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Abstract— In this paper, we use fluid model techniques to
establish some new results for the throughput of input-buffered
switches. In particular, we introduce a new class of deterministic
maximal size matching algorithms that achieves 100% through-
put. Dai and Prabhakar [3] has shown that any maximal size
matching algorithm with speedup of 2 achieves 100% throughput.
We introduce a class of maximal size matching algorithms that
we call them maximum node containing matching (MNCM)
algorithms, and prove that they have 100% throughput with no
speedup. We also introduce a new weighted matching algorithm,
maximum first matching (MFM) with complexity O(N2.5) that
belongs to MNCM. MFM, to the best of our knowledge, is the
lowest complexity deterministic algorithm that delivers 100%
throughput. The only assumption on the input traffics is that
they satisfy the strong law of large numbers. Besides throughput,
average delay is the other key performance metric for the input-
buffered schedulers. We use simulation results to compare and
study the delay performance of MFM. The simulation results
demonstrate promising delay performance for MFM.

I. INTRODUCTION

Due to the progress in optical transmission technology and
increase in Internet traffic, very fast switching technology are
necessary for internet core and edge switches and routers.
Among different switch fabric architectures, input-buffered
switches are one of the most popular architectures for the
high-speed data networks.

There are three or four major elements in an input-buffered
switch fabric architecture. The first element is the input buffer
that is used to buffer the incoming cells or packets. The
second element is the switching block which is a cross-bar
that connects input ports to the output ports. Note that at any
time every input can be connected to only one output port and
vice versa. The third element is the scheduler that determines
which input port to get connected to which output port and
configures the cross-bar accordingly. The fourth element is
output buffers. Buffering at the output ports is only required
if switch fabric has speedup and works at higher rate than the
input and output lines.

One of the main reason behind the popularity of the
input buffered architecture is that it has the least memory
speed requirements. This is specially true when input-buffered

switches have no speed-up, because in this case the access rate
to cross-bar and memories is equal to the line rate. If we use
an input-buffered architecture with speed-up k, then the switch
fabric memories and cross-bars should work k times faster than
the line rate. In the extreme case, an output-buffered switch is
similar to an input-buffered switch with speed-up of N , where
N is number of switch ports.

The first challenge of input-buffered switches is their
throughput performance. It is a well known fact that due to
head of line (HOL) blocking, throughput of input buffered
switches for i.i.d Bernoulli arrival pattern is limited to 58.6%
[7]. Virtual output queueing (VOQ) can eliminate this problem
by maintaining a separate queue for each output in every input
[1]. In fact, it is shown that by using suitable scheduling
(matching) algorithm the input-buffered switches with VOQs
can achieve 100% throughput [12], [8], [9], [3]. The main
challenge is to develop and design low complexity scheduling
algorithms that can achieve 100% or at least reasonably high
throughput.

Stability and throughput of input-buffered switches is a
well studied problem. In papers [12], [8] it is proved that
maximum weighted matching (MWM) algorithm can achieve
100% throughput. In [8] number of backlogged packets and
maximum delay of waiting packets in each VOQ are consid-
ered as two potential weight functions. In another work [9],
Mekkittikul and Mckeown considered the case where weights
are associated to the ports rather than links and showed that the
proposed algorithm, longest port first (LPF), achieves 100%
throughput. Complexity of LPF is also O(N3), even though
for practical purpose it seems to be more favorable than MWM
[10]. Stability of these algorithms are all proven under the
assumption of i.i.d. arrivals.

Tassiulas [13] has also introduced a class of randomized
iterative algorithms that achieve 100% throughput for i.i.d.
arrivals. The complexity of the proposed algorithm is O(N2),
but it is straightforward to introduce an O(N) algorithm in
this class too. In [5] modifications to the original algorithm
are proposed to improve the performance. One of the problems
with randomized scheduling algorithms is their poor and non-
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deterministic delay performance. More research is needed
to overcome these problems before randomized algorithms
become mature enough for consideration in practical systems.

More Recently Dai and Prabhakar [3] have used the fluid
model techniques to prove that the maximum link weighted
matching achieves 100% throughput for a very general set
of input traffic patterns. The only assumption on the input
traffic is that it satisfies the strong law of large numbers and
it does not over-subscribe any input or output port. In the
same work, they have also proved that any maximal matching
algorithm with speed up of 2 achieves 100% throughput.
This is a very interesting result, because maximal matching
algorithms are in general less complex than maximum size and
maximum weighted matching algorithms, and therefore are
more appropriate for implementation in high speed switches.

In this paper, we extend some of the results of [3], by
introducing maximum node containing matching (MNCM)
algorithms. MNCM is a new class of maximal matching
scheduling algorithms, that achieves 100% throughput with
no speedup. The norm function that is commonly used for
stability analysis is norm 2 (‖ ·‖2). In this paper, we use norm
infinity (‖·‖∞) instead of it, and focus on matching algorithms
that function based on that. We prove that these matching
schemes achieve 100% throughput too. We also introduce
maximum first matching (MFM) algorithm that is in MNCM
class, and therefore has 100% throughput. MFM employs
maximum size matching algorithms with O(N2.5) complexity
rather than maximum weighted matching algorithms with
O(N3) complexity.

We also introduce another maximal deterministic matching
algorithm with O(N2) complexity, the maximal sorted match-
ing (MSM). MSM is basically a trivial generalization of the
iLPF algorithm introduced in [9]. MSM is not in MNCM class,
but for practical applications, we think that it performs similar
to MFM. Even though we were not able to prove that MSM has
100% throughput, due to its similarity to MFM, we think that
for all practical purposes it achieves the 100% throughput. This
conjecture is in accordance with our simulation results, where
delay performance of MSM matches performance of MFM.
Since we have used the fluid model technique, the stability
results are under very general conditions for arrival process.
The only assumption on the input traffic is that it satisfies the
strong law of large numbers. Recall that the results of [9] are
for i.i.d. arrivals. Therefore, our results are the first stability
results for port weighted matching algorithms under general
arrival patterns.

The rest of the paper is organized as follow, in section 2,
we introduce our notation and model. In section 3, we review
the link based model of the switch, and extend the link based
fluid model proposed in [3] to a port based model. In section
4, we prove the main result of the paper, which is the stability
of MNCM class of matching. In section 5, we present MFM,
and MSM algorithms and elaborate on their complexity. We
conclude paper with some simulation results, that demonstrate
the delay performance of proposed matching algorithms.

II. MODEL AND DEFINITION

We consider input queued switches that serve fixed size
packets (cells). Each input and output has the capacity of
serving 1 cell per unit time. Since queues exist only at the
input ports, the latter assumption implies that traffic of at most
1 cell per unit time can be transferred from the input ports to a
given output port. To avoid HOL blocking, we consider that the
buffer at an input is partitioned into N virtual output queues.
The scheduling policy is basically a matching algorithmm that
based on the state of the switch selects a matching between the
inputs and outputs in every time slot. If input i is matched to
output j, and the corresponding VOQ is not empty, a packet is
sent form input i to output j. A matching can be represented
by a permutation matrix π. Input ports are represented by the
rows and output ports by the columns of this matrix, therefore
input i is matched to output j if and only if πij = 1.

We assume that the cells arrive at the switch at the beginning
of a time slot, and they depart the switch at the end of a time
slot. A packet that has arrived at the beginning of time slot n
can be scheduled at the same time slot and depart the switch
at the end of time slot n. Let Aij(n) be the number of packets
that arrived at input i and are destined for output j up to time
n. We assume that there are no arrivals before time 0, i.e.,
Aij(0) = 0. The arrival processes {Aij(.), i, j = 1, . . . , N}
satisfy strong law of large numbers, that is with probability
one,

lim
n→∞

Aij(n)
n

= λij i, j = 1, . . . , N. (1)

λij is the arrival rate of cells destined from input i to output
j. Similarly, we show the number of departed cells up to time
n, from input i to output j with Dij(n). We consider the
following definition for stability.

Definition 1: A switch operating under a scheduling algo-
rithm is rate stable if, with probability one

lim
n→∞

Dij(n)
n

= λij i, j = 1, . . . , N, (2)

for any arrival process that satisfies (1).
Definition 2: A scheduling algorithm is efficient if (2) holds

for any arrival process satisfying the feasibility conditions,

N∑
i=1
λij ≤ 1,

N∑
j=1
λij ≤ 1.

(3)

Let Zij(n) be the number of backlogged packets in V OQij

at time n, hence

Zij(n) = Aij(n) −Dij(n). (4)

We will introduce and analyze some scheduling algorithms
that work based on the port level parameters. Port level
parameters are defined to be aggregate (summation) of their
corresponding link level parameters. We number the ports
of the switch from 1 to 2N where index sets {1, . . . , N} ,
and {N + 1, . . . , 2N} corresponds to input and output ports
respectively. Let (i, j), i, j ∈ {1, . . . , N} , indicates one of
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the switch links and k ∈ {1, . . . , 2N} one of the switch ports.
We say link (i, j) goes to port k and show it as (i, j) → k, if
k and either i or j are associated to the same physical port,
i.e. either k = i or k = j + N . We define the port arrival
process I(n) = {Ik(n), k = 1, . . . , 2N}, departure process
E(n) = {Ek(n), k = 1, . . . , 2N}, the backlogged process
B(n) = {Bk(n), k = 1, . . . , 2N}, and the port arrival rate
r = {rk, k = 1, . . . , 2N},

Ik(n) =
∑

(i,j):(i,j)→k

Aij(n),

Ek(n) =
∑

(i,j):(i,j)→k

Dij(n),

Bk(n) =
∑

(i,j):(i,j)→k

Zij(n),

rk =
∑

(i,j):(i,j)→k

λij .

(5)

In the next section, we provide the equations that govern
evolution of the port level parameters.

III. LINK AND PORT FLUID MODELS

The fluid model for the links of an input buffered switch is
given in [3]. We first review those relations and then extend
them to derive the port based fluid model. Consider an input-
buffered switch that employs scheduling algorithmm. Suppose
that Tm

π (n) be the total time that permutation matrix π is used
up to time n. The following equations describe the link level
discrete dynamic of the switch, for n ≥ 0, and i, j = 1, . . . , N ,

Zij(n) = Zij(0) +Aij(n) −Dij(n),

Dij(n) =
∑

π∈Π

n∑
l=1
πij1{Zij(l)>0}(Tm

π (l) − Tm
π (l − 1)),

∑
π∈Π
Tm

π (n) = n,

(6)
where Π is the set of all N × N permutation matrices. The
first equation describes the basic relation between arrival,
departure and backlogged process. The second equation counts
the number of total departures from input i to output j by
counting number of times that a permutation matrix with a
one in (i, j) position is used, while there were a backlogged
packet in the corresponding VOQ.

The port dynamics of a switch can be derived from link
dynamics. Every port k = 1, . . . 2N , dynamic is basically

summation of its corresponding link dynamics,

Bk(n) = Bk(0) + Ik(n) −Ek(n),

Ek(n) =
∑

π∈Π

n∑
l=1

N∑
(i,j):(i,j)→k

(
πij1{Zij(l)>0}(Tm

π (l) − Tm
π (l − 1))

)
,

∑
π∈Π
Tm

π (n) = n.

(7)
Now we describe a deterministic continuous fluid model of

a switch operating under some matching algorithm m. The
link level fluid model that is used in [3] is,

Zij(t) = Zij(0) + λijt−Dij(t) ≥ 0,

Ḋij(t) =
∑

π∈Π
πij Ṫ

m
π (t) ≥ 0, if Zij(t) ≥ 0,

∑
π∈Π
Tm

π (t) = t.

(8)

We can derive the port level fluid model of the switch from
relation 8 and 5, or directly from 7.

Bk(t) = Bk(0) + rk t− Ek(t) ≥ 0,

·
Ek(t) =

∑
π∈Π

∑
(i,j):zij(t)>0&(i,j)→k

πij Ṫ
m
π (t) ≥ 0,

∑
π∈Π
Tm

π (t) = t.

(9)
Note that (9) is not an independent complete set of equations
that describes the dynamic behavior of the port level fluid
model for the switch, since in the second equation we still
use link level parameters (zij(t)) of the switch.

The matching algorithm that is used for scheduling provides
additional fluid model equations. For instance, if we use
the conventional maximum weighted matching algorithm and
consider number of backlogged cells of every link, Zij(t) as
its weight, there will be one additional fluid equation for every
link (i, j) [3],

Ṫm
π (t) = 0 if 〈π, Z(t)〉 < 〈π′, Z(t)〉 for some π′ ∈ Π .

(10)
In other words, at time t, under the maximum weight

matching algorithm, a matching π that has less weight than
another matching π′ is not employed.

In this paper, we consider weighed matching algorithms that
function based on the port weight rather than link weights.
Weight of a port is total weight of all links connected to it.
LPF [9] is one of these algorithms, where we consider the
backlogged traffic in every port as the weight of that node.
Maximum node matching (MNM) [14] is another example that
weights are amount of service that scheduler owes every link,
according to the reserved rate of that port. The only difference
between the MNM and LPF is in the weight function that is
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used for links, but they have the same complexity. It is proved
in [14] that the obtained matching under MNM is a min-max
matching, and it has the maximum lexicographic ordering. In
other words, it is impossible to add a new port to the matching,
without removing a higher weight node from the matching.
This is also true for LPF for the corresponding weight vectors.
This property can be used to write an additional fluid equation
for LPF, however we consider a generalized class of matching
algorithms that includes LPF, and derive some interesting
result for this general class of matching algorithms. The sig-
nificance of MNCM class becomes more clear later, when we
introduce a deterministic matching algorithm in MNCM that
has lower complexity, and has a very good delay performance.
First we need to define MNCM class:

Definition 3: A maximal size matching algorithm m be-
longs to MNCM class if and only if m contains all nodes
with maximum weight.

For now, we assume that MNCM is a non-empty class, and
for any combination of link weight values there exists at least
one MNCM matching. Under this assumption, LPF turns out to
be MNCM. Recall that LPF is a min-max matching algorithm.
Therefore, if there is any matching that contains all nodes with
maximum weight, LPF should contain all maximum weight
ports too, otherwise it is not a min-max matching. In the
next section, we prove that any MNCM scheduler is efficient,
and this immediately proves that LPF is efficient. However,
there are some less complex algorithms in MNCM class too.
Basically, a matching is in MNCM that at least covers those
nodes with maximum weight, but we do not care about the
rest of the nodes and wether they are included or not.

Recall that the matching algorithm that is used for schedul-
ing algorithm results in additional fluid model equations.
For any matching in MNCM the following additional fluid
equation holds. For any port k with maximum weight at time
t we have,

∑
π∈Π

(
∑

(i,j):zij(t)>0&(i,j)→k

πij)Ṫm
π (t) = 1

if Bk(t) is maximum
(11)

Equation (11) says that all ports with maximum weight are
fully served under a MNCM policy.

Before ending this section we need to define function
f(B(t)). Function f(B(t)) is defined from R2N → R as,

f(B(t)) = max {B1(t), . . . , B2N (t)} (12)

This function plays a role similar to the Lyapanov function in
the stability proofs. Under a fluid model, B(t) is differentiable,
and consequently, f(B(t)) is continuous but not necessarily
differentiable. However, due to the differentiability of B(t),
we can define the right derivative of f(.) as follow,

df(B(t))
dt+

= lim
δ→0+

f(B(t+ δ) − f((B(t))
δ

(13)

We use f(B(t)) and its right derivative in the course of
stability proofs.

IV. STABILITY RESULTS

Our main objective here is to prove the following theorem,

Theorem 1: A switch operating under an MNCM matching
algorithm is efficient.

To prove theorem 1, we will use the following theorem that
is proved in [3].

Theorem 2: A switch operating under a matching algorithm
is rate stable if the corresponding fluid model is weakly stable.

A fluid model is weakly stable if for every fluid model solution
(E, T,B) with B(0) = 0, B(t) = 0 for all t ≥ 0.

Before proceeding further, we need to elaborate on the
properties of function f(B(t)). Clearly for every t0 ≥ 0
there is always a subset of indices Q(t0) such that for every
k ∈ Q(t0), f(B(t0)) = Bk(t0), i.e., Bk(t0) is the maximum
entry of the vector B(t0). We say that B(t0) is represented
by Q(t0) at time t0. Moreover, due to continuity properties
of B(t) under the fluid model, for every t0 ≥ 0, there
exists some δ > 0 such that for all t ∈ [t0, t0 + δ[ there is
always one common index q(t0, t0 + δ) ∈ Q(t). We say that
B(t) is represented by q(t0, t0 + δ) in [t0, t0 + δ[ interval,
i.e. Bq(t0,t0+δ) is maximum entry of B(t) in the interval
[t0, t0 + δ[. We can always partition the time axis into disjoint
intervals [0,∆1[, [∆1,∆1 + ∆2[, · · · such that each interval is
represented by a common index qi i = 1, 2, · · · . We say that
the sequence {∆i}∞

i=1 is a D-partition, where D stands for
differentiable.

The point is that in every sub-interval of a D-partition,
f(B(t)) is equal to one entry of B(t), and hence it is
differentiable with respect to t. Since these intervals are open
in right, for any such interval i that is represented by qi we
can write,

(
df(B(t))
dt+

)t∈ i−th interval =
·
Bqi

(t0). (14)

Now we are in a position to prove the theorem,

Proof of theorem 1: Let (E, T,B) be a solution to equations
(9), (11) with B(0) = 0. In order to prove that B(t) remains
zero for t > 0, it suffices to prove that f(B(t)) remains zero.
To that end we show that,

df(B(t))
dt+

≤ 0 ∀t > 0.

Suppose that the sequence {∆i}∞
i=1 is a D-partition for solu-

tion (E, T,B) with B(0) = 0, and qi represents f(B(t)) in
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i-th interval. Let t0 ≥ 0 resides in the i-th interval. We have,

(
df(B(t))
dt+

)t=t0 =
·
Bqi

(t0)

= rqi
−

·
Eqi

(t0)

= rqi
−

∑

π∈Π

((
∑

(p,j):Zpj(t0)>0&(p,j)→qi

πpj)
·
T

m

π (t0))

= rqi
− 1

≤ 0

The second and third relations are direct application of fluid
model equations given in (9). The fourth equation is due to
property of MNCM given in (11), and the fact that Bqi

is
maximum. The last equation is from feasibility condition given
in (3). Therefore, we have proved that Z(t) = 0 and fluid
model is weakly stable. Using theorem 2, we can conclude
that the MNCM policies are efficient.

�

The novelty of our approach is to consider the maximum
norm in definition of function f(·). In the previous approaches
usually a second norm function was used in definition of f(·).
In the next section, we introduce a matching algorithm that
is in MNCM and has a lower complexity than all previous
suggested deterministic algorithms.

V. MAXIMUM FIRST MATCHING (MFM)

In the previous section we proved that MNCM algorithms
are efficient. In the proof, we implicitly assumed that MNCM
algorithms always exist. We will prove that this is true and then
introduce MFM as a low complexity member of this class.

Lemma 1: Consider an N × N switch, and suppose that
Bi(t) i = 1, · · · , 2N is the number of buffered packets
corresponding to port i in the switch. There always exist a
matching m ∈MNCM .
Proof of lemma 1: We consider different cases according to
the number of nodes with maximum weight. The case where
there are at most one node in input side and one in output
side with maximum weight is trivial. Suppose that there are
more than one node in the input side with maximum weight
and they can not be all matched to the output nodes. We show
that this can not happen. Using Hall’s theorem [2], this means
that there is a subset S of the maximum weight nodes with
cardinality k > 1 that has less than k neighbors in the output
side. Let N(S) be the neighbor set of S,

|N(S)| < |S| = k. (15)

On the other hand, total weight of N(S) nodes is at least equal
to the total weight of S, because all links that are connected to

S are also connected to N(S). Let W (S) be the total weight
of nodes in set S, and W (N(S)) total weight of nodes in
N(S).

W (N(S)) > W (S) = k Zmax (16)

From (15) and (16) we can say that there should be at least
one node in the neighbor set that its weight is at least k/(k−
1)Zmax. This contradicts with the assumption that Zmax is the
maximum weight.

�

Note that as long as the node weight is defined as summation
of link weights the proof is valid, weight function does not
necessarily need to be number of backlogged cells. The LPF
algorithm that is introduced by McKeown [8] is an example
of MNCM algorithms. LPF works on non-matched nodes one
by one starting with the node that has highest weight. To find
the matching, for each one of the nodes we need to search
all N2 links of the bipartite graph. Since there are 2N nodes,
the complexity of LPF turns out to be O(N3). Basically this
algorithm is a modification of the Edmonds Karp max-flow
algorithm [4] and its complexity is the same as that.

The only introduced matching algorithm with O(N2.5)
complexity is Hopcroft and Karp algorithm [6], which is a
maximum size matching algorithm. In this algorithm the nodes
are introduced into the matching simultaneously; this is not
possible in LPF algorithm.

In MFM algorithm, we convert the maximum weighted
matching algorithm to a limited number of maximum size
matching algorithms. In this way, we can use the Hopcroft and
Karp algorithm to obtain a simple maximum size matching in
each step,and reduce the complexity of the algorithm. We can
do this since our objective is no more to find the maximum
weighted matching, but to have a matching that contains all
node with maximum weight. Since MFM contains all nodes
with maximum weight it is MNCM and is therefore efficient.
The details of the algorithm is as follow (complexity of each
step is given at the end of each step),

Algorithm 1: (MFM):

1) Sort all input and output nodes according to their weight
(O(N logN)).

2) Find a matching M1 that contain all input nodes with
max weight (O(N2.5)).

3) Find a matching M2 that contain all output nodes with
max. weight (O(N2.5)).

4) CombineM1 andM2 to get an inclusive matchingM1∪
M2 (O(N)).

5) Perform a simple sorted maximal matching algorithm on
the rest of nodes not in the matching (O(N2)).

6) The combination of matchings of step 4 and 5 is MFM
matching.

�

In step 1, all nodes are sorted according to their weights.
Since there are 2N nodes the complexity of this step is
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Fig. 1. Four possible forms of sub-graphs in a combined matching. Links
of M1 are shown with solid lines and M2 with dashed lines. Nodes with
maximum weight are shown as black nodes.

O(N logN). In step 2 we consider input nodes with maximum
weight together with all output nodes and find a maximum size
matching, M1, in the corresponding graph. The complexity of
this step is O(N2.5) and from lemma 1 we know that it would
cover all input nodes with maximum weight. Step 3 is similar
to step 2, but here we find a matching, M3 that covers all
output nodes with maximum weight. In step 4, we combine
the two matchings to find a matching that cover both input
and output nodes with maximum weight.

It is useful to elaborate more on step 4. Consider the
bipartite graph that contains only those links that are inM1 and
M2. Our objective is to find a matching that contain all of the
nodes with maximum weight from these two matchings. The
maximum degree of a node in the combined graph is 2, since
there are at most two links connected every node (one from
M1 and one from M2). Therefore this bipartite graph can be
divided into disjoint sub-graphs. For each subgraph we have
to obtain an optimal matching. Subgraphs can be classified
into four classes and the process of obtaining a matching is
different for each class. In general, we have to select a group of
links, belonging to eitherM1 orM2, that construct a matching
in the sub-graph as follow (Fig.1)

1) Single link subgraph: If there is an isolated link con-
necting two nodes that link is included in the matching.

2) Cycle subgraph: Since the graph is bipartite, cycles
have even number of links. Links alternatively belong
to M1 and M2. We can select either set of the links for
matching, since both cover all nodes in the cycle.

3) Path subgraph with odd number of links: Here we
have an alternate path, that is similar to an augmented
path in matching terminology. Basically one set of links
either those belonging to M1 or M2 has one more
element. That set covers all nodes in the sub-graph, and
thus should be selected for matching.

4) Path subgraph with even number of links: Without
loss of generality, assume such a path that starts from
an input node. Obviously, since there are even number
of links this path ends also at an input node. One of
these nodes belongs to M1, and therefore has maximum
weight the other belongs to M2 and is not a maximum
weight node (because it is not inM1). If we select those
links that belong to M1, only that node that does not
have maximum weight will be secluded, which is not
important.

Therefore, we can come up with the following general rule,
if a path starts from an input (output) node that has maximum
weight include those set of alternating links in the matching
that contain that particular node.

To determine the complexity of step 4, notice that in
this step we have to search the graph that is obtained from
M1 ∪M2 . This graph has 2N links,and therefore the search
complexity is O(N). The ultimate matching covers all critical
nodes with maximum weight.

In step 5, we perform a sequential maximal matching on
the nodes that are not in the matching. Starting from the node
with maximum weight, we scan all its neighbors starting from
the one with maximum weight. If we find a neighbor that is
not in the matching we match and include the corresponding
link in the matching list. The number of nodes that we have to
scan in this step is less than 2N, and for each one we have to
check at most N neighbors. This has a complexity of O(N2)

Even though the complexity of this algorithm is O(N2.5),
in practice it would be less than that. Practically number of
nodes with maximum weight is very limited, and therefore
complexity of steps 2,3,4 is very low, and it is step 5 that has
the highest complexity and this results in O(N2) complexity
algorithm.

One may think that there should be lower complexity
algorithms that are practically efficient and has lower com-
plexity than MFM. Maximal sorted matching (MSM) can be
considered as a first attempt toward such an algorithm. MSM
is basically very similar to iLPF algorithm that is introduced
in [9]. Similar to MFM, MSM also works on a sorted list of
the nodes, however it does not treat the nodes with maximum
weight separately to ensure that they are contained into the
matching. MSM scans all nodes starting with the one with
maximum weight and going down the sorted list, and tries
to include the scanned (primary) nodes into the matching.
At every step it scans all neighbor nodes (starting from the
neighbor node with maximum weight) of the primary node
until it finds a free (not matched) node or until it scans all
neighbors. If it finds a free neighbor, it considers it as the
secondary node and match the primary and secondary nodes
and add the connecting link to the matching. This is essentially
similar to step 5 of MFM and results in an O(N2) complexity
algorithm.

Algorithm 2: (MSM):

1) Sort all input and output nodes according to their weight
O(N logN).
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2) Perform a simple sorted maximal matching algorithm on
all of the nodes (O(N2)).

�

Although we can not prove that MSM achieves 100%
throughput, in simulations its performance was identical to
MFM. We review some of the simulation results in the next
section.

VI. SIMULATIONS

In this section we present our simulation results. The main
objective is to study delay performance of the proposed
scheduling algorithms. For practical purposes it is not suffi-
cient for a scheduling algorithm to have 100% throughput.
Therefore, it is essential to compare and study the delay
performance of different scheduling algorithms.

We consider a 32 × 32 input-buffered switch. For each
experiment the average throughput, ρ, of the switch is given.
A random 32 × 32 rate matrix is generated such that the
aggregate rate of every input (row summation) and output
(column summation) is ρ.

The rate matrix is generated iteratively. In each iteration
a new flow between two randomly selected input and output
nodes is generated. After selecting the input node i, and output
node j, of a flow the maximum allowable rate (MAR) for that
flow is set to minimum of:

• Maximum flow rate that is set to 0.1 in our experiments.
• Difference between ρ and aggregate rate of input port i.

Aggregate rate of i is summation of all elements of rate
matrix in row i.

• Difference between ρ and aggregate rate of output port
j. Aggregate rate of j is summation of all elements of
rate matrix in column j.

Next, a uniform random number between zero and MAR is
generated as the rate of that flow and it is added to the (i, j)
element in rate matrix. In fact, MAR is generated such that the
aggregate rate of each port does not exceed ρ. This procedure
is repeated until aggregate rates of all ports become very close
to ρ. In this way, we are able to create a non-uniform rate
matrix. This matrix is used to generate independent Bernoulli
arrival patterns for all of the connections.

We have studied four different systems which are three
input-buffered switches with matching algorithms LPF, MFM,
MSM , and an output buffered switch. The first three sys-
tems were simulated, but for the output-buffered system we
modelled it as an M/D/1 system. We have elaborated on the
first three, and proved here that LPF and MFM achieve 100%
throughput. The output-buffered system is mainly included as
a bench mark measure.

The main performance measure that we have considered
here is delay versus throughput, and it is plotted for all of
the scheduling algorithms in Fig. 2. For each scheduler the
simulation is stopped, when the throughput reached 1.

As we expected all of the systems achieve 100% throughput.
Delay performance of LPF is slightly better than MFM and
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Fig. 2. Average Delay v.s. Throughput for different matching algorithms.
The output queueing system is modelled as an M/D/1 system.

MSM, but recall that it is more complex as well. The perfor-
mance of MFM and MSM is not distinguishable. Although
we have not been able to prove the stability of MSM, the
simulations reveal that for practical purposes it function as
100% throughput algorithm, with suitable delay performance.
Recall that MSM complexity is O(N2), which is lower than
other proposed algorithms.

VII. SUMMARY

In this paper, a new class of weighted matching algorithms
for scheduling in input-buffered switches is introduced. Us-
ing the fluid model techniques, we were able to prove that
they achieve 100% throughput. Basically, it is shown that to
achieve 100% throughput it suffices to include only nodes with
maximum weight in the matching. This fact can lead us to
development of less complex and more efficient scheduling
algorithms for input-buffered switches. Two particular match-
ing algorithms, MSM and MFM that can be considered for
practical systems, are also introduced. MFM is proven to
achieve 100% throughput. In addition, the simulation results
for MFM and MSM have been very similar. Throughout the
paper we have used number of backlogged cells as the weight
of a port, however there are other proposed weight functions in
the literature that for example can provide rate provisioning
[14]. The proofs in the paper can be generalized to prove
that under similar conditions to what stated in the paper, if
we use rate provisioning weight functions instead of number
of backlogged packets, then the weight of all ports remain
bounded. This means that if the reserved rate of all ports is
less than the total capacity of ports, the obtained matching
algorithms would be able to sustain the port to port conformed
rates. We are currently studying the behavior of the proposed
algorithms with alternative weight functions that can provide
rate provisioning.
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