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Abstract— The term Virtual Private Network (VPN) encom-
passes a wide array of diverse technologies and network ar-
chitectures. All VPNs should provide users with the isolation
and security associated with private networks, but at lower
costs made possible by implementing these networks over some
type of shared infrastructure. Provider provisioned VPN allow
enterprises to outsource their private backbone networks to
service providers. For this reason, we will also refer to them
as Virtual Private Routed Networks (VPRNs). This contrasts with
other VPN technologies that require customers to manage their
own point-to-point connections (leased lines or tunnels) and
associated network administration.

One type of VPRN currently being deployed is described in
RFC 2547, which uses BGP to propagate routing information
for all VPNs implemented within a provider’s backbone, and
a tunneling technology, such as MPLS, to isolate traffic. This
technology requires fairly complex configurations within the
backbone, and so poses challenges to providers supporting a
large number of VPN customers.

We present the a formal analysis of several configuration and
implementation concerns for VPRNs of the RFC 2547 variety.
In particular, we focus on integrity constraints that must be
maintained by providers in order to ensure that intra-VPRN
connectivity is achieved, and that disjoint VPRNs are isolated
from each other.

I. INTRODUCTION

The term Virtual Private Network (VPN) has a many
possible interpretations (see for example [1], [2]). All VPNs
should provide users with the isolation and security associated
with private networks, but at lower costs made possible
by implementing these networks over some type of shared
infrastructure.

Most often VPN refers to virtual circuits at layer 2 (frame
relay, ATM), or to various types of tunneling and encryption
technologies at layer 3 (IPSec, firewalls) [3], [4]. As the
pricing for internet connectivity goes far below that of classic
Frame Relay and ATM circuits, there has been increasing
market desire to replace leased circuits by the Internet as the
transport for corporate and inter-corporate private networks.
These “Internet VPNs” have been the subject of considerable
work within the Internet Engineering Task Force. The major
dimensions along which these Internet VPNs seem to differ-
entiate are

• implementation using layer two (L2VPN) (example, us-
ing MPLS as in RFC 2547 [5]), or layer three (L3VPN),
(example, using IPsec),

• providing virtual LAN (layer two healing) connectivity
or normal IP transport only,

• providing encryption of payload or relying on some sort
of network isolation,

• configuration set-up done by the enterprise or by the inter-
net provider (also called “provider provisioned VPNs”).

The promise of provider provisioned VPNs [6] is now attract-
ing a great deal of industry attention. A provider provisioned
VPN allows each site in a corporate or campus network to
“plug into the cloud” for connectivity. That is, a provider
provisioned VPN allows enterprises to outsource their private
backbone networks to service providers. For this reason, we
will also refer to them as Virtual Private Routed Networks
(VPRNs). This contrasts with other VPN technologies that
require customers to manage their own point-to-point con-
nections (leased lines or tunnels) and associated network
administration.

RFC 2547 [5] describes VPRNs implemented with BGP [7],
[8], [9] and MPLS [10]. Many Internet Service Providers
(ISPs) are already offering VPRN services based on this RFC.
The full VPRN model promised by RFC 2547 includes (1)
VPRNs that can overlap, thus implementing “intranets” and
“extranets,” (2) the ability for a site to selectively expose
address ranges to the various VPRNs to which it is a member,
and (3) the ability for VPRNs to span multiple providers.
We believe it quite likely that, with the increasing emphasis
being placed on security, VPNs will be extremely widely
deployed, and that user sites will have very complex inter-
relationships. A single site will likely participate in many
VPNs. For example, a site may connected to (1) the corporate
intranet, (2) extranets of critical suppliers, (3) extranets of
important customers, and (4) extranets of financial providers.

For providers, RFC 2547 adds complexity to the config-
uration and management of their networks. This complexity
increases when customer sites participate in multiple VPNs,
when customer sites contribute different address spaces to the
VPNs to which they belong, and when the VPN backbone
service is shared among multiple providers. Therefore we
believe that formal models will help us better understand, and
have increased confidence in, the correctness of VPN imple-
mentation and configuration. This is particularly important in
the design of software for automating the process of VPN
configuration.

This paper presents a formal analysis some aspects of the
implementation of VPRNs in the style of RFC 2547. In
particular, we are interested in the integrity of a set of VPRNs.
For us, integrity means both the the VPRN specification is
well-formed and that the implementation is correct. A VPRN
specification is well-formed when it does not violate certain
disjointness conditions that guarantee routing will not be
ambiguous within any given VPRN (even when it overlaps
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with other VPRNs). Implementation correctness defines when
a collection of forwarding tables provides full connectivity
within every VPRN, and isolates sites from VPRNs to which
they do not belong.

RFC 2547 introduces many technical details, and vendors
have provided many additional features to configure these
VPNs (see for example [11], [12]). However, the approach of
this paper is to model VPRNs in a manner that is independent
of many low-level or vendor-specific implementation details.
That is, we attempt to separate what is being implemented
from how it is being implemented. In addition, this approach
allows us to identify ambiguities in the definition of VPRNs
and to explore alternative solutions to some of the problems
raised.

Section II provides an informal overview of RFC 2547.
Section III presents the basic definitions of our formal model,
defines the fundamental integrity constraints, and explores
some of the logical relationships between these constraints.
Section IV shows how several implementation techniques can
be used to enforce the integrity constraints. Section V provides
a summary and a recommendation for improving scalability of
backbone configurations. In particular, we recommend the use
of source/destination forwarding tables for directing traffic in
provider-edge routers. Section VI concludes with suggestions
for future work in this area.

II. AN OVERVIEW OF RFC 2547

The model of physical connectivity of RFC 2547 is illus-
trated in Figure 1. There are a number of customer sites, which
are assumed to have internat connectivity that does not use the
backbone. Each site has a number of customer edge devices,
CEs, connected to provider edge devices, PEs. The backbone
provides transit between PEs, possibly using internal provider
routers, or P routers. There routers do not require any VPN
related state. It is assumed that the backbone is provided by
one or more network providers and that the sites are owned and
managed by customers. The figure illustrates three overlapping
VPNs. For example site 1 belongs to both VPN 1 and VPN
3.
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CE

PE PE

PE

CE

CE

CE

PE
VPN 1

Site 4

CE

VPN 2

Site 1

VPN 3

Site 6

Site 2

Site 3

Site 5
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Fig. 1. Basic components of RFC 2547.

RFC 2547 states that constraints must be enforced to ensure
that overlapping VPNs do no have overlapping address spaces:

We assume that any two non-intersecting VPNs
(i.e., VPNs with no sites in common) may have
overlapping address spaces; the same address may
be reused, for different systems, in different VPNs.
As long as a given endsystem has an address which
is unique within the scope of the VPNs that it
belongs to, the endsystem itself does not need to
know anything about VPNs.

A site can also selectively expose some of its address space
to one of its VPNs, yet conceal it from another. As RFC 2547
states,

While the basic unit of interconnection is the site, the
architecture described herein allows a finer degree of
granularity in the control of interconnectivity. For
example, certain systems at a site may be members
of an intranet as well as members of one or more
extranets, while other systems at the same site may
be restricted to being members of the intranet only.

Finally, the VPN implementation must ensure that there is
intra-VRPN reachability and some notion of privacy. That is,
the provider backbone must guarantee that distinct VPNs are
isolated. RFC 2547 states this as

Two sites have IP connectivity [...] only if there
is some VPN which contains them both. Two sites
which have no VPN in common have no connectivity
over that backbone.

PE routes do not have a single forwarding table, but require
several to implement connectivity and isolation. Figure 2
illustrates three sites that make up two VPNs, connected by
the simplest possible backbone — one with a single PE. Each
site shows a representative prefix from that site, p1 from site
s1, p2 from site s2, and p3 from site s3.

CE2

PE

CE1

CE3

BB

VPN 1

VPN 2

s1s2

s3

p1

p3

p2

Fig. 2. Per-site forwarding example

A standard next-hop forwarding table at PE,

dest nxt-hop
p1 CE1
p2 CE2
p3 CE3

ensures connectivity. However, even isolation will be violated

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



destdest

Site 4

dest

Site 2

nxt−hop dest nxt−hopnxt−hopnxt−hop

CE4

CE1

CE2 CE2
CE4 CE3

CE1 CE1

CE3

CE2

Site 1

per−site forwading tables at PE 

Site 3

PE

BB
VPN 3VPN 2

VPN 1

p2

p3 p3

p1

p2

p3

p1

p3

p2 p1

s3

s2 s1

s4

Fig. 3. Overlapping address space also requires per-site forwarding tables.

since sites s1 and s3 would have connectivity without belong-
ing to a mutual VPN.

The solution described in RFC 2547 involves per-site for-
warding tables at each PE. That is, each PE has a distinct
forwarding table for each site to which it is connected.
Traffic originating from Site i is forwarded using only the
forwarding table associated with Site i. For example, the per-
site forwarding tables for the PE in Figure 2 are

dest nxt-hop
p2 CE2

Site 1

dest nxt-hop
p1 CE1
p3 CE3

Site 2
dest nxt-hop
p2 CE2

Site 3

For this example, this implementation ensures both con-
nectivity and isolation. It is interesting to note that per-site
forwarding tables are also required to support the fact that
distinct VPNs can use the same address space. For example,
Figure 3 presents a case where VPN v3 contains site s4 with
destination p3, which is the same as a destination in v2 at site
s3. If the PE employed a vanilla forwarding table, it would
not implement these VPNs correctly.

We briefly note the need for tunneling across the provider
backbone. Figure 4 illustrates a situation in which PE1 is
connected to sites 1 and 2 and PE2 is connected to sites 3
and 4. The connectivity between PEs is across the backbone,
so VPN traffic between these two PEs must be tunneled. There
several reasons for this :

• addresses from different VPNs can conflict,
• addresses of a VPN can conflict with addresses used in

the backbone,
• even if the possibility of address conflict were somehow

eliminated, tunneling would address scalability in that
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Fig. 4. Tunnels are required in the backbone.

backbone routers/switches would not have to know all
VPN address.

In the example, (at least) two tunnels are needed to distinguish
between VPN 2 and VPN 3. To see this, imagine only
one tunnel existed between the PEs. Then PE 2 could not
distinguish between traffic from PE 1 that is destined for
p3 at site 3 from that destined for p3 at site 4. In general,
tunnels terminate at PEs, but there are two distinct ways
to decapsulate traffic. First, traffic could be directed to a
particular per-site forwarding table. Second, traffic could be
directed to a particular CE interface. The figure also shows
the decapsulation mappings required at each PE, using the
second type of mapping. Although tunnel provisioning and
maintenance is an important component in VPNs, we do not
consider it further in this paper.
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CE1CE2
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CE3
CE3

dest nxt−hop

CE2 CE1

PE

per−site forwading tables at PE 
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v1

v2

p4

p5

p2
p1

p3

Site s2

Site s3

Site s1

Site s3
Site s2

Fig. 5. Per-site forwarding tables and source address assurance cannot
implement isolation.

Even with per-site forwarding tables, overlapping VPN that
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Fig. 6. Per-site forwarding tables alone cannot implement isolation.

can contribute different address spaces to different VPNs can
cause violations of isolation. Figure 5 presents an example that
is derived from a small modification to the VPNs presented
earlier in Figure 2. Site s2 has an additional prefixes p4 and p5.
It contributes p4 to VPN v1 but not to VPN v2, and does not
contribute p5 to either v1 or v2. Without some kind of address
assurance at site s2, this example violates isolation since p5
can send traffic to both sites s1 and s3). But even if traffic with
source address in p5 can be prevented from sending traffic to
site s3, there is still another problem. Note that a system with
source address in p4 at site s2 can send traffic to destinations
in p3 at site s3, yet p4 is not in the prefixes exposed to VPN
v2. This uni-directional traffic violates isolation.

Figure 6 presents an example that shows that using per site
forwarding tables and source address assurance, that there can
exist bi-directional traffic that violates isolation. Suppose that
v and v̂ are two select VPNs and that s1, s2 ∈ S(v) ∩ S(v̂).
In addition, suppose that E(s1, v) = {p1}, E(s1, v̂) = {p̂1},
E(s2, v) = {p2}, and E(s2, v̂) = {p̂2}. Note that the per-site
forwarding table for s1 must contain entries for both p2 and
p̂2. Similarly, the per-site forwarding table for s2 must contain
entries for both p1 and p̂2. This means that end systems in p1
could have bi-directional communication with end systems in
p̂2, which again violates isolation.

Many solutions to these problems are possible. Customers
could have multiple interfaces to the backbone. Or per-VPN
forwarding tables could be employed. Or perhaps a stronger
form of source address assurance could be employed. Finally,
some combination of these techniques might be used to avoid
these problems. But it is clear that these issues are not
straightforward, and some care has to be taken to make sure
that isolation is assured. The following sections attempt to
provide a rigorous basis for providing isolation guarantees.

III. CONSTRAINTS FOR VPRNS

This section defines the basic components of and the back-
bone integrity constraints of our formal model of VPRNs. We
then explore some of the logical relationships between these
constraints.

A. Sites, interface classes, and addresses spaces

The set S = {s1, · · · , sn} represents a set of n sites, and
V = {v1, · · · , vk} represents a set k VPRNs. For each site s ∈
S, there is a finite non-empty set Cs of interface classes for
site s. An abstract interface is a pair 〈s, c〉, where s is a site
and c ∈ Cs is an interface class. Informally, abstract interfaces
will be implemented with one or more logical interfaces at
CEs, and will be linked to interfaces on PEs. Traffic from any
logical interface of the same abstract interface will be treated
the same way (filtered or forwarded) by PE routers. The set
of abstract interface at site s is

I(s) = {〈s, c〉 | c ∈ Cs}.

A VPRN configuration must specify the VPRN membership
of each each abstract interface i = 〈s, c〉. This set is denoted
V (i) ⊆ V . That is, if v ∈ V (〈s, c〉), then the abstract interface
〈s, c〉 is a member of the VPRN v. Each VPRN v ∈ V is
associated with a set of abstract interfaces,

I(v) = {〈s, c〉 | s ∈ S, c ∈ Cs, v ∈ V (〈s, c〉)},

and a set of sites

S(v) = {s ∈ S | 〈s, c〉 ∈ I(v)}.

If s ∈ S(v), then we say that site s is in VPRN v. Note that
there must exist some abstract interface 〈s, c〉 ∈ I(v). For
any site s ∈ S the set of all VPRNs to which it belongs is
denoted V (s). That is, V (s) = {v ∈ V | s ∈ S(v)}.

For any IP prefix (CIDR block) p, we let A(p) denotes the
set of all addresses covered by p. If P is any nonempty set
of prefixes, then A(P ) denotes the union of all sets A(p),
over p ∈ P . For each site s, we associate the set P (s) of all
prefixes that s can use to participate in in VPRNs, and the
address space of s, denoted A(s), is defined to be A(P (s)).

If v is a VPRN with site s ∈ S(v), then s can selectively
expose some prefixes in P (s) to v while concealing others.
If i = 〈s, c〉 ∈ I(v), the E(i, v) denote the set of prefixes
that site s exposes to VPRN v at abstract interface i. The
corresponding address space is denoted A(i, v). That is, if
a ∈ A(〈s, c〉, v), then a is in the address space that site s
exposes to VPRN v at abstract interface i = 〈s, c〉.

B. Connectivity Constraints

In formalizing the constraint that address spaces should not
overlap there are actually two distinct cases that should be
disallowed. The first is illustrated here,

s1

p p
v

s2s3

where VPRN v contains sites s1, s2, and s3, and both sites
s1 and s2 expose the prefix p to v. The problem is that there
is ambiguity when s3 attempts to exchange traffic to prefix p
or when s1 attempts to exchange traffic with prefix p in s2.
The same problems are encountered if site s1 exposes p1, s2
exposes p2, and p1 is a subnet of of p2.
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S = set of sites
s = a site

V = set of VPRN names
v = a VPRN name

Cs = set of interface classes for site s
c = an interface class

〈s, c〉 or i = an abstract interface
V (i) = names of all VPRNs to which i belongs
I(s) = set of all abstract interfaces at site s
I(v) = set of all abstract interfaces belonging to VPRN v
S(v) = set of all sites belonging to VPRN v
V (s) = names of all VPRNs to which site s belongs

A(i, v) = address space exposed to VPRN v at abstract interface i

TABLE I

SUMMARY OF NOTATION.

The second situation arises when s1 is in VPRN v1, s2 is
in VPRN v2, and s3 belongs to both VPRNs:

s1

p p
v1 v2

s2s3

Again there is ambiguity when s3 sends traffic to prefix p.
Note that in this case it may be rather difficult to detect and
correct since v1 and v2 may represent distinct administrative
domains. And as with the first example, the same problems
are encountered if site s1 exposes p1, s2 exposes p2, and p1 is
a subnet of of p2. Indeed, if s1 could announce a subnet of a
prefix announced by s3, then this raises security issues since
it could be used as an attack by s1 against v2 (a VPRN that
does not even include s1 as a member).

The condition DISJOINT means that for all v, v1, v2, s1, and
s2, if s1 
= s2 i1 ∈ I(s1) and i2 ∈ I(s2), then the following
two conditions hold:

(a) If i1, i2 ∈ I(v), then A(i1, v) ∩ A(i2, v) = φ,
(b) If v1 
= v2, i1 ∈ I(v1), i2 ∈ I(v2), and A(i1, v1) ∩

A(i2, v2) 
= φ, then I(v1) ∩ I(v2) = φ.

Note that when VPRNs share no sites they are completely
unrestricted and are free to use overlapping address spaces.

C. Connectivity Constraints

We should ensure that an implementation provides intra-
VPRN connectivity. Suppose that i1 = 〈s1, c1〉 and i2 =
〈s1, c2〉. We define (a1, i1) → (a2, i2) to mean that the
underlying connectivity allows data traffic with source address
a1 and destination address a2 to exit site s1 via abstract
interface i1 and be delivered to the abstract interface i2 at
site s2. If (a1, i1) → (a2, i2) and (a2, i2) → (a1, i1), then
we write (a1, i1) ↔ (a2, i2).

The constraint CONNECTIVITY is defined to mean that for
all v, s1, s2, i1 ∈ I(s1), i2 ∈ I(s2), a1 ∈ A(i1, v), and
a2 ∈ A(i2, v), if i1, i2 ∈ S(v), then (a1, i1) ↔ (a2, i2).

Informally this constraint says that if two abstract interfaces
share a common VPRN, then the underlying data connectivity
allows them to exchange data traffic.

1) Isolation Constraints: The constraint CONNECTIVITY

simply asserts that some underlying data connectivity is re-
quired. However, it does not disallow connectivity that should
be prohibited. Therefore, we need additional constraints to
enforce VPRN isolation. One possible formulation of iso-
lation, which we call WEAK-ISOLATION, is as follows: for
all i1, i2, a1, and a2, if (a1, i1) ↔ (a2, i2), then there
is some VPRN v such that i1, i2 ∈ I(v), a1 ∈ A(i1, v),
and a2 ∈ A(i2, v). In other words, if two abstract interfaces
can exchange bidirectional traffic, then they must belong to
a common VPRN, and the if two abstract interfaces must
contribute the covering address spaces associated with the
source and destination addresses of this traffic.

Note that weak isolation does not rule out unidirectional
connectivity between abstract interfaces that do no share a
VPRN. For this reason we introduce a stronger notion of
isolation, call STRONG-ISOLATION: for all i1, i2, a1, and a2,
if (a1, i1) → (a2, i2), then there is some VPRN v such that
i1, i2 ∈ I(v), a1 ∈ A(i1, v), and a2 ∈ A(i2, v). Note that
STRONG-ISOLATION implies that WEAK-ISOLATION holds.

Ideally, we would like to achieve STRONG-ISOLATION with
some combination of forwarding tables and traffic filtering.
To study this, we identify the following constraints for source
address assurance and for the scope of VPRN traffic.

By source address assurance at site s we mean that site s
or the PEs connecting s to the backbone have some means of
ensuring that any traffic originating from site s must have a
“legal” source address. We will capture this in two constraints.
First, weak source address assurance, denoted WSAA, is the
constraint that for all i1, i2, a1, and a2, if (a1, i1) → (a2, i2),
then there exists a v such that i1 ∈ I(v) and a1 ∈ A(i1, v).
That is, WSAA states that traffic leaving an abstract interface
must have a source address associated in the space of some
VPRN supported on that interface. Second, strong source
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DISJOINT = all sites have unambiguous addressing
(a1, i1) → (a2, i2) = traffic with source address a1 and destination address

a2 can leave interface i1 and arrive at interface i2
CONNECTIVITY = intra VPRN connectivity holds

WEAK-ISOLATION = if two abstract interfaces can exchange bidirectional traffic,
then they must belong to a common VPRN

STRONG-ISOLATION = if two abstract interfaces can exchange unidirectional traffic,
then they must belong to a common VPRN

SCOPE = traffic leaving an abstract interface must have a destination
address in the address space of some VPRN of the target
abstract interface

WSAA = traffic leaving an abstract interface of a site must have a
source address belonging to the space contributed by that site
to some VPRN to which the interface belongs

SSAA = traffic leaving an abstract interface of a site must have a
source address belonging to the space contributed by that site
to some VPRN to which the interface belongs,
and furthermore the destination interface must belong to the same VPRN

TABLE II

INFORMAL SUMMARY OF BACKBONE CONSTRAINTS.

address assurance, denoted SSAA, is the constraint that for
all i1, i2, a1, and a2, if (a1, i1) → (a2, i2), then there
exists a v such that i1, i2 ∈ I(v) and a1 ∈ A(i1, v). That
is, SSAA states that traffic leaving an abstract interface must
have a source address associated in the space of some VPRN
supported on that interface and that the destination interface
belongs to the same VPRN. It is easy to see that SSAA implies
WSAA.

We define the constraint SCOPE to mean that for all i1,
i2, a1, and a2, if (a1, i1) → (a2, i2), then there exists a v
such that i1, i2 ∈ I(v) and a2 ∈ A(i2, v). This means that if
there is unidirectional connectivity from abstract interface i1 to
abstract interface i2, then the destination address of this traffic
must be contained in the address space contributed by i2’s site
to some VPRN to which both abstract interfaces belong.

Intuitively, source address assurance could be achieved
by traffic management either at the customer site (for ex-
ample, using firewalls) or at the PEs (for example, using
source/destination forwarding tables), while SCOPE could be
achieved by the use of forwarding tables.

D. Logical Constraints

A simple VPRN is one in which every interface belongs to
a unique VPRN. The constraint SIMPLE means that for each
i and for each v1 and v2 if i ∈ I(v2) and i ∈ I(v2), then
v1 = v2.

A union VPRN is one in which every interface contributes
the same address space to every VPRN to which it belongs.
The constraint UNION means that for each i and for each v1
and v2 such that i ∈ I(v2) and i ∈ I(v2), we have A(i, v1) =
A(i, v2).

Theorem 3.1: If SIMPLE and SCOPE hold, then STRONG-
ISOLATION holds.

Proof: Suppose SIMPLE and scope hold, and for some a1,
a2, i1 and i2, we have that (a1, i1) ↔ (a2, i2). In other
words, we have (1) (a2, i2) → (a1, i1) and (2) (a1, i1) →
(a2, i2). From (1) and SCOPE we know there exists a v1 such
that i1, i2 ∈ I(v1) and a1 ∈ A(i1, v1), and from (2) and
SCOPE we know there exists a v2 such that i1, i2 ∈ I(v2) and
a2 ∈ A(i2, v2). Since SIMPLE holds, it must be the case that
v1 = v2. Therefore STRONG-ISOLATION holds.

Theorem 3.2: If UNION and SCOPE hold, then WEAK-
ISOLATION holds.

Proof: Suppose UNION and SCOPE hold, and for some a1, a2,
i1 and i2, we have that (a1, i1) ↔ (a2, i2). In other words,
we have (1) (a2, i2) → (a1, i1) and (2) (a1, i1) → (a2, i2).
From (1) and SCOPE we know there exists a v1 such that
a1 ∈ A(i1, v1), and from (2) and SCOPE we know there
exists a v2 such that a2 ∈ A(i2, v2). If v1 = v2, then we are
done. Otherwise, take v1 (or v2) to be the witness for WEAK-
ISOLATION. If v1 is taken, then note that a2 ∈ A(i2, v2) =
A(s1, v1), since UNION holds. Therefore WEAK-ISOLATION

holds.
Theorem 3.3: If UNION, SCOPE, and WSAA hold, then

STRONG-ISOLATION holds.
Proof: Suppose that UNION, SCOPE, and WSAA hold. Fur-
thermore, suppose that for some a1, a2, s1 and s2 we have
(a1, i1) → (a2, i2). By WSAA, there must exists a v1 such
that i1 ∈ I(v1) and a1 ∈ A(i1, v1). By SCOPE, there must
exists a v2 such that i2 ∈ I(v2) and a2 ∈ A(i2, v2). If
v1 = v2, then we are done. Otherwise, take v1 (or v2) to
be the witness for STRONG-ISOLATION. If v1 is taken, then
note that a2 ∈ A(i2, v2) = A(i2, v1), since UNION holds.
Therefore STRONG-ISOLATION holds.

Of course the constraints STRONG-ISOLATION, SSAA, and
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SCOPE are related. But how? The following easy lemma shows
one direction.

Lemma 3.4: If STRONG-ISOLATION holds, then SSAA and
SCOPE hold.
Proof: The proof is trivial.

However, this is not the direction we are most interested
in. This would allow is to simply implement SSAA (perhaps
with filters) and SCOPE (perhaps with forwarding tables) and
have STRONG-ISOLATION follow automatically. That is we
would like SSAA and SCOPE together to imply that STRONG-
ISOLATION holds. Unfortunately, this is not always the case.
We need another constraint to make this true, which we will
call SYMMETRIC: for all i1, i2, a1, and a2, if a1 ∈ A(i1, v1),
a2 ∈ A(i2, v2), and i1, i2 ∈ I(v1) ∩ I(v2), then a1 ∈
A(i1, v2) and a2 ∈ A(i2, v1). We will be the first to admit that
this constraint is rather unintuitive, but it is what is required
to make the following theorem work.

Theorem 3.5: Suppose that SYMMETRIC holds. Then if
SSAA and SCOPE together hold, then STRONG-ISOLATION

holds.
Proof: Assume that SYMMETRY, SSAA, and SCOPE hold.
Now assume that STRONG-ISOLATION does not hold. Then we
know that there exist i1, i2, a1, and a2 such that (a1, i1) →
(a2, i2) and for all v and all such that i1, i2 ∈ I(v) we have
a1 
∈ A(i1, v) or a2 
∈ A(i2, v). We know by SSAS that
there is some v1 such that i1, i1 ∈ I(v1) and a1 ∈ A(i1, v1).
Therefore, by the negation of STRONG-ISOLATION, we know
that a2 
∈ A(i2, v1). In a similar way, we know by SCOPE that
there is some v2 such that i1, i1 ∈ I(v2) and a2 ∈ A(i2, v2).
Therefore, by the negation of STRONG-ISOLATION, we know
that a1 
∈ A(i1, v2). But together these two conditions violate
SYMMETRIC, which is a contradiction. Therefore, STRONG-
ISOLATION does hold.

IV. IMPLEMENTATION INVARIANTS

In this section we explore which integrity constraints can
be enforced with simple implementations techniques such as
traffic filtering and forwarding tables.

A. Forwarding

Each interface i will have an outbound and inbound table of
forwarding entries associated with it. An entry in an abstract
destination-based forwarding is a tuple of the form (p, i),
where p is a prefix and i, the next hop abstract interface. In
an actual implementation, if the destination address matches
prefix p, then it will be forwarded to a logical interface
associated with i (the exact interface will depend routing
decisions). If the logical interface is not directly connected
to the PE containing the entry (p, i), then i can be taken
to represent the head end of a tunnel that terminates at an
inbound forwarding table for i.

Suppose s ∈ S, i ∈ I(s), v ∈ V , and i ∈ I(v). Then the
outbound forwarding table for v at i is defined to be the set

FO
v (i) = {(p, i′) | i′ 
∈ I(s), p ∈ E(i′, v), i′ ∈ I(v)}.

Note that if v 
∈ V (i), then FO
v (i) = φ. The inbound

forwarding table for v at i is defined to be the set

F I
v (i) = {(p, i) | p ∈ E(i, v)}.

Note that if v 
∈ V (i), then F I
v (i) = φ.

Again, this formalization abstracts away the issues of map-
ping logical interfaces implementing an abstract interface i to
PEs, and of configuring tunnels between PEs. It is important
to note that this forwarding scheme does not require any type
of per-VPRN labeling of traffic, and requires no VPRN state
on non-PE routers (P routers) in the backbone.

If V̂ ⊆ V is a subset of VPRNs, then we define

FO
V̂

(i) =
⋃

v∈V̂

FO
v (i)

In particular, we define FO
V (i)(i) to be the per-interface for-

warding table for i. If a site has a single interface class,
then this table is called the per-site forwarding table for
s. On the other extreme, if each interface class at site s
represents a distinct VPRN, then each table is called a per-
VPRN forwarding table for v.

We first observe that the constraint DISJOINT ensures that
there are no address clashes in forwarding tables.

Lemma 4.1: Suppose that DISJOINT holds. Then for any
address prefix p there is at most one tuple (p, i′) ∈ FV (i)(i).
Proof: Suppose (p, i1) ∈ FV (i)(i) and (p, i2) ∈ FV (i)(i),
where i2 is not associated with i1’s site. There are two cases
to consider. In the first case, there is a v such that both (p, i1)
and (p, i2) are in Fv(i). This would violate condition (a) of
DISJOINTNESS. In the second case, there are v1 and v2 such
that (p, i1) ∈ Fv1(i) and (p, i2) ∈ Fv2(i). This would violate
condition (b) of DISJOINTNESS.

Note that we are not implying that in an actual implemen-
tation violating disjointness that the forwarding tables would
contain ambiguity. Often a routing protocol will install at
most one entry. However, this may lead to unexpected loss
of connectivity in some VPRNs.

Theorem 4.2: Suppose that DISJOINT holds. Suppose that
traffic outbound from each interface i is forwarded using the
per-interface forwarding table for i, FO

V (i)(i). Then CONNEC-
TIVITY holds.
Proof: Suppose for some v, i1, i2 ∈ I(v), a1 ∈ A(i1, v), and
a2 ∈ A(i2, v). Then there exist prefixes p1 ∈ E(i1, v) and
p2 ∈ E(i2, v) such that p1 is the best match among E(i1, v)
for address a1 and p2 is the best match among E(i2, v) for
address a2. By Lemma 4.1 we know that there is a unique
tuple (p2, i2) ∈ Fv(i1) and a unique tuple (p1, i1) ∈ Fv(i2).
Therefore (a1, i1) ↔ (a2, i2), and so CONNECTIVITY holds.

One way of reading this result is that if the backbone is
providing the correct connectivity and a customer does not
have correct VPRN connectivity, then there must be some
violation of either DISJOINTNESS or SITE-CONNECTIVITY.

Theorem 4.3: Suppose that traffic outbound from each in-
terface i is forwarded using the per-interface forwarding table
for i, FO

V (i)(i). Then SCOPE holds.
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Proof: Assume that (a1, i1) → (a2, i2). Then, from the
definition of FO

V (i1)(i1), there must be a best match (p, i2) ∈
FO

V (i1)(i1) such that for some v ∈ V (i1), p ∈ E(i2, v) and
i2 ∈ I(v). This means that a2 ∈ A(i2, v). Therefore SCOPE

holds.

B. Source/Destination Forwarding

An extended forwarding table for abstract interface i will
contain entries of the form (p1, p2, i′) which will forward
traffic to destination p2 at abstract interface i′, but only when
the source of the traffic is within the range p1, filtering out
the traffic otherwise. Define the set

EFO
v (i, p) = {(p, p′, i′) | i′ 
∈ I(s), p′ ∈ E(i′, v), i′ ∈ I(v)}.

Then the extended forwarding table can be defined as

EFV (i)(i) =
⋃

v∈V (i)

⋃

p∈E(i, v)

EF v(i, p).

Note that this is much more restrictive than destination based
forwarding together with source address assurance. A naive
implementation of an extended source/destination forwarding
table would require a “cross product” of entries. That is,
the efficient implementation of such forwarding tables will
present a challenge. However, much of the research on fast
and efficient packet classification may be applicable in this
context (see for example [13], [14]).

Theorem 4.4: Suppose that traffic outbound from each in-
terface i is forwarded using the extended forwarding table for
i, EFO

V (i)(i). Then STRONG-ISOLATION holds.
Proof: Assume that (a1, i1) → (a2, i2). Then, from
the definition of EFO

V (i1)(i1), there must be a best match
(p1, p2, i2) ∈ EFO

V (i1)(i1) such that for some v ∈ V (i1),
p1 ∈ E(i1, v) and p2 ∈ E(i2, v) and i2 ∈ I(v). This tells us
that a1, ∈ A(i1, v), and a2 ∈ A(i2, v). Therefore STRONG-
ISOLATION holds.

V. SUMMARY AND RECOMMENDATIONS

Table III provides a summary of the logical implications
explicitly or implicitly proved in Section III. We note the
proofs of isolation do not depend on the assumption of
disjointness, and so these issues are in some sense orthogonal.

The results of the previous section on implementation
can be combined with the logical implications to produce
Table IV, which shows which isolations levels can be achieved
with which implementation techniques. Here PS stands for
implementation with per-site forwarding tables, PV for im-
plementation with per-VPRN forwarding tables, and PS-SD
for implementation with per-site source/destination forwarding
tables (extended forwarding tables). As already noted, source
address assurance could be achieved by traffic management
either at the customer site (for example, using access lists or
firewalls) or at a provider’s PE. Since there are multiple low-
level means of implementing this, we will not fully specify the
implementation details. Instead, we will simply write WSAF
for any filtering scheme that implements WSAA, and SSAF for
any filtering scheme that implements SSAA. An X in means

that there is an example that violates both weak and strong
isolation.

Table IV indicates that there is a wide spectrum of choices
available to providers of VPRNs. For example, enforcing
STRONG-ISOLATION is easy for simple VPRNs and union
VPRNs. However, no matter what choice is made, it is clear
that VPN management cannot be completely outsourced to
the providers. For example, customers must make sure that
DISJOINT holds. In addition, customers must implement some
type of per-site strong-isolation, which may or may not be
easy depending on the complexity of the VPNs to which the
site belongs. However, it is clear that from the provider’s
perspective, assuring strong-isolation would be greatly sim-
plified if RFC 2547 insisted that VPNs be implemented with
source/destination forwarding tables on all PEs.

VI. REMARKS AND OPEN PROBLEMS

We have explored some of the specification and implemen-
tation issues related to provider provisioned VPNs of the RFC-
2547 variety. In particular, we have focused on the issues
of maintaining connectivity and isolation in the context of
intersecting VPNs with overlapping address spaces. We close
by listing some related research problems that we think are are
worth exploring. Scalability and robustness are the common
and overriding concerns for all of these issues. The goal is
to be able to support tens of thousands of VPN customers
— some having complex interrelationships — over a shared
infrastructure with low costs and high performance guarantees.

Verification of vendor implementations. Vendors imple-
menting RFC 2547 each provide vendor-specific configuration
commands and proprietary implementations. If remains to be
tested which of the constraints (SCOPE, WSSA, SSAA, and so
on), can actually be enforced with these implementations.

Routing configuration correctness. There is a distinction
between forwarding tables and routing tables. Forwarding
tables are low-level data structures, often implemented in
special hardware, that simply direct traffic to the appropriate
interface. On the other hand, routing tables are maintained
by dynamic routing protocols, and generally contain much
more information about the network state than can be found
in a forwarding table. Routing protocols use their tables to
maintain the forwarding tables in a state consistent with the
state of the network and with the routing policies that have
been configured. With a protocol such as BGP, these routing
policies can can be quite complex.

With RFC 2547 VPNs, configuration of BGP is complicated
by the use of route distinguishers that make overlapping ad-
dresses unique, extended community route targets that identify
the VPNs to which a route belongs, and import and export
route maps that use these extended communities to associate
routes with specific forwarding tables (see for example [11],
[12]).

A formalization of such BGP configurations may help in
developing high level specification languages and compilers
to generate low level vendor-specific commands. The designer
of such a compiler could make use of the formalism presented
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Implementation constraints
SCOPE SCOPE + WSAA SCOPE + SSAA

VPRN SIMPLE STRONG-ISOLATION STRONG-ISOLATION STRONG-ISOLATION

constraints UNION WEAK-ISOLATION STRONG-ISOLATION STRONG-ISOLATION

SYMMETRIC STRONG-ISOLATION

TABLE III

SUMMARY OF LOGICAL IMPLICATIONS.

Implementation
PS PS + WSAF PS + SSAF PS-SD PV

VPRN SIMPLE strong strong strong strong strong
constraints UNION weak strong strong strong strong

SYMMETRIC X X strong strong strong
any VPRN X X X strong strong

TABLE IV

ISOLATION LEVELS ACHIEVED FOR VPRNS.

in this paper and attempt to prove that isolation invariants are
maintained by the generated configurations.

Debugging routing problems. With provider provisioned
VPNs, the customer and provider share the job of maintaining
a network and debugging routing and connectivity problems.
For example, the maintenance of disjointness is generally
considered the customer’s task (see for example [5], [15]).
However, new debugging tools may be needed to coordinate
debugging between customers and providers, and between
multiple providers supporting the same VPN.

For example, consider a violation of condition (b) of dis-
jointness that might arise when an administrator dynamically
announces a new route. As illustrated here, site s1 dynamically
adds the prefix p to the set of prefixes it exposes to VPN v1:

PE2PE3PE1

s2s1
p

v1 v2s3

ANNOUNCE p

However, p is already a prefix of VPN v2 (from site s2), and
v2 shares site s3 with VPRN v1. Thus s1’s announcement
potentially causes a violation of disjointness. Depending on
the routing policies of the PE routers, this operation could
either not result in the connectivity expected at s1 (that is, PE3
may continue to route traffic from s3 for p to s2) or it could
cut s3’s connectivity to p at s2, replacing it with connectivity
to p at s1.

Of course this type of problem can occur whenever we have
intranets and extranets, regardless of the VPN technologies
used. What adds to the potential complexity here is that, in
the worst case, PE1, PE2, and PE3 might each be managed by

a different ISP. Furthermore, it may be that the prefix p does
not appear in routing tables at site s3, but only in the tables
at PE3, which may or may not be visible to the customer
at site s3. In either case, these tables may very well not be
visible to the operator at site s1. Clearly, customers will require
visibility into all forwarding tables that support their VPNs.
In addition, service providers will have to share information
concerning mutually supported VPNs.

A complementary approach might be to develop new pro-
tocols that aid in the negotiation and management of VPN
address spaces (it does not seem possible to “piggy-back” a
negotiation protocol on top of BGP, which is based purely on
propagating announcements). In this example, perhaps s1 or
PE1 would signal an intent to announce prefix p to all other
PE’s supporting sites within VPRN v1 (in this case only PE3),
and only announce the prefix if the PE’s reply with permission
to do so.

SLA assurance. VPN customers may expect strict adher-
ence to Service Level Agreements (SLAs) that commit a
provider to maintaining specified levels of performance such
as uptime, available bandwidth, limits on packet loss and
delay (for more examples, see [15]). Designing and deploying
networks with predicatable performance guarantees is a very
difficult problem. VPNs make this even more difficult due
to the potentially diverse requirements imposed by a large
heterogeneous customer base. For example, the management
of intra PE tunnels is greatly complicated by the existence of
bandwidth SLAs. Some very interesting work has been done in
this area for MPLS networks [16], [17], [18], [19]. However,
it remains to be seen if these techniques can be efficiently
implemented for RFC 2547 VPNs, and if they can be extended
to VPNs that span multiple providers.

Dynamic robustness. Related to SLA assurance, and net-
work robustness in general, is the stability of network devices
and protocols during transient periods of stress. For example,
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it has been shown that large oscillations in BGP table size can
result in cascading failures in IPv4 networks [20]. This type
of problem could, in principle, allow large instabilities in one
RFC-2547 VPN to spill over into other VPNs supported on
the same shared routing infrastructure. Research needs to be
done on implementation techniques for isolating this kind of
instability.

Convergence time. Path vector protocols, such as BGP, are
inherently slower in adapting to routing changes than link state
protocols. Delayed convergence of BGP in the Internet has
been extensively studied [21], [22], and it has been shown that
the rate of convergence is impacted by factors such as network
topology, routing policies, route damping techniques (both the
minimum route advertisement interval and route flap damping
of RFC 2439 [23]). RFC-2547 VPNs will inherit some of these
convergence delays due to the use of BGP. In particular, it is
not clear how the BGP convergence in a single VPN will be
impacted by the number of other VPN routes being supported
over the same infrastructure.

Policy interaction. BGP policies can interact in unexpected
and counter-intuitive ways to produce routing anomalies [24],
[25], and these can even occur within a single autonomous
system [26], [27], [28], [29]. We need to investigate if anoma-
lous policy conflicts can arise — either within a single service
provider or between providers — in BGP/MPLS VPNs of RFC
2547.
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