answer faster but also only
contact nodes that have a much higher probability of having a
result. However, if the lookup requires searching through the
entire network, then the redundant forward messages, caused
by the large fan-out, could be overwhelming. In those cases,
random walk[7] or iterative deepening[6] techniques can help
to reduce the redundant messages.

C. How Many Buckets to Use

The natural question is: how many hash buckets (colors)
is ideal for YAPPERS? To answer this question, we ran
YAPPERS with b = 4, 8, . . . , 48. The results are shown in
Figures 8 and 9.

First, Figure 8 shows the search efficiency where we have
the fraction of nodes contacted during a lookup on the y-
axis and the number of hash buckets, b, used on the x-axis.

As we increase the number of buckets, the fraction of nodes
contacted does not improve significantly for b > 20. In the
case of using biasing, the best case is b = 12, and actually
deteriorates for larger b. The reason for the lack of continuing
improvement beyond b = 20 is that the size of the immediate
neighborhood is the same regardless of how many buckets are
used. Thus the best possible condition occurs when every node
in the neighborhood is assigned exactly one bucket (color) and
having more buckets (colors) than nodes does not help matters.

Second, Figure 9 shows the overhead in terms of the average
forwarding fan-out degree per node per hash bucket (color).
The y-axis shows the average degree and the x-axis shows the
number of hash buckets, b, used. Unlike the search efficiency,
the average fan-out degree increases with larger b. However,
with bias, we get a relatively constant fan-out degree as the
number of buckets change.

To balance the conflicting trend of the search efficiency
and the search overhead, we see that b = 16 is the sweet
spot for this Gnutella snapshot. If the number of buckets is
smaller, then we are contacting more nodes than necessary
(as seen in Figure 8). If the number of buckets is larger, the
increase in fan-out degree (seen in Figure 9) may render the
gain in contacting fewer nodes irrelevant. Of course, the best
b depends on the underlying topology. For example, b = 12 is
the best for a regular graph of comparable size.

Notice that even though we cannot increase b arbitrarily
to achieve better performance, we can apply our algorithm
recursively to all nodes responsible for one hash bucket. In
other words, manage each of the b sub-networks with another
YAPPERS network. With this recursion, we can increase our
performance further.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed our YAPPERS scheme for build-
ing an efficient peer-to-peer search mechanism without explicit
control of the overlay network. Specifically, our scheme is a
hybrid that uses distributed hash tables (DHTs) in small areas
and uses intelligent forwarding over large areas. The main
advantages are that our scheme:

• disturbs only a small fraction of the nodes in the overlay
for each search.

• does not require restructuring the underlying overlay
network.

• each node requires only knowledge of a small neighbor-
hood and is independent of the rest of the overlay, and is
thus less affected by node arrivals and departures.

For future work, we want to better quantify YAPPERS’ perfor-
mance gains when doing partial lookups. In particular, what
is the best strategy for forwarding a partial lookup through
YAPPERS’ large fan-out network? What are the expected
savings of contacting specific nodes in nearby neighborhoods
as opposed to Gnutella flooding all nodes within 5 or 7 hops?
Besides evaluating partial lookups, we also want to study the
effect of frequent node arrivals and departures on YAPPERS.
Notably, how does YAPPERS’ performance degrade in an
unstable network compared to DHTs?
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