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Abstract— Mobile ad hoc networking has been an active
research area for several years. How to stimulate cooperation
among selfish mobile nodes, however, is not well addressed yet.
In this paper, we propose Sprite, a simple, cheat-proof, credit-
based system for stimulating cooperation among selfish nodes in
mobile ad hoc networks. Our system provides incentive for mobile
nodes to cooperate and report actions honestly. Compared with
previous approaches, our system does not require any tamper-
proof hardware at any node. Furthermore, we present a formal
model of our system and prove its properties. Evaluations of a
prototype implementation show that the overhead of our system
is small. Simulations and analysis show that mobile nodes can
cooperate and forward each other’s messages, unless the resource
of each node is extremely low.

I. INTRODUCTION

IN recent years, mobile ad hoc networks have received
much attention due to their potential applications and the

proliferation of mobile devices [1], [2]. Specifically, mobile
ad hoc networks refer to wireless multi-hop networks formed
by a set of mobile nodes without relying on a preexisting
infrastructure. In order to make an ad hoc network functional,
the nodes are assumed to follow a self-organizing protocol, and
the intermediate nodes are expected to relay messages between
two distant nodes. Recent evaluations have shown that ad hoc
networks not only are flexible and robust, but also can have
good performance in terms of throughput, delay and power
efficiency [3].

So far, applications of mobile ad hoc networks have been
envisioned mainly for emergency and military situations. In
such applications, all of the nodes in the network belong to
a single authority and therefore have a common objective.
As a result, cooperation among the nodes can be assumed.
However, as observed by several authors [4], [5], [6], [7], [8],
it may soon be possible to deploy ad hoc networks for civilian
applications as well. In such emerging civilian applications,
the nodes typically do not belong to a single authority.
Consequently, cooperative behaviors such as forwarding each
other’s messages, cannot be directly assumed.
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We can identify two types of uncooperative nodes:
faulty/malicious nodes and selfish nodes. By saying
faulty/malicious nodes, we refer to the broad class of
nodes that are either faulty and therefore cannot follow a
protocol, or are intentionally malicious and try to attack
the system. The problems of faulty/malicious nodes need
to be addressed from many layers, for example, using
spread-spectrum encoding to avoid interference over the
communication channel; using a reputation system to identify
the faulty/malicious nodes and subsequently avoid or penalize
such nodes [4]; and applying the techniques from fault-
tolerant computing to perform computation correctly even
in the presence of faulty/malicious nodes. Although the
problems of faulty/malicious nodes can be important in
military applications, the focus of this paper is on selfish
nodes, which we expect will be the dominant type of nodes in
a civilian ad hoc network.1 Specifically, a selfish node is an
economically rational node whose objective is to maximize
its own welfare, which is defined as the benefit of its actions
minus the cost of its actions. Since forwarding a message
will incur a cost (of energy and other resources) to a node,
a selfish node will need incentive in order to forward others’
messages.

One possibility to provide incentive is to use a reputation
system [4], [7], [8], [9]. For example, in [4], Marti et al.
proposed a reputation system for ad hoc networks. In their
system, a node monitors the transmission of a neighbor to
make sure that the neighbor forwards others’ traffic. If the
neighbor does not forward others’ traffic, it is considered as
uncooperative, and this uncooperative reputation is propagated
throughout the network. In essence, we can consider such
a reputation system as a repeated game whose objective is
to stimulate cooperation (e.g., see Chapter 8 of [10]). Such
reputation systems, however, may have several issues. First,
there is no formal specification and analysis of the type of
incentive provided by such systems. Second, these systems
have not considered the possibility that even selfish nodes can
collude with each other in order to maximize their welfare.
Third, some of the current systems depend on the broadcast

1Note that a complete system can include both a component to deal with
faulty/malicious nodes and a component to provide incentive to selfish nodes,
using the technique proposed in this paper.
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nature of wireless networks in order to monitor other nodes.
Such monitoring, however, may not always be possible due to
asymmetric links when nodes use power control. Furthermore,
directional antennas [11], [12], which are gaining momentum
in wireless networks in order to improve capacity, will also
make monitoring hard.

Another possibility to provide incentive is to use credit (or
virtual currency) or micro payment [13]. Buttyan and Hubaux
proposed a nice solution of this type in [5], and then presented
an improved result based on credit counters in [6]. For both
proposals, a node receives one unit of credit for forwarding a
message of another node, and such credits are deducted from
the sender (or the destination). Besides other potential issues
that we will discuss in Section II, both proposals require a
tamper-proof hardware at each node so that the correct amount
of credit is added or deducted from the node. As a result of
this requirement, although both proposals are interesting, they
may not find wide-spread acceptance.

In this paper, we propose Sprite, a simple, cheat-proof,
credit-based system for mobile ad-hoc networks with selfish
nodes. Similar to [5] and [6], our system also uses credit to
provide incentive to selfish nodes. However, one of the novel
and distinguishing features is that our system does not need
any tamper-proof hardware at any node.

At a high level, the basic scheme of our system can be
described as follows. When a node receives a message, the
node keeps a receipt of the message. Later, when the node
has a fast connection to a Credit Clearance Service (CCS), it
reports to the CCS the messages that it has received/forwarded
by uploading its receipts. The CCS then determines the charge
and credit to each node involved in the transmission of a
message, depending on the reported receipts of a message.

The design of our system needs to address two main issues.
First, since there is no tamper-proof hardware at any node and
the charge and credit are based on the reports of the selfish
nodes, a selfish node (or even a group of colluding node) may
attempt to cheat the system to maximize its expected welfare.
As an example, a selfish node may withhold its receipt, or
collude with other nodes to forge receipts, if such actions
can maximize its welfare. This is the security perspective of
our system. Second, a node should receive enough credit for
forwarding a message for another node, so that it can send its
own messages with the received credit, unless the resource
of the node itself is extremely low. This is the incentive
perspective of our system.

In summary, the contributions of this paper are the follow-
ing. First, we present Sprite, a system to provide incentive
to selfish mobile nodes to cooperate. Second, our system de-
termines charge and credit from a game-theoretic perspective,
and motivates each node to report its actions honestly, even
when a collection of the selfish nodes collude. Third, we
model the essential component of our system as a game and
prove the correctness of our system under this model. As far
as we know, this is the first pure-software solution that has
formal proofs of security. Our main result works for message-
forwarding in unicast, and we extend it to route discovery and

multicast as well. Fourth, we perform extensive evaluations
and simulations of our system. Evaluations of a prototype
implementation show that the overhead of our system is small.
Simulations show that the nodes will cooperate and forward
each other’s messages, unless the resource of each node is
extremely low.

The rest of this paper is organized as follows. In Section II,
we discuss related work. In Section III, we present the overall
architecture and the intuitions behind our design. We then give
the full specification of our system in Section IV. In Section V,
we present a formal model of our system and prove the
security properties under this model. In Section VI, we further
consider the incentive issue in route discovery and multicast.
In Section VII, we present evaluations of our solution. Our
conclusion and future work are in Section VIII.

II. RELATED WORK

Three classes of work are closely related to this paper:
reputation systems, two stimulation approaches from the Ter-
minodes project, and algorithmic mechanism design.

A. Reputation-based approaches

In [4], Marti et al. considered uncooperative nodes in
general, including selfish and malicious nodes. In order to
cope with this problem, they proposed two tools: a watchdog,
which identifies misbehaving nodes, and a pathrater, which
selects routes that avoid the identified nodes. Their simulations
showed that these two tools can maintain the total throughput
of an ad hoc network at an acceptable level even with a large
percentage of misbehaving nodes. In [7], [8], Buchegger and
Le Boudec proposed and evaluated their CONFIDENT proto-
col, which detects and isolates misbehaving nodes. However,
as we discussed in Section I, there are several issues that such
reputation-based systems need to address.

B. Two stimulation approaches from Terminodes

In [5], Buttyan and Hubaux proposed a stimulation approach
that is based on a virtual currency, called nuglets, which
are used as payments for packet forwarding. Using nuglets,
the authors proposed two payment models: the Packet Purse
Model and the Packet Trade Model. In the Packet Purse
Model, the sender of a packet pays by loading some nuglets
in the packet before sending it. Intermediate nodes acquire
some nuglets from the packet when they forward it. If the
packet runs out of nuglets, then it is dropped. In the Packet
Trade Model, the destination of a packet pays for the packet.
To implement the Packet Trade Model, each intermediate
node buys a packet from its previous node for some nuglets
and sells it to the next node for more nuglets. In this way
each intermediate node earns some nuglets and the total cost
of forwarding the packet is covered by the destination. To
implement either the Packet Purse Model or the Packet Trade
Model, a tamper-proof hardware is required at each node
to ensure that the correct amount of nuglets is deducted or
credited at each node.
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Besides the requirement for a tamper-proof hardware at each
node, some other issues also exist for the Packet Purse Model
and the Packet Trade Model:

1) Both models require the clearance of nuglets in real-
time. As a result, if the system does not have enough
nuglets circulating around, the performance of their
system may degrade.

2) Under both models, if a mobile node runs out of nuglets,
its tamper-proof hardware still has to contact with some
central authority in order to “refill” its credit. (Actually,
the CCS introduced by our system is similar to such an
authority.)

3) A disadvantage of the Packet Trade Model is that it is
vulnerable to network overload, since the senders do not
have to pay. For this reason, the authors of [5] mainly
studied the Packet Purse Model.

Besides the nuglet approach, Buttyan and Hubaux also
proposed a scheme based on credit counter [6]. In this new
approach, each node keeps track of its remaining battery and
its remaining credit. The authors simulated four rules for a
node to determine when to forward others’ packets and when
to send its own packets. Our analysis shows that the first rule
is actually optimal to achieve their given goals. Although this
new scheme is simple and elegant, it still requires a tamper-
proof hardware at each node so that the correct amount of
credit is deducted or credited. Furthermore, the first two issues
we outlined in the previous paragraph exist for this approach
as well.

Both [5] and [6] are the results of the Terminodes project.
General reviews of the Terminodes project, and of the related
security problems, can be found in [14], [15], [16].

C. Algorithmic mechanism design and game theory

Our approach is motivated by algorithmic mechanism de-
sign (see e.g., [17], [18], [19], [20], [21], [22], [23], [24]),
which is an emerging active research area in the intersection of
computer science and mathematical economics. In particular,
Feigenbaum et al. have considered BGP-based mechanism
design for lowest-cost unicast routing in the Internet [23].
In [21], Feigenbaum et al. have considered cost sharing for
multicast. Golle et al. have analyzed the incentives in peer-
to-peer networks [22]. However, as far as we know, there is
no previous proposed mechanism design for ad hoc networks.
Furthermore, although our design is motivated by algorithmic
mechanism design, our problem does not fit exactly into the
mechanism-design framework. For example, in our game, the
information held by each player is not totally private, while
in mechanism design, each player must have a private type.

III. OVERVIEW OF OUR APPROACH

In this section, we present the overall architecture and
the intuitions behind our design; the formal results will be
presented in Sections IV and V.

Credit Clearance Service (CCS)

Internet

Node 1

Node 5Node 4

Node 3

Node 2

Wide −Area Wireless Network

Fig. 1. The architecture of Sprite.

A. System architecture

Figure 1 shows the overall architecture of our system,
which consists of the Credit Clearance Service (CCS) and
a collection of mobile nodes. The nodes are equipped with
network interfaces that allow them to send and receive mes-
sages through a wireless overlay network [25], e.g., using
GPRS in a wide-area environment, while switching to 802.11
or Bluetooth in an indoor environment. To identify each node,
we assume that each node has a certificate issued by a scalable
certificate authority such as those proposed in [26], [27]. For
concreteness of presentation, we assume that the sender knows
the full path from the sender to the destination, using a secure
ad hoc routing protocol based on DSR [28], [29], [30]. The
incentive issues of route discovery will be investigated in
Section VI.

When a node sends its own messages, the node (or the
destination, see later) will lose credit (or virtual money) to
the network because other nodes incur a cost to forward the
messages. On the other hand, when a node forwards others’
messages, it should gain credit and therefore be able to send
its messages later.

There are two ways for a node to get more credit. First, a
node can pay its debit or buy more credit using real money, at
a variable rate to the virtual money, based on the current per-
formance of the system. However, the preferred and dominant
way to get more credit is by forwarding others’ messages. In
order to get credit for forwarding others’ messages, a node
needs to report to the CCS which messages it has helped to
forward. Although a node can save its reports in a local storage
such as CompactFlash card, in order to reduce storage, each
mobile node should report to the CCS whenever it switches
to a fast connection and has backup power. A mobile node
can also use a desktop computer as a proxy to report to
the CCS. In order to save bandwidth and storage, instead of
requiring the whole message as a report, our system uses small
receipts. Such receipts are derived from the content of the
messages but do not expose the exact content of the messages.
Thus, although we require that the CCS be trusted in terms of
maintaining credit balance, the nodes do not need to trust the
CCS in terms of message confidentiality.
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B. Who pays whom?

Before determining the amount of credit or charge to each
node, we first discuss two basic questions.

The first question is who pays whom. Considering the relay
of a message from a sender to a destination as a transaction,
we need to decide who should be charged for the message and
who should receive credit for relaying the message.

Although we can charge the destination, we decide that
charging the sender will be a more robust and general ap-
proach. There are two reasons for charging only the sender.
First, charging the destination may allow other nodes to launch
a denial-of-service attack on the destination by sending it a
large amount of traffic. Even sharing the cost between the
sender and the destination could have a similar problem,
because the sender could collude with the intermediate nodes,
who could secretly return the sender’s payment back, so
that only the destination pays for the traffic. On the other
hand, if only the sender is charged, a node will not have
incentive to send useless messages. Second, if the destination
benefits from the content of a message and thus should pay
for it, the sender can get compensation from the destination,
for example, through an application-layer payment protocol.
Given these reasons, only the sender will be charged in our
system.

A closely related question is who will receive credit for
forwarding a message. Ideally, any node who has ever tried to
forward a message should be compensated because forwarding
a message will incur a cost to the node, no matter successful or
not. However, a forwarded message may be corrupted on the
link, and there is no way to verify that the forwarding action
does occur. Although some local wireless networks such as
IEEE 802.11 do provide link layer acknowledgments, such
acknowledgment schemes are not universal and we refrain
from changing basic network functions. Given this decision,
the credit that a node receives will depend on whether or not its
forwarding action is successful — a forwarding is successful
if and only if the next node on the path receives the message.
In other words, the CCS believes that a node has forwarded
a message if and only if there is a successor of that node on
the path reporting a valid receipt of the message.

C. Objectives of the payment scheme

The second basic question is about the objective of the
payment scheme. After all, the objectives of our payment
scheme are to prevent cheating actions and to provide incentive
for the nodes to cooperate. Given such objectives, our system
does not target balanced payment; that is, we do not require
that the total charge to the sender be equal to the total credit
received by other nodes for a message. In fact, in order to
prevent one type of cheating actions, our CCS charges the
sender more than it gives to the other nodes (see Section III-
F). In order to offset long-term net outflow of credit from
the mobile nodes to the CCS, if in a large network, the
CCS periodically returns the credit back to the mobile nodes
uniformly; otherwise, the CCS periodically gives each mobile
node a fixed amount of credit. Note that this return will not

enable any cheating action or reduce the incentive of the nodes
to forward others’ messages.

D. Cheating actions in the receipt-submission game

Since the mobile nodes are selfish, without a proper pay-
ment scheme, they may not forward others’ messages or they
may try to cheat the system, if the cheating can maximize
their welfare. In particular, a selfish node can exhibit one of
the three selfish actions:

1) After receiving a message, the node saves a receipt but
does not forward the message;

2) The node has received a message but does not report the
receipt;

3) The node does not receive a message but falsely claims
that it has received the message.

Note that any of the selfish actions above can be further
complicated by collusion of two or more nodes. We next
progressively determine the requirements on our system in
order to prevent the above actions.

E. Motivating nodes to forward messages

In order to motivate a selfish node to forward others’
messages, the CCS should give more credit to a node who
forwards a message than to a node who does not forward
a message. A basic scheme to achieve this objective is as
follows. First, the CCS determines the last node on the path
that has ever received the message. Then the CCS asks the
sender to pay β to this node, and α to each of its predecessors,
where β < α. Note that the CCS does not ask the sender to
pay anything to the successors of the last node. Comparing
this scheme with those in [5] and [6], we observe that the
approaches in [5] and [6] are just the special case that β is
very small and α is close to 1. Figure 2 illustrates the basic
idea with an example. In this example, only the first three
intermediate nodes submit their receipts. Therefore, nodes 1
and 2 will each receive a payment of α, and node 3 a payment
of β. Since node 4 and the destination do not submit any
receipt, they do not receive any credit. The sender pays a total
of 2α+ β.

sender node 1 node 2

αα β

destinationnode 3 node 4

0 0−(2α+β)

Fig. 2. Illustration of our payment scheme (version 1).

F. Motivating nodes to report their receipts

Obviously, each single node having received a message is
motivated to report its receipt, if β is greater than its cost of
submitting a receipt, which, as we discussed previously, should
be low since a receipt is generally small.

Unfortunately, there is still a collusion that can work against
the above design. As an example, the last node (or in the
general case, the last k nodes) ever received the message can
collude with the sender. In particular, if the last node does
not report its receipt, the sender saves α while the last node
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loses β. However, if the sender gives the last node a behind-
the-scene compensation of β + ε, where ε > 0, the last node
will be better-off while the sender still enjoys a net gain of
α − (β + ε). Thus, the colluding group gets a net benefit of
about α− β.

In order to prevent this cheating action, the CCS charges the
sender an extra amount of credit if the destination does not
report the receipt of a message. This extra charge goes to the
CCS instead of any nodes. The overall charge to the sender
(including payments to other nodes and the extra charge)
should be kβ less than the charge to the sender when the
message arrives at the destination, where k is the number of
nodes not submitting receipts. Given such extra charge, even
a colluding group cannot benefit from this cheating action.
Again consider the example in Figure 2. Figure 3 shows
the revised amount paid by the sender, which is equal to
(4α+ β) − 2β.

sender node 1 node 2

αα β

destinationnode 3 node 4

0 0−(4α−β)

Fig. 3. Illustration of our payment scheme (version 2).

G. Preventing false receipts

Next we consider a countermeasure to the third type of
selfish actions. As we discussed before, in order to save
bandwidth and storage, our system requires that the nodes
submit receipts instead of full messages. Given such a scheme
for receipts, a group of colluding nodes can try to attack our
system in several ways. For example, instead of forwarding
the whole message, an intermediate node can forward only
the receipt of a message to its successor, which is sufficient
for getting credit. Moreover, the intermediate node can even
wait until it has a fast connection to the successor to forward
the false receipt, thus further saving resource usage.

The key to prevent such attack depends on the destination.
We distinguish two cases: 1) the destination colludes with the
intermediate nodes; or 2) the destination does not collude with
the intermediate nodes.

We first consider the case that the destination colludes with
the intermediate nodes, and therefore submits a receipt of a
message even when it does not receive the whole message.
For this case, we argue that the intermediate nodes and the
destination should be paid as if no cheating had happened,
because after all, the message is for the destination and the
destination does submit a receipt for the message, indicating
that it has received the message. If the sender needs to make
sure that the destination receives the whole message, a higher-
layer protocol to validate the receipt of the whole message by
the destination can be easily implemented, e.g., see [31].

We next consider the case that the destination does not
collude with the intermediate nodes. In this case, if the
intermediate nodes forward only the receipt of a message
instead of the whole message, then the destination will not
be able to receive a valid message payload, and therefore

will not submit a receipt for the message. Based on this
observation, we can prevent the potential cheating action of
the intermediate nodes by greatly reducing the amount of
credit given to the intermediate nodes, if the message is not
reported to be received by the destination. With such reduction
of credit, the cheating nodes cannot get enough credit even to
cover the minimum expense needed for this type of cheating,
i.e., the cost of forwarding a receipt. To be more exact, if
the destination does not report a receipt of a message, we
multiply the credit paid to each node by γ, where γ < 1
(the exact requirement on γ will be presented in Section V).
Still consider the example in Figure 2. Figure 4 shows the
revised amount of credit received by each node. In particular,
comparing Figure 4 with Figure 3, due to this revision, we
reduce the charge to the sender by γβ instead of β, for each
node on the path who does not report a receipt.

sender node 1 node 2 destinationnode 3 node 4

γα γα γβ 0 0−(4α+β−2γβ)

Fig. 4. Illustration of our payment scheme (final version).

IV. MESSAGE-FORWARDING PROTOCOL: SPECIFICATION

In the following formal specification of our protocol, we
denote the public/private key pair of node ni by (PKi, SKi).
Each node ni maintains a sequence-number matrix seqi, where
seqi(j, k) is the sequence number of messages from sender
nj to destination nk, observed by node ni. We assume that
(signSK(), verifyPK()) is a digital signature scheme. In
practice, we can use the RSA or the elliptic curve signature
scheme.

A. Sending a message

Suppose that node n0 is to send message payload
m with sequence number seq0(0, d) to destination nd,
through path p. Node n0 first computes a signature, s, on
(MD(m), p, seq0(0, d)), where MD() is a message digest
function such as MD5 [32] or SHA-1 [33]. Then, n0 transfers
(m, p, seq0(0, d), s) to the next hop and increases seq0(0, d)
by 1. Figure 5 specifies the complete protocol steps.

� m is the message payload.
� n0 is the sender, nd the destination, and p the path.

s ← signSK0(MD(m), p, seq0(0, d))
send (m, p, seq0(0, d), s) to the next node
seq0(0, d) + +

Fig. 5. Node n0 sends a message to nd.

B. Receiving a message

Suppose that node ni receives (m, p, seq, s). It first checks
three conditions: 1) ni is on the path; 2) the message has a
sequence number greater than seqi(0, d); and 3) the signature
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is valid. If any of the conditions is not satisfied, the message is
dropped. Otherwise, it saves (MD(m), p, seq, s) as a receipt.
If ni is not the destination and decides to forward the message,
it sends (m, p, seq, s) to the next hop. Figure 6 specifies the
protocol steps.

� (m, p, seq, s) is the received message.
� n0 is the sender, nd the destination.

if ((ni not in p) || (seq ≤ seqi(0, d))
|| (verifyPK0((MD(m), p, seq), s) �= TRUE))

drop the message
else
seqi(0, d) ← seq
save (MD(m), p, seq, s) as a receipt
if (ni is not the destination and decides to forward)

send (m, p, seq, s) to next hop
else

drop the message

Fig. 6. Node ni receives (m, p, seq, s).

C. Computing payments

A receipt (D, p, seq, s) submitted by node ni is regarded as
valid if

verifyPK0((D, p, seq), s) = TRUE,

where PK0 is the public key of the sender.
Without loss of generality, we assume that p =

(n0, n1, . . . , ne, . . . , nd), where ne is the last node on path p
that submits a valid receipt with sequence number seq. Then
the CCS charges C from node n0, and pays Pi to node ni,
where

C = (d− 1)α+ β − (d− e)γβ,

Pi =






α if i < e = d
β if i = e = d
γα if i < e < d
γβ if i = e < d.

Note that in implementation, the CCS will issue credit grad-
ually. For example, when the last intermediate node submits
its receipt for a message but the destination has not submitted
its receipt yet, the last intermediate node will get γβ. Later,
when the destination submits its receipt, the node will get its
full credit of α.

V. MESSAGE-FORWARDING PROTOCOL: A FORMAL

MODEL AND ANALYSIS

A. A model of the receipt-submission game

For convenience of analysis, we model the submissions of
receipts regarding a given message m as a one-round game.

Players. This game has d + 1 players, n0, n1, . . . , nd, from
the sender to the destination.2

Players’ Information. Let Ti be the information held by
player ni that is unknown to the CCS. For i > 0, Ti = TRUE
if node ni has ever received message m; Ti = FALSE
otherwise. Obviously, the sender n0 and the set of nodes that
have ever received message m constitute a prefix of the path.
Therefore,

Ti =
{
TRUE if 0 < i ≤ e′

FALSE if e′ < i ≤ d,

where e′ is the index of the last node that has ever received
message m. Note that e′ is secret to the CCS when the game
starts. Also note that a player has some partial information
about e′, i.e., the information inferred from its own informa-
tion. For completeness, we define T0 = TRUE.

Actions. Each player, ni (i > 0), has two possible actions:
reporting that it has ever received message m (by submitting
a valid receipt), or withholding its report. We denote the action
of ni by Ai. Then Ai is either TRUE or FALSE. The only
exception is n0, which has no choice of action. We define
A0 = TRUE, for completeness of our model.

Cost of Actions. We denote the cost of ni’s action by Ui. As
discussed before, in general, the cost of sending a receipt to
the CCS is very low. However, if player ni does not receive
message m but can successfully claim that it has received the
message, then a colluding node must have forwarded ni a copy
of the receipt. Let δ be the cost of forwarding a receipt from
one mobile node to another node. Then the colluding node
incurs a cost of δ and ni must compensate the colluding node
with δ. Counting this cost on ni, we have

Ui =
{
δ if Ti = FALSE and Ai = TRUE
0 otherwise.

Payment. Recall that the system’s payment to ni (i > 0) is

Pi =






α if i < e = d
β if i = e = d
γα if i < e < d
γβ if i = e < d.

For n0, the charge of C can be viewed as a negative payment

P0 = −C = −((d− 1)α+ β − (d− e)γβ).

Welfare. For player ni, deducting its cost from its received
payment, the node has a welfare of

Wi = Pi − Ui.

2Recall that each receipt contains a signed path. Therefore, nodes not on
the path are easily excluded from this game.
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B. Analysis of the receipt-submission game: the security per-
spective

If Ai = Ti, then we say that ni tells the truth. Otherwise,
we say that ni cheats. The strategy of ni can be truth-telling,
cheating, or a probability distribution over these two choices.
The strategy profile of a group of players refers to the ordered
set of the strategies of these players.

Definition 1: For a player, an optimal strategy is a strategy
that brings the maximum expected welfare to it, regardless of
the strategies of all the other nodes.

Theorem 1: In the receipt-submission game, truth-telling is
an optimal strategy for every node ni, if δ ≥ γβ, and nd does
not cheat in case of Td = FALSE.
(Please see Appendix IX-A for a proof.)

Besides individual cheating, we further consider the possi-
bility of collusion.

Definition 2: A game is collusion-resistant, if any group of
colluding players cannot increase the expected sum of their
welfare by using any strategy profile other than that in which
everybody tells the truth.

Theorem 2: The receipt-submission game is collusion-
resistant, if δ ≥ (d − 1)γα, and nd does not cheat in case
of Td = FALSE.
(Please see Appendix IX-B for a proof.)

Definition 3: A game is cheat-proof, if truth-telling is an
optimal strategy for every player and the game is collusion-
resistant.

Theorem 3: The receipt-submission game is cheat-proof.

C. Analysis of performance: the incentive perspective

In the above proofs, we have essentially shown that each
selfish node should report faithfully to the CCS. With this
knowledge in mind, comparing the expected gain of credit
from forwarding a message with that of not forwarding the
message, an intermediate node can expect a net gain of p2α+
(p1−p2)γα+(1−p1)γβ−γβ, where p1 is the probability that
the message arrives at the next node, and p2 the probability
that the message arrives at the destination. Simplifying, we
have p2(1 − γ)α + p1γ(α − β). Note that this payment gain
is alway greater than 0 since γ is small, and α > β.

If this payment gain is sufficient to cover the cost of
forwarding a message, the node has incentive to forward
the message. Note that we can further fine-tune the payment
parameters to optimize the system performance. However, this
optimization issue is orthogonal to the main theme of this
paper, and a thorough investigation of the optimization issue
will be presented in a separate paper.

VI. STIMULATING COOPERATION IN ROUTE DISCOVERY

AND MULTICAST

Since route discovery uses message broadcast, the approach
we have presented cannot be applied directly. Here we propose

a slightly different approach, which is a bit more expensive.
But since route discovery is performed less frequently, this
approach is affordable in general. This approach is based on
DSR, and essentially we will show how to improve DSR to
stimulate cooperation in route discovery. Note that the reply
to ROUTE REQUEST can be sent as a regular message.
Therefore we only need to stimulate the re-broadcasting of
ROUTE REQUEST.

A. Sending a ROUTE REQUEST

In general, when a node starts to broadcast a ROUTE
REQUEST, the message includes the source address and a
sequence number. Then the node signs and broadcasts the
message, and increases its sequence number counter by 1.

B. Receiving a ROUTE REQUEST

Suppose that a node receives a ROUTE REQUEST. It
first decides whether the message is a replay by looking at
the sequence number. The node saves the received ROUTE
REQUEST for getting payment in the future. When the node
decides to rebroadcast the ROUTE REQUEST, it appends its
own address to the ROUTE REQUEST and signs the extended
message.

C. Computing payment

When the CCS computes payment, a ROUTE REQUEST
is rejected if any signature in the message is invalid. Further-
more, if a ROUTE REQUEST submitted by a node is a part
of another ROUTE REQUEST submitted by the same node,
then the former message is rejected. Finally, the CCS builds
a tree based on the accepted ROUTE REQUEST messages.
The sender pays α to each non-leaf node of the tree, and β
to each leaf of the tree. For each node outside the tree, the
sender node pays α− β to the CCS.

D. Discussion and extension

The above approach is secure for route discovery. Its secu-
rity can be argued in a similar way as the unicast case. As
route-discovery broadcast can be viewed as a special case of
multicast, this approach can also be applied to multicast if
multicast is not frequently used in the system. If multicast is
frequently used, we can use a combination of the above ap-
proach and the approach presented for stimulating forwarding
messages, which is less expensive. However, we do not have
a provable result for the second type of cheating in this case.
We leave the proof as a future research topic.

VII. EVALUATIONS

A. Overhead

We first evaluate the overhead of our system. In order to
measure the overhead, we have implemented a prototype of
our system using the Crypto++4.0 library [34]. The imple-
mentation can run over a wide range of platforms such as
Linux and Win32.

In the evaluations below, our mobile node is a Laptop
with an Intel Mobile Pentium III processor at 866MHz. The
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OS of the mobile node is Windows XP. The length of a
message payload is 1000 bytes. The message digest function
is MD5. We consider two digital signature schemes: RSA with
a modulus of 1024 bits, and ECNR over GF(p) 168 [35]. We
assume that the average path length is 8 hops.

We first evaluate the CPU processing time on a mobile node.
In our system, the major online processing overhead is the
signing operation by the sender and the verification operation
by the intermediate nodes. The second and third columns
of Table I show the CPU processing time of the sender to
send a message and that of an intermediate node to forward
a message, respectively. We observe that RSA has a much
smaller forwarding overhead. Thus, if reducing forwarding
overhead is the major objective, RSA is a better implementa-
tion choice. However, for both schemes, we observe that the
CPU processing time is acceptable, if the nodes do not send
a large number of messages, which is the expected case when
the mobile nodes have limited bandwidth and energy.

We next evaluate the bandwidth and storage requirement.
Compared with a message using DSR as the routing protocol
but without message authentication, the major increased over-
head is the digital signature for message authentication. For
RSA with a modulus of 1024 bits, the authentication header
is about 128 bytes; for ECNR GF(p) with 168 bits, the header
is about 42 bytes. In terms of storage requirement for the
receipts, for RSA 1024, the total storage of a receipt is 180
bytes, and for the Elliptic Curve based ECNR, it is 94 bytes.
Comparing RSA with ECNR, we observe that ECNR has a
much smaller bandwidth and storage requirement.

B. System performance vs. network resource

We next evaluate the performance of our system. One major
metric of the performance of our system is the message success
rate, i.e., the percentage of messages that are successfully
relayed from the sender to the destination. For the purpose of
this evaluation, we ignore message drops due to channel errors.
Note that success rate will depend on the sending/forwarding
strategy of the mobile nodes. As we have discussed in Sec-
tion III, although our system provides incentive for cooperation
by giving more credit for forwarding a message, whether or
not to forward a specific message will depend on the objectives
and the status of a node.

To demonstrate the generality of our system, for the purpose
of this evaluation, we consider a special class of mobile nodes,
namely the power-and-credit-conservative nodes. Specifically,
a node is power-conservative if its remaining power allows it
to send (and forward) only a limited amount of messages; a
node is credit-conservative if it refrains from sending any new
message when its credit balance is insufficient to cover the
charge for sending a message. For this type of nodes, we can
show that, if the objective of such a node is to maximize the
total number of its own messages sent and at the same time
to send the messages as early as possible, then the optimal
send/forward strategy is the following: when it receives a
transient message, if the number of messages allowed to be
sent by its estimated credit balance is smaller than the number

of messages allowed to be sent by its remaining battery,
forward the transient message and increase its estimated credit
balance by pα, where p is the probability that the forwarded
message will arrive at its destination; otherwise, drop the
message. In summary, let c and b denote the estimated credit
balance and the number of messages allowed to be transmitted
by the remaining battery of a node, respectively. Assume
that each message takes an average of L hops. Then the
policy of such a node is the following: if c

L < b, forward
a transient message; otherwise, drop the message. Given the
strategy above, we next evaluate the message success rate of
our system.
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Fig. 7. Message success rate vs. network battery resource.

We first evaluate the message success rate under different
configurations of network resource. Figure 7 shows the mes-
sage success rates for two ad hoc networks: one network with
70 nodes uniformly distributed in an area of 1000 by 1000,
and another network with 200 nodes uniformly distributed in
an area of 2000 by 2000. The communication radius of each
node is 250. In this experiment, since the nodes are power-and-
credit-conservative, their estimated credit balance c is close to
0 and we choose their initial credit to be uniformly distributed
in [0, C], where C = 10. To observe the effect of the amount
of node resource on the overall message success rate, for
each node, we choose its b, the number of messages that
can be sent/forwarded by the remaining battery of the node,
uniformly from [0, B], where B is from 30 to 640. Note that
even the maximum number of 640 is very conservative [2].
For this scenario, first we can drive an approximate analytical
expression for the message success rate as (1− C+1

2BL )L, where
L is the average path hops. In addition to this analytical result,
Figure 7 also plots the results from simulations in order to
capture the full details such as traffic concentration. To control
the number of experiments for each configuration, we repeat
the experiment of a configuration with a different random
seed until the 5% confidence interval is narrower than 5% of
the mean value. From Figure 7, we observe clearly that with
increasing resource, the nodes are more willing to forward
others’ messages, and therefore the message success rate is
very close to 1.

We next evaluate the dynamics of message success rate; that
is, how message success rate evolves as the nodes send more
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send forward authentication receipt
(ms) (ms) header (bytes) (bytes)

RSA 1024 10.4 0.3 128 180
ECNR over GF(p) 168 7.3 13.2 42 94
ECNR over GF(p) 168 (precomputation) 3.7 6.1 42 94

TABLE I

CPU PROCESSING TIME; SIZES OF AUTHENTICATION HEADER AND RECEIPTS.
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Fig. 8. Dynamics of message success rate.

messages. Figure 8 shows the result. Under this experiment,
the initial credit of each node is 3, and the initial battery of
each node is B, where B = 100 or 500. The value of B =
100 is in the very low end, and the objective is to observe
message drops. The x-axis of Figure 8 is the index of the
number of messages generated by the mobile nodes, and the
y-axis shows the message success rate. From this figure, we
observe that as system evolves and no new node joins, the
batteries of the nodes are consumed and the nodes tend to be
more conservative. However, we observe that, even in a low
battery configuration, considerable number of messages will
be generated before the message success rate decreases.

VIII. CONCLUSION

In this paper, we presented Sprite, a system to provide
incentive to mobile nodes to cooperate. Our system determines
payments and charges from a game-theoretic perspective, and
we showed that our system motivates each node to report
its behavior honestly, even when a collection of the selfish
nodes collude. We also modeled the essential component
of our system as the receipt-submission game, and proved
the correctness of our system under this model. As far as
we know, this is the first pure-software solution that has
formal proofs of security. Our main result works for packet-
forwarding in unicast, and we extended it for route discovery
and multicast as well. We also implemented a prototype of our
system and showed the overhead of our system is insignificant.
Simulations and analysis of the power-and-credit-conservative
nodes showed that the nodes can cooperate and forward each
other’s messages, unless the resource of the nodes is extremely
low.
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IX. APPENDIX

A. Proof of Theorem 1

Proof: Consider a strategy profile of all of the rest
players, in which each player, nj (j �= i), tells the truth with
probability xj . We distinguish four cases here.

• Case A. i = 0. Since Ai = Ti = TRUE is the only
possible strategy, it is also the best response.

• Case B. 0 < i < e′. Recall that e′ is the index of the last
node that has ever received the message. If ni tells the
truth, its expected welfare EW+

i = EP+
i is






(1 −
∏e′

j=i+1(1 − xj)
∏d−1

j=e′+1 xj)γα
+

∏e′

j=i+1(1 − xj)
∏d−1

j=e′+1 xjγβ

if e′ < d

xdα+ (1 − xd)((1 −
∏e′−1

j=i+1(1 − xj))γα
+

∏e′−1
j=i+1(1 − xj)γβ)

if e′ = d;

if ni cheats, its expected welfare EW−
i = EP−

i is





(1 −
∏e′

j=i+1(1 − xj)
∏d−1

j=e′+1 xj)γα
if e′ < d

xdα+ (1 − xd)(1 −
∏e′−1

j=i+1(1 − xj))γα
if e′ = d.

Therefore, we always have EW+
i ≥ EW−

i , which
implies that telling the truth with probability 1 will bring
the maximum expected welfare to ni.

• Case C. i = e′. If ni tells the truth, its expected welfare
EW+

i = EP+
i is






(1 −
∏d−1

j=i+1 xj)γα+
∏d−1

j=i+1 xjγβ

if e′ < d

β if e′ = d;

if ni cheats, its expected welfare EW−
i = EP−

i is





(1 −
∏d−1

j=i+1 xj)γα if e′ < d

0 if e′ = d.

As in the previous case, we always have EW+
i ≥ EW−

i ,
which implies that telling the truth with probability 1 will
bring the maximum expected welfare to ni.

• Case D. e′ < i ≤ d. Note that Td = FALSE here, which
implies that ni always tells the truth in case of i = d. So
we only need to consider the case of i < d. If ni tells
the truth, the expected welfare is

EW+
i = EP+

i = (1 −
d−1∏

j=i+1

xj)γα.
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If ni cheats, it gets an expected payment of

EP−
i = (1 −

d−1∏

j=i+1

xj)γα+
d−1∏

j=i+1

xjγβ,

while its gets a cost of

U−
i = δ.

So its expected welfare is

EW−
i = EP−

i −U−
i = (1−

d−1∏

j=i+1

xj)γα+
d−1∏

j=i+1

xjγβ−δ.

As in Cases B and C, we always have EW+
i ≥ EW−

i ,
which implies that telling the truth with probability 1 will
bring the maximum expected welfare to ni.

B. Proof of Theorem 2

Proof: Consider strategizing group G that uses a strategy
profile other than everybody telling the truth. For any set of
nodes L ⊆ G, denote by P (L) the probability that L is the
set of nodes in G that lie. The expected sum of welfare of G
is

EWG =
∑

L⊆G

P (L)WG(L),

where WG(L) denotes the sum of welfare of G in case that
the set of lying players is L. Our goal is to show

EWG ≤ WG(φ).

Obviously, we only need to prove

∀L ⊆ G,WG(L) ≤ WG(φ).

We distinguish two cases here. (Hereafter, we use .G(u, v) to
denote |{i|u ≤ i ≤ v ∧ ni ∈ G}|.)

• Case A. n0 �∈ G. By considering the indices of players
in L, we further distinguish three sub-cases.

– Sub-case A-A. ∀ni ∈ L, i < e′. Then trivially we
have

WG(L) = WG(φ).

– Sub-case A-B. ∀ni ∈ L, i ≤ e′, and ne′ ∈ L. Then
WG(L) is equal to





WG(φ) − ((e′ − 1)γα+ γβ))
if e′ < d and ∀i ≤ e′, ni ∈ L

WG(φ) − ((e′ − 1)α+ β)
if e′ = d and ∀i ≤ e′, ni ∈ L

WG(φ) − (.G(e, e)(γα− γβ)
+.G(e+ 1, e′ − 1)γα+ γβ)

if e′ < d and ∃i ≤ e′, ni �∈ L

WG(φ) − (.G(1, e− 1)(1 − γ)α
+.G(e, e)(α− γβ) + .G(e+ 1, e′ − 1)α+ β)

if e′ = d and ∃i ≤ e′, ni �∈ L,

where e = maxi≤e′,ni �∈L i. Therefore,

WG(L) ≤ WG(φ).

– Sub-case A-C. ∃ni ∈ L, i > e′. Then

WG(L) = WG(φ) + .G(e′, e′)(γα− γβ)
+.G(e′ + 1, e− 1)γα+ γβ − δ,

where e = maxe′<i<d,ni∈L i. It’s easy to see

WG(L) ≤ WG(φ) + (e− e′)γα− δ
≤ WG(φ) + (d− 1)γα− δ
≤ WG(φ).

• Case B. no ∈ G. As in Case A, we further distinguish
three sub-cases.

– Sub-case B-A. ∀ni ∈ L, i < e′. Trivially, we have

WG(L) = WG(φ).

– Sub-case B-B. ∀ni ∈ L, i ≤ e′, and ne′ ∈ L. Then
WG(L) is equal to





WG(φ) + e′γβ − ((e′ − 1)γα+ γβ))
if e′ < d and ∀i ≤ e′, ni ∈ L

WG(φ) + e′γβ − ((e′ − 1)α+ β)
if e′ = d and ∀i ≤ e′, ni ∈ L

WG(φ) + (e′ − e)γβ − (.G(e, e)(γα− γβ)
+.G(e+ 1, e′ − 1)γα+ γβ)

if e′ < d and ∃i ≤ e′, ni �∈ L

WG(φ) + (e′ − e)γβ − (.G(1, e− 1)
·(1 − γ)α+ .G(e, e)(α− γβ)
+.G(e+ 1, e′ − 1)α+ β)

if e′ = d and ∃i ≤ e′, ni �∈ L,

where e = maxi≤e′,ni �∈L i. Since γβ < β < α and
γβ < γα, it is easy to see

WG(L) ≤ WG(φ).

– Sub-case B-C. ∃ni ∈ L, i > e′. Then

WG(L) = WG(φ) − (e− e′)γβ + .G(e′, e′)
·(γα− γβ) + .G(e′ + 1, e− 1)γα
+γβ − δ,

where e = maxe′<i<d,ni∈L i. It’s easy to see

WG(L) ≤ WG(φ) + (e− e′)γα− δ
≤ WG(φ) + (d− 1)γα− δ
≤ WG(φ).
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