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Abstract— In all-optical networks that use WDM technology
it is often the case that several communication requests have to
be blocked, due to bandwidth and technology limitations. Min-
imizing request blocking is therefore an important task calling
for algorithmic techniques for efficient routing and wavelength
assignment.

Here we study the problem for rings under both the undirected
and the directed settings, corresponding to symmetric and one-
way communication respectively. The problem in graph-theoretic
terms can be formulated as the MAXIMUM ROUTING AND PATH
COLORING PROBLEM. We present a Chain-and-Matching tech-
nique for routing requests and coloring the corresponding paths
which gives constant approximations for both the undirected
and the directed cases. For the undirected problem we obtain
a 2

3 -approximation algorithm; this corresponds to a considerable
increase in the number of satisfied requests compared to the best
known algorithm so far, due to Wan and Liu [1], that achieves
a 1 − 1

e
ratio using iteratively a maximum edge-disjoint paths

algorithm. For the directed case, we also introduce a Balanced
Matching method which, combined with the Chain-and-Matching
technique, gives a 7

11 -approximation algorithm. This algorithm
also improves upon the (1 − 1

e
)-approximation algorithm that

can be obtained by extending the iterative method of [1].

I. INTRODUCTION

Wavelength Division Multiplexing (WDM) is a developing
fiber-optic transmission technique that allows several connec-
tions to be realized over a single fiber, providing very high
transfer rate. However, in practice the number of wavelengths
per fiber is limited to a few hundreds. A further restriction
is imposed by the need for all-optical networks, due to the
prohibitive cost of opto-electronic converters; in this setting,
a connection must use the same wavelength from one end to
the other. Due to these limitations, it is often the case that
not all pending communication requests can be satisfied. It
is therefore important to minimize the number of blocked
requests (e.g. see the open problems proposed by Mihail,
Kaklamanis and Rao [2]). In other words, we would like to be
able to satisfy a maximum number of communication requests.

The problem can be formulated in graph-theoretic terms as
follows:
MAXIMUM ROUTING AND PATH COLORING PROBLEM

(MAXRPC)
Input: a graph G, a set of pairs of nodes (requests) R and a
number of available colors w.
Feasible solution: an assignment of paths (routing) to a subset
of requests A ⊆ R and a coloring of these paths with different
colors for overlapping paths.

Goal: maximize |A|, thus satisfying a maximum number of
requests.

In optical networks, there are usually two opposite-directed
fibers between connected nodes. Communication may be sym-
metric or one-way. In the symmetric case, after connection
is established, data are sent back and forth (cf. telephone
line); we may thus consider communication requests and
connecting paths undirected. Two undirected paths overlap
if they pass through the same edge. In the one-way case,
datagram messages are sent (cf. telegram service). We may
therefore treat requests as ordered pairs of nodes; paths are
directed and two paths overlap if they pass through the same
edge in the same direction. Thus, for our problem there is an
undirected and a directed version corresponding to symmetric
and one-way communication respectively. To avoid confusion
we will call the directed version DIRECTED MAXRPC.

A. Our results

We present efficient approximation algorithms for
MAXRPC and DIRECTED MAXRPC in rings. Both
algorithms are based on the Chain-and-Matching technique
which combines optimum solutions for chain instances
with appropriate coloring according to a matching between
requests. The algorithm for MAXRPC achieves approximation
ratio 2

3 which is a considerable improvement of the best
known ratio of 1 − 1

e [1].
For DIRECTED MAXRPC we develop a Balanced Matching

method which, combined with the Chain-and-Matching tech-
nique gives an efficient approximation algorithm with ratio
7
11 . This is better than the 1 − 1

e ratio which is the best
possible that can be achieved using the iterative method of
[3], [4], [1]—at least under the currently known analysis for
this method. We show that indeed the 1− 1

e ratio is achievable
by giving an exact algorithm for DIRECTED MAXRPC with
one available color. It turns out that this second algorithm
might achieve a better approximation guarantee only for small
number of wavelengths (w ≤ 43) and that its time complexity
is worse than the complexity of our Chain-and-Balanced-
Matching algorithm. To the best of our knowledge these are
the first results for the DIRECTED MAXRPC problem in rings.

B. Related work

The MAXRPC problem has been studied for several topolo-
gies. In chains it coincides with the problem “k-coloring
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of intervals” which is solved exactly [5], [6]. Wan and Liu
[1] present (1 − 1

e )-approximation algorithms for MAXRPC
in rings and trees and constant approximation algorithm for
meshes. Using ideas from [3], [4] they solve MAXRPC by
successive calls to an algorithm for MAXRPC with one
available color (also known as the Maximum Edge-Disjoint
Paths problem—MEDP). Using the same technique, Erlebach
and Jansen [7] provide a (1 − 1

e )-approximation algorithm
for DIRECTED MAXRPC in bounded degree trees and a
0.451-approximation algorithm for general trees. The on-line
version of MAXRPC (on-line call admission problem) has
been studied in [4] where they give a general technique to
obtain a (ρ + 1)-competitive algorithm for arbitrary number
of wavelengths from a ρ-competitive algorithm for one wave-
length. Nomikos and Zachos [6] study the version where the
routing is prescribed and give a 2

3 -approximation algorithm
for rings.

The most studied routing and wavelength assignment
problem is the minimization problem ROUTING-AND-PATH-
COLORING (RPC) where the goal is to satisfy all requests
with a minimum number of colors. The problem can be solved
exactly in polynomial time for chains (an old result, see e.g.
[8]) as well as for bounded-degree trees [9]. RPC for rings
is NP-hard [10]; 2-approximation algorithms are presented in
[11] (undirected case) and in [2] (directed case). A version
in which the routing is given (PC) is also well-known as
the circular-arc coloring problem. PC for rings is proved to
be NP-hard by Garey et al. [12]; Karapetian [13] presents a
3
2 -approximation algorithm.

Other related work includes multiple fiber models [14], [15],
[16], [17], [18] and models that allow wavelength conversion
[19], [20], [21]. Another interesting approach is to consider a
random distribution of requests and estimate blocking proba-
bilities (e.g., see [22], [23], [24]).

C. Notation and Preliminaries

Here n will denote the number of vertices and m the number
of requests (m = |R|); note that the number of edges is also
n, whereas the number of arcs in the directed version is 2n.
Let Π be any of our maximization problems. We say that an
algorithm for Π achieves approximation ratio ρ ∈ (0, 1) if it
produces solutions of cardinality at least ρ ·OPT where OPT
is the cardinality of the optimal (largest) solution.

A ring is a graph that consists of a single (simple) cycle. A
chain is a ring from which one edge has been removed. Note
that in chains, routing is unique for each request, while in rings
two paths are possible (clockwise and counterclockwise) for
each request.

Once a routing is determined, for each edge e we use
the term load of e, L(e) for short, to denote the number of
paths that share e. The load of an instance, L for short, is
the maximum load among all edges of the instance. For the
directed case the definitions are similar, using arcs instead of
edges.

In chains, MAXRPC can be solved exactly; an O(m + w)
time algorithm was presented by Carlisle and Lloyd in [5]. It is

Fig. 1. An instance of MAXRPC in rings with 2 available colors and 3
satisfied requests. Paths corresponding to satisfied requests are represented by
continuous lines.

well-known that for a chain instance of load L, it sufficient and
necessary to use L colors to color all requests. If w > L the
algorithm in [5] colors all paths using exactly L colors. The
algorithm works for the undirected version and the directed
problem can easily be reduced to the undirected one. We
therefore obtain the following fact.

Fact 1: Both undirected and directed versions of MAXRPC
can be solved exactly in polynomial time if the input graph is
a chain.

II. UNDIRECTED COMMUNICATION: A 2
3 -APPROXIMATION

ALGORITHM

MAXRPC is NP-hard even for rings, since there is
a straightforward reduction from the decision version of
ROUTING-AND-PATH COLORING (RPC) to the decision ver-
sion of MAXRPC for any topology. NP-hardness for RPC in
rings has been shown in [10].

An instance of MAXRPC in rings is shown in Figure 1.
In this section we present an approximation algorithm for

MAXRPC in rings that produces solutions of cardinality
at least 2

3OPT . This algorithm illustrates our Chain-and-
Matching technique on which the algorithm for DIRECTED

MAXRPC (see Section III) is also based.
The algorithm is illustrated in Figure 2. The general idea

is to transform the instance (Fig. 2(a)) to a chain instance
(Fig. 2(b)) that can be solved optimally. We then take a second
solution by making use of an appropriate matching (Fig. 2(c-
d)). The final output is the largest cardinality solution.

The matching is taken over a request compatibility graph
that is defined as follows. Each request corresponds to a ge-
ometric chord in the ring (circle). Two requests with crossing
chords cannot be routed with non-overlapping paths. Note that
in Figure 2(a) {2, 8} crosses {1, 4} while it does not cross
{8, 6}. Two requests that do not cross are called compatible;
two requests can be satisfied using the same color if and only
if they are compatible. Incompatible and compatible requests
are shown in Figure 3. The compatibility graph of a set of
requests R is a graph H = (R,E), in which the set of nodes
is the set of requests R and the set of edges E contains all
pairs of compatible requests.
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Fig. 2. (a) An instance of MAXRPC, requests are represented by chords.
(b) Set of paths C routed avoiding edge {8, 1}. (c) A maximum matching
on the request-compatibility graph H . (d) A routing by ALG2, according to
the maximum matching.

Fig. 3. Compatible (left) and incompatible (right) undirected requests.

ALG for MAXRPC

Input: ring G, set of requests R, number of colors w.
Output: paths and coloring for a subset of R.

Execute ALG1 and ALG2 independently. Output the largest cardi-
nality solution.

ALG1 Choose an edge e of G in an arbitrary way. Route requests
so that paths avoid e. Let C denote the resulting set of
paths. Color a maximum number of paths in C using an
algorithm for chains (see Fact 1).

ALG2 Find a maximum matching (of cardinality µ) in H , the
request compatibility graph of R. Repeatedly route matched
requests in a non-overlapping manner and color the two
paths using the same color, until there are either no pairs
left or no colors left.

Remark. A more sophisticated algorithm is possible, where
the two solutions are combined: the chain solution is recolored
according to an appropriate matching in such a way that the
final solution is at least as good as the best between the
chain and the matching solutions. The combination algorithm
performs better in many cases but both algorithms achieve the
same worst-case ratio. For the sake of clarity and brevity, we
have chosen to present the simpler algorithm here.

Theorem 1: The above algorithm satisfies at least 2
3 of the

maximum number of simultaneously satisfiable requests.
Proof: Let SOL1 (SOL2) be the number of requests

satisfied by ALG1 (ALG2) and SOL be the number of re-
quests satisfied by ALG. Let also OPT denote the maximum
number of requests in R that can be satisfied by any algorithm
that uses w colors. Then the following hold:

(a) SOL = max(SOL1, SOL2).
(b) OPT ≤ SOL1 + w:

Consider any optimal solution A satisfying OPT re-
quests. In A, the number of paths routed avoiding e (and
colored) is at most SOL1, due to the optimality of the
chain algorithm. In addition, A may only contain at most
w paths routed through e, since these paths overlap.

(c) OPT ≤ SOL1 + µ:
For an optimal solution A with requests routed through e
and colored with a uniquely used color, there is another
optimal solution B with such requests re-routed avoiding
e (with the same coloring). The set of requests in B that
are routed avoiding e (and colored) has cardinality at
most SOL1, otherwise there would be a better solution
for the chain instance of ALG1 which would contradict
the optimality of the chain algorithm used by ALG1.
Thus, compared to SOL1, the optimal solution B may
only contain additional satisfied requests routed through
e and colored so that each one of them shares its
color with a request routed avoiding e. Such pairs of
requests correspond to adjacent vertices in the request
compatibility graph H constructed by ALG2. Therefore,
their number is at most µ.

(d) OPT ≤ SOL1 + min(µ,w): from (b) and (c).
(e) SOL2 ≥ 2min(µ,w): ALG2 routes and colors matched

pairs of requests until there are either no more pairs or
no more colors.

(f) SOL ≥ 2
3OPT : from (a), (d) and (e), we have

OPT ≤ SOL1 +
1
2
SOL2 ≤ 3

2
OPT.

Remark. Note also that SOL1 ≥ w since all colors are used
(otherwise, all requests are colored and SOL = OPT ). Com-
bined with (b) we get SOL1 ≥ 1

2OPT , i.e. algorithm ALG1
achieves approximation ratio 1

2 for MAXRPC in undirected
rings.

Complexity. Coloring paths in C can be performed in O(m)
time, using the chain algorithm of Carlisle and Lloyd [5],
provided that paths are sorted according to their ending point.
This sorting can be done in O(m + n) time by bucket sort
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(with one bucket for each vertex). The most expensive step of
ALG for MAXRPC is the matching computation in ALG2,
which can be done in O(m2.5) time by using the algorithm in
[25]. The remaining steps require O(n + m) time. Thus, the
total complexity is O(n + m2.5).

III. DIRECTED COMMUNICATION: A 7
11 -APPROXIMATION

ALGORITHM

The DIRECTED MAXRPC problem corresponds to one-way
communication, i.e. messages are sent only in one direction
and any two connected nodes are linked with two arcs of
opposite direction. For simplicity we will call these two
opposite arcs an edge. Recall that in this case, two paths
overlap only if they share a common arc. Thus, a clockwise
and a counterclockwise path may always be colored with the
same color. Therefore, w colors are available per direction.

This graph-theoretic description models realistic optical
networks in which two opposite-directed fibers constitute a
full-duplex link and each communication message travels only
in one direction (datagram connectionless communication).

As in the undirected case, the DIRECTED MAXRPC for
rings is an NP-hard problem. This can be proved using a
simple reduction from the decision version of MAXRPC to
the decision version of DIRECTED MAXRPC.

A. The Chain-and-Balanced-Matching Technique

The algorithm follows a similar strategy as the algorithm for
undirected rings, using two subroutines, ALG1 and ALG2.
ALG1 routes all paths avoiding an edge e (that is two
opposite arcs) so that a chain instance occurs, whereas ALG2
transforms request satisfaction to a matching problem. How-
ever, the request compatibility graph is now defined in a
more sophisticated way. Namely, two requests can be satisfied
using the same color in clockwise direction if and only if
they can both be routed clockwise in a non-overlapping way
(see Figure 4, bottom-left). This can be done if and only
if their chords do not cross and in clockwise traversal the
target of one request is followed by the source of the other;
in this case we call the two requests clockwise compatible.
Similarly we define counterclockwise compatibility (see also
Figure 4, bottom-right). Incompatible requests are shown in
top of Figure 4. Note that two requests can be both clockwise
and counterclockwise compatible, if and only if they are
symmetric, that is they are between the same pair of nodes
but in opposite directions.

In order to simplify the algorithm presentation and analysis,
we will assume that the set of requests does not contain any
pair of symmetric requests; we will consider the modifica-
tions needed when symmetric requests appear at the end of
this subsection. Under the above assumption, given a set of
requests R, the request compatibility graph is an undirected
graph H = (R,Eblue∪Ered), where Eblue contains all pairs of
clockwise compatible requests (blue edges) and Ered contains
all pairs of counterclockwise compatible requests (red edges).

Coloring in ALG2 is performed using a matching which is
not necessarily maximum, but it is balanced. The idea behind

Incompatible requests

Compatible requests

Clockwise Counterclockwise

Fig. 4. Cases of incompatible and compatible directed requests.

balancing is that we can delete from a maximum matching
a number of superfluous edges of one color, in order to
increase, even by a smaller number, the edges of the other
color. We require that the initial maximum matching is proper:
a matching M of H is called proper if one of the following is
true: (a) M consists of a single edge (b) M contains edges of
both colors (c) all edges in H possess the same color. The next
lemma shows that this requirement can be always satisfied:

Lemma 1: The request compatibility graph H of any set
of directed requests R over a ring has a maximum matching
which is proper.

Proof: Let M be a maximum matching in H which
is not proper. W.l.o.g. we may assume that H contains at
least one red edge (a, b), M consists of only blue edges, and
|M | ≥ 2. Since M is maximum, at least one endpoint of (a, b)
is matched. Assume that a is matched, that is (a, a′) ∈ M . If
b is not matched, then we can obtain a maximum matching
with one red edge by replacing (a, a′) by (a, b). If however
b is also matched, that is (b, b′) ∈ M , then using the fact
that (a, a′) and (b, b′) are blue and (a, b) is red, it is easy to
prove that (a′, b′) is a blue edge of H . Hence, we can obtain
a maximum matching with one red edge by replacing (a, a′)
and (b, b′) by (a, b) and (a′, b′).

Let M be a matching in H and Mred be a maximum
matching in graph (R,Ered). Consider the graph G resulting
by superimposing M and Mred. The connected components
of G are either cycles or chains, since every vertex has
degree ≤ 2. An edge e, which is common in M and Mred,
belongs to a connected component that consists exactly of e.
The remaining connected components alternate edges of M
and Mred. Let C(M,Mred) denote the set of all connected
components in G, in which the number of edges that belong
to Mred is greater than the number of red edges that belong
to M . Notice that if C(M,Mred) = ∅ then the number of
red edges in M is maximum. Similar definitions can be given
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using color blue instead of red in the above.

ALG for DIRECTED MAXRPC

Input: ring G, set of directed requests R, number of colors w.
Output: directed paths and coloring for a subset of R.

Execute ALG1 and ALG2 independently. Output the largest cardi-
nality solution.

ALG1 Choose an edge e of G in an arbitrary way. Route the
requests so that connecting paths avoid e. Let C denote the
resulting set of paths.
Color a maximum number of paths in C using an algorithm
for directed chains (see Fact 1).
If free colors remain in a direction, re-route unsatisfied
requests according to this direction and color the corre-
sponding paths with these colors, one color for each path.

ALG2 Construct the compatibility graph H = (R, Eblue ∪ Ered),
of R.
Find a maximum proper matching M in H .
Execute the Balancing Procedure to obtain a balanced
matching M ′.
Route matched pairs of requests according to the direction
implied by the matching M ′.
In each direction, repeatedly color two matched requests
using one color, until there are either no more pairs or no
more colors.
In each direction, if unused colors remain, route and color
unsatisfied requests using one color for each.

Balancing Procedure
(W.l.o.g. we assume that M contains more blue edges than
red edges. The other case is symmetric.)
Find a maximum red matching Mred and let
S = C(M, Mred).
While M contains more than w + 1 blue edges and less
than w red edges, and S is not empty, choose (arbitrarily)
a connected component F in S, execute the Augmenting
Step for F and delete F from S.

Augmenting Step
Let ν1, ν2 be the number of blue edges in M , F respec-
tively. If ν1 − ν2 < w, then let F ′ be a chain of edges in
F with ν1 − w blue edges, which begins and ends with a
blue edge. Otherwise let F ′ = F .
Delete from M all edges that belong to F ′; add to M all
edges in F ′ that belong to Mred.

Lemma 2: Suppose that the augmenting step increases the
number of red edges by a value k. Then the corresponding
decrease in the number of blue edges is at most k + 1.

Proof: Let kr be the number of edges in Mred that appear
in F ′. Then the number of edges in M that appear in F ′ is at
most kr +1 (since F ′ alternates edges between M and Mred);
a number kr − k of them are red. Consequently the number
of blue edges in F ′ is at most kr + 1 − (kr − k) = k + 1.

Lemma 3: If the algorithm terminates due to S = ∅ then
the number of red edges in M ′ is maximum.

Proof: Suppose that the i-th iteration of the while loop
in the Balancing Procedure executes the Augmenting Step for
the component Fi and let Mi be the resulting matching. Let
M0 = M . Observe that C(Mi+1,Mred) = C(Mi,Mred) −
{Fi}. This implies that C(Mi+1,Mred) = C(M,Mred) −
{F0, . . . , Fi}. Consequently, if the algorithm terminates due
to S = ∅ then C(M ′,Mred) = ∅. This means that the total

number of red edges in M ′ cannot be less than |Mred|. The
lemma follows since Mred is a maximum red matching.

Theorem 2: The above algorithm satisfies at least 7
11 of the

maximum number of simultaneously satisfiable requests.
Proof: Let SOL0 be the number of paths colored by the

algorithm for directed chains, SOL1 (SOL2) be the number
of requests satisfied by ALG1 (ALG2) and SOL be the
number of requests satisfied by ALG. Let also OPT denote
the maximum number of requests in R that can be satisfied
by any algorithm that uses w colors per direction. Moreover,
let µ, µblue, µred represent the size of the maximum matching
in H, (R,Eblue), (R,Ered) respectively. Finally, assume that
M contains µb blue and µr red edges (µ = µb + µr) and M ′

contains µ′
b blue and µ′

r red edges.
Again, w.l.o.g. assume that neither ALG1 nor ALG2 satisfy

all requests (otherwise SOL = OPT ). Then the following
hold:

(a) SOL0 ≤ SOL1.
(b) SOL = max(SOL1, SOL2) and thus

SOL ≥ SOLi, 0 ≤ i ≤ 2.

(c) SOL1 ≥ 2w: all w colors, in both directions, are
used since otherwise, all requests are colored—which
contradicts the assumption.

(d) OPT ≤ SOL0 + 2w:
Consider any optimal solution A satisfying OPT re-
quests. In A the number of paths routed avoiding e (and
colored) is at most SOL0, due to the optimality of the
chain algorithm. In addition, A may only contain at most
w paths per direction routed through e, since these paths
overlap.

(e) SOL1 ≥ 1
2OPT : from (a), (c) and (d).

(f) OPT ≤ SOL1 + µ:
Following similar arguments as in (c) in proof of Theo-
rem 1 we can show that, compared to SOL1, an optimal
solution B may only contain additional satisfied requests
routed through e and colored so that each request has
the same color as a request routed avoiding e. Such
pairs of clockwise (counterclockwise) routed requests
correspond to adjacent vertices in graph H constructed
by ALG2. Therefore, the number of these requests is at
most µ.

(g) OPT ≤ SOL1 + min(w, µblue) + min(w, µred):
By using separately for each direction the same argu-
ments as in (d) and (f).

(h) OPT ≤ SOL1 + z , z = min(µ,min(w, µblue) +
min(w, µred)): from (f) and (g).

(i) SOL2 ≥ 7
4z:

W.l.o.g. we may assume that µb ≥ µr.
Case 1: µb ≤ w. Then the augmenting step is never ex-
ecuted. All requests matched by M ′ = M are satisfied,
that is SOL2 ≥ 2µ ≥ 2z.
Case 2: µb > w. Then obviously µblue > w. Moreover
the selection of F ′ guarantees that µ′

b ≥ w. We consider
two subcases:
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Case 2.1: µ′
r ≥ min(w, µred). Then

SOL2 ≥ 2(min(w, µ′
b) + min(w, µ′

r))
≥ 2(w + min(w,min(w, µred)))
= 2(min(w, µblue) + min(w, µred))
≥ 2z.

Case 2.2: µ′
r < min(w, µred). Then µ′

b = w + d, where
d ∈ {0, 1}. The balancing procedure in ALG2 increases
the number of red edges by at least µb−µ′

b

2 , since in the
worst case an execution of the augmenting step may
replace two blue edges with one red edge. Therefore
µ′

r ≥ µr + µb−µ′
b

2 = 2µr+µb−w−d
2 ≥ µr+µb−w

2 .
To obtain the last inequality, we use the fact that
µr ≥ 1 ≥ d, which holds because M is a proper match-
ing, and in this subcase µred > µ′

r ≥ 0 and µb > w ≥ 1.
Consequently,

SOL2 = 2w + 2µ′
r + (w − µ′

r)
= 3w + µ′

r

≥ 3w +
µr + µb − w

2

= 3w +
µ − w

2

=
1
2
(5w + µ)

≥ 1
2
(
5
2

min(2w, µ) + min(2w, µ))

=
7
4

min(2w, µ) ≥ 7
4
z.

(j) SOL ≥ 7
11OPT : from (b), (h) and (i) we have

OPT ≤ SOL1 +
4
7
SOL2 ≤ 11

7
SOL.

Remark. Note that here also, (e) implies SOL1 ≥ 1
2OPT ,

i.e. algorithm ALG1 achieves approximation ratio 1
2 for DI-

RECTED MAXRPC in rings.

It remains to consider the general case, in which R may
contain symmetric requests. In this case, the request compat-
ibility graph is H = (R,Eblue ∪ Ered ∪ E∗), where E∗ is
the set of edges that connect symmetric requests. Symmetric
requests are both clockwise and counterclockwise compatible,
that is edges in E∗ can be colored either blue or red. We
choose a color for each edge in E∗ after the computation
of a maximum matching M of H and before executing the
balancing procedure. There are three cases:
a) If M contains at least w edges of each color then no
balancing is needed and therefore the coloring of E∗ is
irrelevant (e.g., we may color all edges in E∗ red).
b) If M contains at least w edges of one color (say blue) and
less than w edges of the other color (red), then we color all
uncolored edges red.
c) Otherwise (M contains less than w edges of each color)
we start coloring edges in E∗ ∩ M blue until M contains
exactly w blue edges or there are no more uncolored edges in

M ; in the former case we continue by coloring the remaining
uncolored edges red.
If M is not a proper matching for the resulting graph we apply
the transformation indicated in Lemma 1. Notice that for the
above described general case the proof of Theorem 2 is similar,
with µblue, µred representing the size of a maximum matching
in (R,Eblue ∪ E∗), (R,Ered ∪ E∗) respectively.

Complexity. The complexity of the algorithm is O(m2.5).
Notice that the balancing algorithm requires O(m2.5) time to
compute Mred and O(m) time to perform the balancing.

B. Comparison with the Maximum Edge-Disjoint Paths tech-
nique

We now show that the idea of iterative application of an
algorithm for the Maximum Edge-Disjoint Paths problem
(MEDP) [1], [7] can be also applied here.

In our terminology we are looking for an algorithm that
gives a maximum number of arc-disjoint paths; in other words,
an algorithm that can route and color a maximum number
of directed requests using one color in each direction. The
iterative technique guarantees that if there is an exact algorithm
for coloring with one color then there is an algorithm that
colors with w colors which achieves an approximation ratio
1 − (1 − 1

w )w ≥ 1 − 1
e . This w-coloring algorithm consists of

merely repeating the 1-coloring algorithm w times.
Indeed, the following algorithm solves exactly the DI-

RECTED MAXRPC problem for w = 1.

1-Coloring Algorithm
for DIRECTED MAXRPC

Input: ring G, set of directed requests R.
Output: a maximum set of requests with corresponding paths that do
not overlap (arc-disjoint paths).

Set S = ∅.
Repeat steps (a), (b), and (c) for each request r ∈ R:
(a) Route r clockwise with a path p(r). Add r to Sr .
(b) Assign a path to each request so that p(r) is avoided (if
possible, otherwise remove the request). Find a maximum set of non-
overlapping paths in each direction. Add the corresponding requests
to Sr . If |Sr| > |S| set S = Sr .
(c) For each request t do:
If t can be satisfied by a counterclockwise path p(t) such that p(t)
and p(r) share an edge (use opposite arcs), add r and t to Sr,t. Assign
a path to each request so that common edges of p(r) and p(t) are
avoided (if possible, otherwise remove the request). Find a maximum
set of non-overlapping paths in each direction. Add the corresponding
requests to Sr,t. If |Sr,t| > |S| set S = Sr,t. Repeat steps (a), (b)
and (c) using the symmetric directions. If a larger cardinality solution
occurs set S to be this solution.
Output S.

It is not difficult to verify that the above algorithm exam-
ines all possible routings and therefore gives the maximum
solution. We therefore have the following.

Corollary 1: An approximation ratio 1−(1− 1
w )w > 1 − 1

e
can be achieved for the DIRECTED MAXRPC problem in
rings, where w is the number of colors.
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This iterative algorithm has a worse approximation guar-
antee than the Chain-and-Balanced-Matching algorithm for
all w > 43 and it has a worse time complexity O(wm3).
Therefore, it may be of some practical use only in very limited
cases (mainly for small w).

IV. CONCLUSIONS – DISCUSSION

We studied the problem of satisfying a maximum number of
communication requests in a ring and proposed algorithms for
both the undirected and the directed versions of the problem.

By using the Chain-and-Matching technique we obtain a
2
3 -approximation algorithm for MAXRPC; the best known
ratio so far was 1− 1

e [1]. This represents a significant increase
in the number of satisfied requests.

Combining this technique with a Balanced-Matching
method we achieve a 7

11 -approximation ratio for DIRECTED

MAXRPC. To the best of our knowledge this is the first
algorithm for the DIRECTED MAXRPC problem in rings. An
interesting open question is whether this ratio can be further
improved by a more accurate balanced matching method. In
particular, Balanced Matching can be seen as an interesting
open problem that arises from this work. Solving Balanced
Matching exactly would result in a 2

3 -approximation for the
directed case as well.

Following a standard iterative method we have shown that
we can obtain a second algorithm with approximation ratio
1 − (1 − 1

w )w > 1 − 1
e . A comparison of the two algorithms

shows that our 7
11 algorithm outperforms the iterative one

except, possibly, for few cases.
The Chain-and-Matching algorithms can be improved in

order to perform better in the average. For example, we may
use the maximum matching of ALG2 to improve the solution
of ALG1 (i.e. a combination of ALG1 and ALG2 instead
of a mere choice). This does not improve the worst-case
approximation ratio but it certainly makes the algorithms more
useful in practice.

On the other hand, sometimes the algorithm can be termi-
nated earlier. For example, in ALG for MAXRPC, if ALG1
satisfies more than 2w requests, ALG2 does not need to
be executed because SOL1 ≥ SOL2. In any case, if a
ratio 1

2 is acceptable, implementing only ALG1 suffices; the
advantages are the simplicity of implementation and the linear
time complexity of ALG1 for all problems.

An interesting open problem is to determine upper bounds
for the approximation ratios of MAXRPC and DIRECTED

MAXRPC in rings, i.e. bounds on how close to 1 these ratios
can be. As far as we know no such bounds have been shown
yet.
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