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Abstract— In this paper, we propose two schemes for the load
balanced Birkhoff-von Neumann switches to provide guaranteed
rate services. As in [7], the first scheme is based on an Earliest
Deadline First (EDF) scheduling policy. In such a scheme, we
assign every packet of a guaranteed rate flow a targeted departure
time that is the departure time from the corresponding work
conserving link with capacity equal to the guaranteed rate. By
adding a jitter control mechanism in front of the buffer at the
second stage and running the EDF policy at the output buffer, we
show that the end-to-end delay for every packet of a guaranteed
rate flow is bounded by the sum of its targeted departure time
and a constant that only depends on the number of flows and
the size of the switch.

Our second scheme is a frame based scheme as in Keslassy and
McKeown [18]. There, time slots are grouped into fix size frames.
Packets are placed in appropriate bins (buffers) according to their
arrival times and their flows. We show that if the incoming traffic
satisfies certain assumptions, then the end-to-end delay for every
packet and the size of the central buffers are both bounded by
constants that only depend on the size of the switches and the
frame size. The second scheme is much simpler than the first
one in many aspects: (i) the on-line complexity is O(1) as there
is no need for EDF, (ii) central buffers are finite and thus can
be built into a single chip, (iii) connection patterns of the two
switch fabrics are changed less frequently, (iv) there is no need
for resequencing-and-output buffer after the second stage, and
(v) variable length packets may be handled without segmentation
and reassembly.

Index Terms— guaranteed rate services, Birkhoff-von Neu-
mann switches, multicasting flows, variable length packets, multi-
stage switches

I. INTRODUCTION

In order to provide the needed speedup to match the speed of
fiber optics, parallel buffered switches, capable of performing
parallel read/write, have received a lot of attention recently
(see e.g., [15], [16] and references therein). Traditionally, the
study of parallel buffered switches is limited to the (single-
stage) input-buffered crossbar switch (see e.g., [17], [22], [27],
[23], [19], [9], [24], [28], [14], [20], [1], [21]), where each
input has a segregated buffer. In such a switch, time is slotted
and synchronized so that packets in different input buffers
can be read out simultaneously within a time slot. There
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are two well-known problems in an input-buffered switch:
low throughput due to head-of-line (HOL) blocking and the
difficulty in controlling packet delay. The HOL problem can be
solved by using the virtual output queueing (VOQ) technique.
Instead of having a single First Come First Serve (FCFS)
queue at each input port, the VOQ technique maintains a
separate (logical) queue for each output port at each input
port.

To control packet delay, one easy solution is to provide
bandwidth guarantees in an input-buffered switch. In the paper
[14], Hung, Kesidis and McKeown used an idling weighted
round robin (WRR) algorithm in [2] to achieve rate guarantee
for each input-output pair without internal speedup. Similar
approaches are also addressed in [19], [20]. As the usual WRR
algorithm, all these are frame based schemes and might have
the granularity problem for bandwidth guarantees.

...

...

...
...

Fig. 1. The architecture of the Birkhoff-von Neumann switch

To cope with the granularity problem due to framing, the
Birkhoff-von Neumann input-buffered switch is proposed in
[5] and [6] for guaranteed rate service between each input-
output pair (see Figure 1). As in most input-buffered switch,
the Birkhoff-von Neumann switch uses the VOQ technique to
solve the HOL blocking problem. The main idea of scheduling
the connection patterns in the Birkhoff-von Neumann switch
is to use the capacity decomposition approach by Birkhoff [3]
and von Neumann [30] (for the details of the decomposition
algorithm, we refer to [5] and [6]). The computational com-
plexity of the decomposition is O(N4.5) for an N ×N switch.
The on-line scheduling algorithm used there is a simplified
version of the Packetized Generalized Processor (PGPS) al-
gorithm in Parekh and Gallager [26] (or the Weighted Fair
Queueing (WFQ) in Demers, Keshav, and Shenkar [12]). The
complexity of the on-line scheduling algorithm is O(log N).
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There are several drawbacks of the Birkhoff-von Neumann
switches:

(i) Computational complexity: the Birkhoff-von Neu-
mann decomposition itself is non-trivial (with the
order of complexity O(N4.5)), even though such a
decomposition only needs to be computed when the
rates change.

(ii) Memory complexity: the number of permutation
matrices generated from the Birkhoff-von Neumann
decomposition is O(N2). These matrices have to be
stored in the switch.

(iii) Multicast: the Birkhoff-von Neumann switch does
not support multicast. Multicasting flows can only
be supported through point-to-point flows.

(iv) Variable length packets: in the Birkhoff-von Neu-
mann switch, time is slotted and packets are assumed
to fit in a time slot. Variable length packets have to
be segmented at the inputs and then re-assembled at
the outputs.

...

...

...
...

...
...

Load-balancing stage

Fig. 2. The load balanced Birkhoff-von Neumann switch with one-stage
buffering

To cope with the first three drawbacks in the Birkhoff-
von Neumann switch, the load balanced Birkhoff-von Neu-
mann switch with one-stage buffering is proposed in [7].
The main idea is to add a load balancing stage in front of
the Birkhoff-von Neumann input-buffered switch (see Figure
2). In a time slot, the crossbar switch at the first stage sets
up connection patterns corresponding to permutation matrices
that are periodically generated from a one-cycle permutation
matrix. By so ding, the first stage performs load balancing for
the incoming traffic. As the traffic coming into the second
stage is load balanced, it suffices to use the same simple
periodic connection patterns as in the first stage to perform
switching at the second stage. Thus, there is no need to carry
out the Birkhoff-von Neumann decomposition. To support
multicast, fan-out splitting is done at the central buffer (the
buffer between two crossbars). It is shown in [7] that the load
balanced Birkhoff-von Neumann switch indeed achieves 100%
throughput (under a mild technical condition) for both point-
to-point and multicasting flows. However, the main drawback
of the load balanced Birkhoff-von Neumann switch with one-
stage buffering in [7] is that packets might be out of sequence.

In [8], the load balanced Birkhoff-von Neumann switch with
multi-stage buffering is proposed to solve the out-of-sequence
problem. There, load-balancing buffers are added in front of
the first switch and resequencing-and-output buffers are added
after the second switch. As in [16], packets are distributed
in the round-robin fashion according to their flows in the
load balanced Birkhoff-von Neumann switch with multi-stage

buffering. By so doing, it is shown in [8] that the delay through
the first stage can be bounded by a constant that only depends
on the size of the switch and the number of flows supported
by the switch.
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Fig. 3. The load balanced switch with multi-stage buffering under FCFS
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Fig. 4. The load balanced switch with multi-stage buffering under EDF

Two scheduling policies in the central buffers are presented
in [8]: the First Come First Serve (FCFS) policy (see Figure
3) and the Earliest Deadline First (EDF) policy (see Figure 4).
For the FCFS policy, a jitter control mechanism is added in the
VOQ in front of the second stage. It delays every packet to its
maximum delay at the first stage so that the flows entering the
second stage are simply time-shifted flows of the original ones.
For the EDF policy, every packet is assigned a deadline that
is the departure time from the corresponding output-buffered
switch. The central buffers then schedule packets according to
their deadlines.

After the second stage, packets are stored in the
resequencing-and-output buffer. The resequencing-and-output
buffer conceptually consists of two virtual buffers: (i) the
resequencing buffer and (ii) the output buffer. The objective
of the resequencing buffer is to reorder the packets so that
packets of the same flow depart in the same order as they
arrive. After resequencing, packets are stored in the output
buffer waiting for transmission from the output link. It is
shown in [8] that for both the FCFS and EDF schemes the
end-to-end delay is bounded above by the sum of the delay
through the corresponding FCFS output-buffered switch and
a constant that depends on the size of the switch and the
maximum number of flows supported by the switch. Moreover,
the size of the resequencing-and-output buffer for the FCFS
(resp. EDF) policy is also bounded above by a constant that
depends on the size of the switch and the maximum number
of flows supported by the switch. In short, the load balanced

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



Birkhoff-von Neumann switch with multi-stage buffering is
able to emulate the ideal FCFS output-buffered switch up to a
constant delay, and this is done without speedup and conflict
resolution. We also note the idea of using load balancing was
previously explored in the literature via randomization (see
e.g., [29], [25]). However, load balancing via randomization
does not yield deterministic bounds.

The drawback of the load balanced Birkhoff-von Neumann
switch with multi-stage buffering is its hardware implemen-
tation complexity for the resequencing-and-output buffer and
the jitter control mechanism. In [18], Keslassy and McKeown
developed a clever scheme that uses the Full Frame First (FFF)
scheduling policy in the central buffers. In such a scheme,
packets of the same flow at the central buffers are grouped
into frames with frame size equal to the number of inputs. By
so doing, packet of the same flow depart in the FCFS order. As
such, there is no need for the resequencing-and-output buffer.

The load balanced Birkhoff-von Neumann switches in [7],
[8], [18] only provide the best effort service. The main
objective of this paper is to investigate schemes for providing
guaranteed rate services in the load balanced Birkhoff-von
Neumann switches. We develop two schemes for doing this.
As in [8], the first scheme is based on an Earliest Deadline
First (EDF) scheduling policy. Instead of using the departure
time from the corresponding output-buffered switch, in the
first scheme we assign every packet of a guaranteed rate flow
a targeted departure time that is the departure time from the
corresponding work conserving link with capacity equal to
the guaranteed rate. The jitter control mechanism in front
of the central buffer then uses the targeted departure time
to regulate the traffic. By running the EDF policy with the
targeted departure times as deadlines at the output buffer,
we show that the end-to-end delay for every packet of a
guaranteed rate flow is bounded by the sum of its targeted
departure time and a constant that only depends on the number
of flows and the size of the switch. The detailed architecture
and its analysis for this scheme will be presented in Section
II.

The second scheme is a much simpler one and has a framed
structure as in Keslassy and McKeown [18]. There, time
slots are grouped into fix size frames. Packets are placed in
appropriate bins (buffers) according to their arrival times and
their flows. We show that if the incoming traffic satisfies certain
assumptions, then the end-to-end delay for every packet and
the size of the central buffers are both bounded by constants
that only depend on the size of the switches and the frame size.
The second scheme is much simpler than the first one in many
aspects: (i) the on-line complexity is O(1) as there is no need
for EDF, (ii) central buffers are finite and thus can be built
into a single chip, (iii) connection patterns of the two switch
fabrics are changed less frequently, (iv) there is no need for
resequencing-and-output buffer after the second stage, and (v)
variable length packets may be handled without segmentation
and reassembly. The detailed architecture and its analysis will
be shown in Section III.

II. AN EDF BASED SCHEME FOR GUARANTEED RATE

SERVICES

In this section, we modify the scheme in the load balanced
Birkhoff-von Neumann switch with multi-stage buffering in
[8] so that guaranteed rate services can be provided for mul-
ticasting flows. The scheme has almost the same architecture
as the FCFS scheme in Figure 3 (we will use Figure 3 for the
analysis in this section). As in [8], we assume that packets are
of the same size. Moreover, time is slotted and synchronized
so that a packet can be transmitted within a time slot. We
consider an N × N switch with multicasting flows. Packets
from the same flow are distributed in the round-robin fashion
to the second stage as described in [8]. As such, the delay
through the first stage is bounded above by a constant in [8].

To provide guaranteed rate services, every packet of a
(guaranteed rate) flow is assigned a targeted departure time
that is the departure time from the corresponding FCFS work
conserving link with capacity equal to the guaranteed rate of
the flow. After leaving the first stage, a packet enters the jitter
control stage in front of the central buffer. The time for a
packet to leave the jitter control stage, called the eligible time
of that packet, is set to be the sum of the targeted departure
time and the maximum delay of the first stage. In the central
buffer, packets are scheduled under the FCFS policy. We note
that in implementation one may combine both the jitter control
mechanism and the central buffer by using a single memory
block. By time stamping every packet with its eligible time,
the scheduling policy there is to schedule the first eligible
packet. Another point is that best effort service can be provided
as background traffic. Flows from best effort service can be
assigned to a low priority queue and they are only served
when there are no packets from guaranteed rate services in
the central buffer.

After the second stage, packets are stored in the
resequencing-and-output buffer as in the FCFS architecture.
The key difference between this scheme and the FCFS scheme
in Figure 3 is the scheduling policy at the output buffer. The
scheduling policy in this guaranteed rate scheme is the EDF
policy with packet deadlines being their targeted departure
times. For this scheme, we will show that every packet departs
from the switch not later than the sum of its targeted departure
time and a constant that only depends on the size of the switch
and the number of flows provided by the switch. Moreover, the
size of the resequencing-and-output buffer can also be bounded
by a constant that also depends on the size of the switch and
the number of flows provided by the switch.

o

, liB,liA

FCFS

, jir

Fig. 5. The work conserving link corresponding to the Ai,�-flow

To be precise, let Li be the number of multicasting flows
through the ith input port, i = 1, 2, . . . , N . Denote by Ai,�(t)
the cumulative number of packet arrivals by time t from the
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	th multicasting flow at the ith input port, i = 1, . . . , N , 	 =
1, . . . , Li. Let ri,� be the guaranteed rate of the Ai,�-flow. Now
consider feeding the Ai,�-flow to a work conserving link with
capacity ri,� (see Figure 5). Assume that the buffer in the work
conserving link is infinite and empty at time 0. Let Bo

i,�(t) be
the cumulative number of departures at the output by time t.
From [4], Lemma 1.3.1, one has the following well-known
representation

Bo
i,�(t) = min

0≤s≤t
[Ai,�(s) + ri,�(t − s)]. (1)

Let di,�(k) be the targeted departure time of the kth packet of
the Ai,�-flow. Then it can be found by the following inverse
mapping (see e.g., [4], Lemma 2.3.20)

di,�(k) = inf
[
τ : τ ≥ t

and min
0≤u≤t−1

[Ai,�(u) + ri,�(τ − u)] ≥ k
]
.

(2)

One key observation of the targeted departure times is that
they are the outputs from a rate-controlled traffic regulator.
Specifically, one can see from (1) that for all s ≤ t,

Bo
i,�(t) − Bo

i,�(s) ≤ ri,�(t − s) (3)

Such a property plays an important role in bounding delay
in our scheme. We note that the technique of using targeted
departure times to achieve rate guarantees has been studied
extensively in the output-buffered switches (see e.g., [31], [13],
[10], [4]).

Also, let S∗(k) be the set of flows through the kth output,
and Mk = |S∗(k)| be the number of multicasting flows
through the kth output port. Define Lmax = max1≤i≤N Li as
the maximum number of multicasting flow through an input
port and Mmax = max1≤k≤N Mk as the maximum number
of multicasting flow through an output port.

We present the main results of this scheme in the following
theorem.

Theorem 1 Suppose that all the buffers are empty at time 0.
If ∑

(i,�)∈S∗(k)

ri,� ≤ 1, (4)

for k = 1, · · · , N , then

(i) every packet of a guaranteed rate flow departs from
the switch not later than the sum of its targeted
departure time and (N − 1)Lmax + NMmax, and

(ii) the resequencing-and-output buffer at an output port
of the second stage is bounded by NMmax.

The proof of Theorem 1 is based on a sequence of lemmas
described in the following subsections.

A. Analysis for the central buffer

Now let A1
i,�,j(t) be the cumulative number of the Ai,�-flow

packets that are split into the jth VOQ at the ith input port
of the first stage by time t, and Di,�,j(t) be the number of
the A1

i,�,j-flow packets that have targeted departure times not

greater than t. Without loss of generality, we assume that the
first packet of a flow is always assigned to the first VOQ at
the first stage. Since the targeted departure times are simply
the departure times from the FCFS work conserving link with
capacity ri,�, we have

Di,�,j(t) = �
Bo

i,�(t) − j + 1
N

�. (5)

Moreover,
N∑

j=1

Di,�,j(t) = Bo
i,�(t). (6)

Let A2
i,�,j(t) be the cumulative number of the Ai,�-flow

packets at the jth input port of the second stage by time t.
Since the first stage is the same as that in [8], we know that
the maximum delay at the first stage is bounded by

d1 = (N − 1)Lmax. (7)

As discussed before, a jitter control stage is added in front of
the VOQs in the second stage (see Figure 6) and the eligible
time of a packet is set to be the sum of its targeted departure
time and the maximum delay d1. Thus, we have from (5) that

A2
i,�,j(t) = Di,�,j(t − d1)

= �
Bo

i,�(t − d1) − j + 1
N

�. (8)

Now consider the kth VOQ at the jth input port of the
second stage (see Figure 6). Denote by A2

j,k(t) (resp. B2
j,k(t))

the cumulative number of arrivals (resp. departures) at the kth

VOQ of the second stage by time t. Then

A2
j,k(t) =

∑

(i,�)∈S∗(k)

A2
i,�,j(t)

=
∑

(i,�)∈S∗(k)

�
Bo

i,�(t − d1) − j + 1
N

�. (9)

.

.

.
}

Ai,l,j
2

Aj,k
2 . . .

Central buffer

FCFS

Jitter control
stage

Cj,k
2

Bj,k
2

Fig. 6. The kth VOQ at the jth input port of the second stage

Let qj,k(t) be the number of packets queued at this queue
at time t and C2

j,k(t) be the cumulative number of time slots
assigned to this queue by time t. As shown in (17) of [8], we
have

q2
j,k(t)

= max
0≤s≤t

[A2
j,k(t) − A2

j,k(s) − (C2
j,k(t) − C2

j,k(s))],

(10)
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and

B2
j,k(t) = min

0≤s≤t
[A2

j,k(s) + C2
j,k(t) − C2

j,k(s)]. (11)

Lemma 2 Suppose the rate assumption in (4) holds.

(i) The maximum number of packets at the kth VOQ of
the jth input of the second stage is bounded by Mk,
i.e.,

q2
j,k(t) ≤ Mk. (12)

(ii) Let
d2 = NMk. (13)

The maximum delay of a packet at the kth VOQ of
the jth input of the second stage is bounded by d2,
i.e.,

B2
j,k(t + d2) ≥ A2

j,k(t). (14)

A direct consequence of Lemma 2(ii) is that every packet
leaves the kth VOQ of the second stage not later than the sum
of its targeted departure time and d1 +d2. Therefore, we have
from (9) and (14) that

B2
j,k(t) ≥

∑

(i,�)∈S∗(k)

Di,�,j(t − d1 − d2). (15)

For the proof of Lemma 2, we need to use the following
well-known properties for the ceiling and floor functions.

Proposition 3 (i) �a + b� ≤ �a� + �b� ≤ �a + b� + 1.
(ii) 	a + b
 ≥ 	a
 + 	b
.
(iii) �a� ≤ 	a
 + 1.

Proof. (Lemma 2)
(i) Note from (9), Proposition 3(i), and (3) that

A2
j,k(t) − A2

j,k(s)

=
∑

(i,�)∈S∗(k)

�
Bo

i,�(t − d1) − j + 1
N

�

−�
Bo

i,�(s − d1) − j + 1
N

�

≤
∑

(i,�)∈S∗(k)

�
Bo

i,�(t − d1) − Bo
i,�(s − d1)

N
�

≤
∑

(i,�)∈S∗(k)

�ri,�(t − s)
N

�. (16)

Since the connection patterns at the second stage are peri-
odic with period N for some one-cycle permutation matrix,

C2
j,k(t) − C2

j,k(s) ≥ 	 t − s

N

. (17)

From the assumption in (4) and Proposition 3(ii), it follows
that

C2
j,k(t) − C2

j,k(s)

≥ 	
∑

(i,�)∈S∗(k) ri,�(t − s)

N



≥
∑

(i,�)∈S∗(k)

	ri,�(t − s)
N


. (18)

Using (16) and (18) in (10) yields

q2
j,k(t) ≤ max

0≤s≤t

[ ∑

(i,�)∈S∗(k)

�ri,�(t − s)
N

�

− 	ri,�(t − s)
N



]
. (19)

That (12) holds then follows from (19) and Proposi-
tion 3(iii).

(ii) It suffices to show that

B2
j,k(t + d2) − A2

j,k(t) ≥ 0.

Note from (11) that

B2
j,k(t + d2) − A2

j,k(t)

= min
0≤s≤t+d2

[A2
j,k(s) − A2

j,k(t)

+C2
j,k(t + d2) − C2

j,k(s)]

= min
[

min
0≤s≤t

[A2
j,k(s) − A2

j,k(t)

+C2
j,k(t + d2) − C2

j,k(s)],

min
t+1≤s≤t+d2

[A2
j,k(s) − A2

j,k(t)

+C2
j,k(t + d2) − C2

j,k(s)]
]
. (20)

All the terms in the second minimum are clearly nonnegative
as both A2

j,k(t) and C2
j,k(t) are non-decreasing in t. On the

other hand, for 0 ≤ s ≤ t, we have from (17) and (4) that

C2
j,k(t + d2) − C2

j,k(s) ≥ 	 t − s + d2

N



≥ 	
(
∑

(i,�)∈S∗(k) ri,�(t − s)) + NMk

N



= 	
∑

(i,�)∈S∗(k)(ri,�(t − s) + N)

N

.

Using (16) and Proposition 3 (ii),(iii) yields

C2
j,k(t + d2) − C2

j,k(s)

−(A2
j,k(t) − A2

j,k(s))

≥
∑

(i,�)∈S∗(k)

	ri,�(t − s) + N

N



−
∑

(i,�)∈S∗(k)

�ri,�(t − s)
N

�

=
∑

(i,�)∈S∗(k)

(	ri,�(t − s)
N


 + 1)

−
∑

(i,�)∈S∗(k)

�ri,�(t − s)
N

�

≥ 0.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



B. Analysis for the resequencing-and-output buffer

In this section, we analyze the resequencing-and-output
buffer. The resequencing-and-output buffer conceptually con-
sists of two virtual buffers (see Figure 7): (i) the resequencing
buffer and (ii) the output buffer. The objective of the rese-
quencing buffer is to reorder the packets so that packets of
the same flow depart in the same order as they arrive. After
resequencing, packets are stored in the output buffer waiting
for transmission from the output link. The scheduling policy
at the output buffer is the EDF policy with the deadline of a
packet being its targeted departure time.

Let A3
k(t) be the cumulative arrivals by time t to the kth

resequencing buffer, and B3
k(t) be its cumulative departures.

Note that B3
k(t) is also the cumulative arrivals by time t to the

kth output buffer. Denote by B3
i,�(t) the cumulative arrivals of

the Ai,�-flow by the time t to the output buffer. Thus, we have

A3
k(t) =

N∑

j=1

B2
j,k(t), (21)

and

B3
k(t) =

∑

(i,�)∈S∗(k)

B3
i,�(t). (22)

Let B4
k(t) be the cumulative departures by time t from the kth

output buffer.

Resequencing
buffer

Output buffer

3
kB

4
kB

2
,kjB

3
kA

1

EDF

Fig. 7. The resequencing-and-output buffer

Lemma 4 Suppose the rate assumption in (4) holds.

(i) A3
k(t) ≤

∑
(i,�)∈S∗(k) Bo

i,�(t − d1).
(ii) Every packet of the Ai,�-flow leaves the kth rese-

quencing buffer not later than the sum of its targeted
departure time and d1 + d2, i.e.,

B3
i,�(t) ≥ Bo

i,�(t − d1 − d2).

(iii) Under the EDF scheduling policy, every packet
leaves the output buffer not later than the sum of
its targeted departure time and d1 + d2.

(iv) The number of packets queued at the kth

resequencing-and-output buffer is bounded by d2,
i.e.,

A3
k(t) − B4

k(t) ≤ d2.

Proof. (i) Recall that A2
j,k is the cumulative number of

departures from the jitter control stage to the kth VOQ of
the jth input of the second stage by time t. From (21),(9) and

(6), it follows that

A3
k(t) =

N∑

j=1

B2
j,k(t) ≤

N∑

j=1

A2
j,k(t)

=
N∑

j=1

∑

(i,�)∈S∗(k)

Di,�,j(t − d1)

=
∑

(i,�)∈S∗(k)

N∑

j=1

Di,�,j(t − d1)

=
∑

(i,�)∈S∗(k)

Bo
i,�(t − d1).

(ii) From Lemma 2(ii), it follows that the departure time
for a packet of the Ai,�-flow to leave the resequencing buffer
is not later than the sum of its targeted departure time and
d1 + d2.

(iii) According to Theorem 5.6.1 in [4], it suffices to show
that

∑

(i,�)∈S(k)

Bo
i,�(t − d1 − d2)

≤ min
0≤s≤t

[
∑

(i,�)∈S(k)

B3
i,�(s) + (t − s)], (23)

for all S(k) ⊆ S∗(k).
From (ii) of this lemma, (3) and (4), we have for all S(k) ⊆

S∗(k) and 0 ≤ s ≤ t,
∑

(i,�)∈S(k)

Bo
i,�(t − d1 − d2) − B3

i,�(s)

≤
∑

(i,�)∈S(k)

Bo
i,�(t − d1 − d2)

−Bo
i,�(s − d1 − d2)

≤
∑

(i,�)∈S(k)

ri,�(t − s)

≤
∑

(i,�)∈S∗(k)

ri,�(t − s) ≤ (t − s). (24)

Thus, the inequalities in (23) hold.
(iv) Since every packet leaves the system not later than the

sum of its targeted departure time and d1 + d2, we then have

B4
k(t) ≥

∑

(i,�)∈S∗(k)

Bo
i,�(t − d1 − d2).

From (i), (iii) of this Lemma, (3) and (4), it follows that

A3
k(t) − B4

k(t)

≤
∑

(i,�)∈S∗(k)

Bo
i,�(t − d1) − Bo

i,�(t − d1 − d2)

≤
∑

(i,�)∈S∗(k)

ri,�d2 ≤ d2.
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Proof. (Proof of Theorem 1) (i) It is shown in Lemma 4 (iii).
(ii) It is shown in Lemma 4 (iv).

III. A FRAME BASED SCHEME FOR GUARANTEED RATE

SERVICES

The drawback of the previous scheme is its hardware
implementation complexity for the resequencing-and-output
buffer and the jitter control mechanism. Moreover, only fixed
size packets are considered. In order to provide guaranteed rate
services for variable length packets, variable length packets
have to be segmented into fixed size packets, transmitted
through the switch and, re-assembled at the output. The
objective of this section is to propose a simple scheme that
does not require resequencing, EDF scheduling and jitter
control. Furthermore, variable length packets may not need
to be segmented.

First stage

The first parts

Second stage

The second parts

The central buffers

.

.

.

.

.

.

.

.

.

Fig. 8. The architecture for the frame based scheme

The idea of the second scheme, as in Keslassy and McKe-
own [18], is to use a framed structure so that resequencing is
not needed. The architecture of the scheme is shown in Figure
8. To ease our presentation, we shall describe the scheme
for fixed size packets and point-to-point flows. Extensions
to variable length packets and multicasting flows will be
addressed at the end of this section. As in the load balanced
Birkhoff-von Neumann switches, there are two N×N crossbar
switch fabrics and buffers between these two crossbar switch
fabrics. In this scheme, time slots are grouped into fixed size
frames. Each frame has F time slots. Thus, the mth time frame
is from time slot (m − 1)F + 1 to time slot mF (see Figure
9).

0F2F3F4F5F
............ ...

the 1st
time frame

the 3rd
time frame

the 4th
time frame

the 5th
time frame

...

...

t

the 2nd
time frame

Fig. 9. The time frame structure

Let Ai,k(t) be the cumulative number of (fixed size) packet
arrivals by time t at the ith input port to the kth output port,
i = 1, . . . , N , k = 1, . . . , N . Let ri,k be the guaranteed rate of
the Ai,k-flow. Assume that F is chosen so that Mi,k = ri,kF
is an integer for i = 1, . . . , N , k = 1, . . . , N . We will show

that the switch architecture in Figure 8 provides guaranteed
rate services under the following assumptions.

(A1) In a time slot, no more than one (fixed size) packet
arrives at an input port of the switch fabric.

(A2) No more than Mi,k (fixed size) packets of the Ai,k-
flow arrive at the ith input port in a time frame.

(A3)
∑N

i=1 ri,k ≤ 1, for k = 1, 2, · · · , N.
(A4) All the buffers are empty at the beginning

Note that (A2) implies that
∑N

k=1 ri,k ≤ 1, for i =
1, 2, · · · , N . These inequalities and those in (A3) are known
as the “no overbooking” conditions in [14], as they simply
state that neither the total rate coming out from an input port
nor the total rate to an output port can be larger than 1.

First, we describe how the connection patterns of the two
crossbar switch fabrics are set up. Unlike the last section, both
switches now change their connection patterns according to
time frames. In a time frame, both crossbar switches in Figure
8 set up connection patterns corresponding to a circular-shift
matrix (note that a circular-shift matrix is also a one-cycle
permutation matrix). Specifically, if the jth output port is
connected to the ith input port during the mth time frame,
then the jth output port will be connected to the (i+1)th input
port during the (m+1)th time frame, for i = 1, 2, · · · , N −1.
If the jth output port is connected to the N th input port during
the mth time frame, then the jth output port will be connected
to the 1st input port during the (m+1)th time frame. Initially,
we set the connection patterns so that the jth output port is
connected to the 1st input port during the jth time frame. To be
precise, we define the function h(i,m) = (m− i+1) mod N
if (m − i + 1) mod N �= 0 and h(i,m) = N otherwise.
During the mth time frame, the ith input port is connected to
the h(i,m)th output port of these two crossbar switch fabrics.
As such, all the packets that arrive at the ith input port during
the mth frame are all routed to the h(i,m)th output port.

There are N central buffers between these two switch
fabrics, indexed from 1 to N. Each central buffer consists
of two alternating memory blocks. The buffer size of each
memory block is NF , which is divided into N bins, each with
buffer size of F. To ease the presentation for the operation of
these central buffers, we introduce the concept of superframes.
The pth superframe of the ith input port of the both stages
is defined to be the set of time slots in the N time frames,
starting from the ((p−1)N + i)th frame to the (pN + i−1)th

frame. Note that the pth superframe of the ith1 input and
the pth superframe of the ith2 input are different if i1 �= i2.
Moreover,the jth time frame in the pth superframe of the ith

input port (of both stages) is the ((p − 1)N + i + j − 1)th

frame. Since

h(i, (p − 1)N + i + j − 1) = j,

it follows that during the jth time frame in the pth superframe
of the ith input port, the ith input port is always connected to
the jth output port.

Consider a particular packet that arrives at the ith input
port of the first stage during the jth time frame in the pth

superframe of the ith input port. As just described, the ith

input is connected to the jth output during that frame and
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the packet is thus sent to the jth central buffer without delay.
As there are two alternating memory blocks in the jth central
buffer, the packet is sent to the second (resp. first) memory
block if p is odd (resp. even). If, furthermore, the packet is
destined for the kth output port, it will be placed in the kth

bin of that memory block. As each bin only has the buffer size
F , one might wonder whether there is enough buffer space for
such an assignment. We will show in Theorem 6 that under
the assumptions in (A1-4) there are no packet overflows for
such an assignment.

Without loss of generality, let us assume that p is odd and
the packet is placed in the kth bin of the second memory block
of the jth central buffer. During the kth time frame in the
(p+1)th superframe of the jth input port of the second stage,
the jth input port of the second stage is connected to the kth

output of the second stage. As each frame has F times slots
and each bin can hold at most F packets, during that frame
all the packets in the kth bin of the second memory block of
the jth central buffer are transmitted to the kth output of the
second stage.

Example 5 We illustrate this scheme by a 4×4 switch fabric.
In Figure 10, we show the operation for the first stage. We
denote by I(i,m) the set of packets that arrive at the ith input
port of the first stage during the mth time frame, and Is(i, p)
the set of packets that arrive the ith input port of the first
stage during the pth superframe of the ith input port. Note
that I(1, 1), I(2, 2), I(3, 3) and I(4, 4) are all routed to the
second memory block of the first central buffer. Each of the
four frames is the first frame in the superframe of its input.
Upon the arrival of each packet in these four frames, it is
placed immediately in the bin that corresponds to its destined
output. At the end of the first superframe of the first input
(i.e., the end of the 4th frame), all the packets in the bins
of the second memory block of the first central buffer are
well packed and ready to be transmitted to the second stage.
Similarly, I(1, 2), I(2, 3), I(3, 4) and I(4, 5) are all routed to
the second memory block of the second central buffer, I(1, 3),
I(2, 4), I(3, 5) and I(4, 6) are all routed to the second memory
block of the third central buffer, and I(1, 4), I(2, 5), I(3, 6)
and I(4, 7) are all routed to the second memory block of the
fourth central buffer.

In Figure 11, we illustrate the operation for the second stage.
We denote by O(j,m) the set of packets that depart from the
jth input port of the second stage during the mth time frame,
and Os(j, p) the set of packets that depart from the jth input
port of the second stage during the pth superframe of the jth

input port. Now consider the four bins at the second memory
block of the first central buffer. Since they are ready at the
end of the first superframe of the first input, packets in the
first bin are routed to the first output during the first frame of
the second superframe of the first input, i.e., the 5th frame.
Similarly, packets in the second bin are routed to the second
output during the second frame of the second superframe of
the first input, i.e., the 6th frame, packets in the third bin are
routed to the third output during the third frame of the second
superframe of the first input, i.e., the 7th frame, and packets in

the fourth bin are routed to the fourth output during the fourth
frame of the second superframe of the first input, i.e., the 8th

frame. In other words, O(1, 5) contains the packets in the first
bin, O(1, 6) contains the packets in the second bin, O(1, 7)
contains the packets in the third bin, and O(1, 8) contains the
packets in the fourth bin.

The four bins in the second memory block of the second
central buffer are ready at the end of the 5th frame. These
four bins are routed to the first output during the 6th frame,
the second output during the 7th frame, the third output during
the 8th frame and the fourth output during the 9th frame. The
operation for the other two central buffers are done in a similar
manner as shown in Figure 11.

Theorem 6 Assume that (A1-4) hold. A packet that arrives at
the ith input and destined to the kth output during the jth

time frame in the pth superframe of the ith input of the first
stage (i.e., the ((p−1)N + i+j−1)th time frame) will depart
during the kth time frame in the (p + 1)th superframe of the
jth input of the second stage (i.e., the (pN +j +k−1)th time
frame), for i = 1, 2, · · · , N and k = 1, 2, · · · , N .

There are several consequences of Theorem 6.

(i) Even though the central buffer is finite, no packets
are lost inside the switch.

(ii) Packets of the same flow (the same i and k) depart in
the FCFS order. This is trivial for packets of the same
flow that arrive within the same frame. For packets
of the same flow that arrive in different frames, one
can see from Theorem 6 that the departure time of a
packet is increasing in both j and p.

(iii) From Theorem 6, the maximum delay for all arrivals
from the ith input port to the kth output port through
the switch fabric is bounded by

(pN + j + k − 1)F
−((p − 1)N + i + j − 1)F + F

= (N + k − i + 1)F. (25)

Thus, the maximum delay for all arrivals from the
ith input port through the switch fabric is bounded
by (2N − i + 1)F, which in turn is bounded above
by 2NF.

Proof. (Theorem 6)
From (A2), the number of packets of the Ai,k-flow that

arrive during the jth time frame in the pth superframe of the
ith input port of the first stage(i.e., the ((p−1)N +i+j−1)th

time frame) is bounded by Mi,k. Without loss of generality,
assume that p is odd. The total number of packets that are
placed in the kth bin of the second memory block of the jth

central buffer during the pth superframe of the jth input port
of the second stage is not greater than

N∑

i=1

Mi,k.
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From (A3), it follows that

N∑

i=1

Mi,k =
N∑

i=1

ri,kF ≤ F.

Thus, if the kth bin of the second memory block of the jth

buffer is empty at the beginning of the pth superframe of the
jth input port of the second stage, then all of the packets
that arrive during this superframe can be placed in that bin
without causing buffer overflow. During the kth time frame in
the (p + 1)th superframe of the jth input port of the second
stage (i.e., the (pN + j + k − 1)th time frame), all of packets
in that bin are routed to the kth output port of the second
stage. As a result, the kth bin of the second memory block
of the jth buffer is empty again at the beginning of the (p +
2)th superframe of the jth input port of the second stage! By
induction, all packets of the Ai,k-flow in the jth time frame of
the pth superframe of the ith input port of the first stage (i.e.,
the ((p−1)N + i+j −1)th time frame) will depart during the
kth time frame in the (p + 1)th superframe of the jth input
of the second stage (i.e., the (pN + j + k − 1)th time frame),
for k = 1, 2, · · · , N and i = 1, 2, · · · , N .

The argument for the case that p is even is similar.

Now we describe how we extend the scheme for variable
length packets. As there is a limit on the number of packets
that can be transmitted within a time frame for a flow, buffers
have to be provided at the input ports. Thus, one can use
the VOQ technique for input buffers as shown in Figure 1.
Specifically, packets from the Ai,k-flow are queued at the kth

VOQ of the ith input. In every time frame, one can now assign
consecutive Mi,k time slots for the Ai,k-flow at the ith input.
As such, variable length packets (with packet length smaller
than the quota Mi,k) can be transmitted without segmentation
and reassembly.

It is also possible to support the multicasting flows consid-
ered in Section II. Now the no overbooking conditions are

Li∑

�=1

ri,� ≤ 1, i = 1, 2, . . . , N, and

∑

(i,�)∈S∗(k)

ri,� ≤ 1, k = 1, 2, . . . , N.

Moreover, fan-out splitting needs to be carried out at the
central buffers. This implies that a packet needs to be placed
in multiple bins at the same time. As such, the implementation
that use pointers to the memory addresses of packets might
be better than duplicating multiple packets directly.

IV. CONCLUSION

In this paper, we proposed two schemes for the load bal-
anced Birkhoff-von Neumann switches to provide guaranteed
rate services. The first scheme is an EDF based scheme.
We assign every packet a targeted departure time that is the
departure time from the corresponding work conserving link
with capacity equal to the guaranteed rate. By adding a jitter

control mechanism in front of the buffer at the second stage
and running the EDF at the output buffer, we showed that the
end-to-end delay for every packet of a flow is bounded by the
sum of its targeted departure time and a constant that only
depends on the number of flows and the size of the switch.
In comparison with the scheme for guaranteed rate services in
[5] and [6], this new scheme has the following advantages:

(i) There is no need to perform the Birkhoff-von Neu-
mann decomposition in [5] and [6].

(ii) One only needs to implement N connection patterns
for each crossbar switch and these connection pat-
terns are independent of the incoming traffic.

(iii) This scheme can support multicasting flows.

The main drawback of this scheme is the hardware com-
plexity of implementing the jitter control mechanism and the
EDF scheduling policy at the output buffer.

Our second scheme is much simpler than the first one.
There, time slots group into fix size frames. We showed that if
the incoming traffic satisfied assumptions in (A1)−(A4), then
the end-to-end delay for every packet and the size of central
buffers are both bounded by constants that only depend on the
size of the switch and the frame size. The second scheme has
the following advantages:

(i) The on-line complexity is O(1).
(ii) We still only need N connection patterns for each

crossbar switch.
(iii) Central buffers are finite and thus can be built into a

single chip.
(iv) Since each crossbar switch changes its connection

pattern according to time frames, the frequency of
changing connection patterns for each switch in the
second scheme is much slower than the frequency in
the first scheme. This is a good aspect for an optical
switch, since the frequency of changing connection
patterns in an optical switch is constrained by its
slow mechanical characteristic.

(v) Since all the packets from the same flow leave the
switch fabric in the FCFS order, there is no need for
the resequencing-and-output buffer after the second
stage.

(vi) This scheme may be able to handle variable length
packets without segmentation and reassembly.

To summarize, in Table I we compare various switch archi-
tectures, including the ideal output-buffered switch (OQ), the
input-buffered switch with maximal matching (IQ(MM)) [11],
the input-buffered switch with maximum weighted matching
(IQ(MWM)) [23], the combined input-output queueing switch
(CIOQ) [9], [28], the Birkhoff-von Neumann switch (BvN)
[5], [6], the load balanced Birkhoff-von Neumann switch with
one-stage buffering (LBvN(I)) [7], the load balanced Birkhoff-
von Neumann switch with multi-stage buffering (LBvN(II))
[8], the EDF based scheme in this paper, and the frame based
scheme in this paper.
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Architecture OQ IQ(MM) IQ(MWM) CIOQ BvN LBvN(I) LBvN(II) EDF Frame
Speedup N 1 1 2 1 1 1 1 1

Throughput 100% ≥50% 100% 100% 100% 100% 100% 100% 100%
On-line complexity N.A. O(N) O(N3 log N) O(N2) O(log N) O(1) O(1) O(1) O(1)

for crossbar connections
Rate information No No No No Yes No No Yes Yes

needed
Rate Guarantee Yes No No Yes Yes No No Yes Yes

Packet order Yes Yes Yes Yes Yes No Yes Yes Yes
preserved
Mulitcast 100% No No No No 100% 100% 100% 100%

Variable length Yes No No No No No No No Yes
packet

Delay with respect N.A. No No Exact No No Bound Bound Bound
to OQ

TABLE I

COMPARION OF VARIOUS SWITCH ARCHITECTURES.
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Fig. 10. The first stage of a 4 × 4 switch fabric
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Fig. 11. The second stage of a 4 × 4 switch fabric
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