
Optimal Sliding-Window Strategies in Networks
with Long Round-Trip Delays

Lavy Libman and Ariel Orda
Dept. of Electrical Engineering

Technion – Israel Institute of Technology, Haifa, Israel 32000
{libman@tx, ariel@ee}.technion.ac.il

Abstract— A method commonly used for packet flow control
over connections with long round-trip delays is “sliding win-
dows”. In general, for a given loss rate, a larger window size
achieves a higher average throughput, but also a higher rate of
spurious packet transmissions, rejected by the receiver merely
for arriving out-of-order. This paper analyzes the problem of
optimal flow control quantitatively, for a connection that has
a cost per unit time and a cost for every transmitted packet
(these costs can have generic interpretations, not necessarily in
terms of money). The optimal strategy is defined as one that
minimizes the expected cost/throughput ratio, and is allowed to
transmit several copies of a packet within a window. We derive
bounds on the performance of the optimal strategy; in particular,
we show that the optimal cost/throughput ratio increases merely
logarithmically with the time price. We present a method for
computing the optimal strategy, and demonstrate that a simple
and efficient ‘greedy’ algorithm is sufficient to find a near-optimal
solution.

I. INTRODUCTION

A common method for packet flow control over network
connections, used both in the data-link and the transport layers,
is sliding windows [1]. In this method, the receiver regularly
reports to the sender the index of the next-expected packet,
thereby acknowledging all the packets up to that index. The
sender may transmit up to a certain number of packets, called
the window size, beyond the last acknowledged packet; if a
packet is not acknowledged within a certain ‘timeout’ period
(ideally aimed to be the connection round-trip time, or slightly
higher), the window is retransmitted from that packet on. In
its pure form, this scheme implies that packets must arrive to
the destination in order. While the receiver may temporarily
keep out-of-order packets in a buffer, this does not affect the
connection’s performance unless the protocol is extended to
allow selective, rather than cumulative, acknowledgments [2],
[3]. Such extensions are not universally implemented, and even
when they are, the space allocated to hold such out-of-order
packets is, typically, not very large. Therefore, on a coarser
level, the packet stream still has to arrive in order, allowing
exceptions only to a limited extent.

Since a lost packet may trigger a retransmission of up to
an entire window, its negative effect on throughput is not only
due to the loss itself, but due to the time wasted in waiting for
the acknowledgment as well. This effect is more severe when
the connection’s round-trip time (more precisely, the timeout)

∗This research was supported by the Israeli Ministry of Science.

is long compared to the transmission time of a packet; such a
connection is said to have a large bandwidth-delay product. A
good example is a geostationary satellite link, with a round-
trip propagation delay of roughly 0.25 seconds, used within a
high-speed connection where a packet transmission typically
takes a fraction of a millisecond; the delay-bandwidth product
is then measured in thousands.

Assuming that packet losses are independent (e.g. caused
by white noise or a randomized discarding policy along the
connection path, such as RED [4]), and that transmission of a
window takes less than the round-trip delay, the throughput can
be improved considerably by retransmitting some or all of the
packets several times within the window itself (rather than just
after a timeout, as in ‘classic’ sliding window schemes), as this
increases their initial probability of successful arrival. For the
rest of the paper, we extend the definition of the window size
to include all such transmissions, counting each one separately
whether it is a new packet or a copy of a previous one. We
define a sliding-window strategy to be a rule that specifies how
many copies of each packet, relative to the start of the window,
are transmitted and in what order; in particular, it also specifies
the window size. We mention at this point that alternative
methods, such as forward error correction (FEC), can be used
within this framework instead of simple retransmissions; we
comment more on this later.

In general, for a given packet loss rate, transmitting more
packets in a window – whether new ones or more copies of the
same – increases the expected number of successful packets in
every round-trip period, and, hence, the long-term throughput
(at any rate, so long as the total window transmission time
remains below the round-trip time). However, a larger window
also increases the average rate of duplicate and out-of-order
packets, which needlessly contributes to the network load.
Thus, selection of a window size constitutes a tradeoff between
these conflicting goals. To quantify this tradeoff, we associate
with the connection a ‘cost’ per unit time and a ‘cost’ per
packet transmission, and define the optimal strategy as one
that minimizes the average cost/throughput ratio over time.
We point out that these costs can have various interpretations,
and should not be taken literally as money charges [5]. For
example, the time cost may be associated with the disutility
incurred by the application due to increased delay, and the
transmission cost may be related to the energy consumption
of a mobile device. Similarly, a ‘social’ (e.g. TCP-friendly)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

sender that refrains from retransmitting to avoid loading the
network for others behaves as if it had a high per-transmission
cost.

In ‘classic’ sliding windows, the sender transmits each
packet in the window once, and the optimal strategy com-
putation thus reduces to a trivial optimization of a single
parameter (the window size). When each packet may be
(re-)transmitted several times within a window, the problem
becomes much more interesting. Finding the optimal strategy
can then be viewed as being composed of two subproblems:
an ‘outer’ problem of finding the optimal window size N ,
depending on the time and packet transmission costs; and an
‘inner’ problem of optimally distributing a total ‘budget’ of
N transmissions among the packets in a window, which, for a
given N , no longer depends on the costs. A salient feature of
the resulting solution is that not all packets are transmitted an
equal number of times: earlier packets in every window get
more copies transmitted than later ones, in accordance with
their ‘importance’ (e.g., the loss of the first packet in a window
results in the loss of the entire window even if later packets
arrive correctly, while the reverse is not true).

In this paper, we present a detailed analysis of optimal
sliding-window strategies, following the above decomposition
to the ‘outer’ and ‘inner’ subproblems. It turns out that the
inner problem, of deciding which packet copies to transmit
for a given window size N , involves nontrivial combinatorial
optimization, and we explore in detail its properties, derive
bounds on the solution’s performance, and suggest efficient
approximation methods. In particular, we demonstrate that a
simple ‘greedy’ algorithm attains nearly-optimal solutions, and
proceed to extend it for the outer problem (of finding the
optimal window size) as well, thus establishing an integrated
solution algorithm for the strategy optimization problem. Fi-
nally, we show that the cost/throughput ratio increases only
logarithmically in the time price; this is a significant improve-
ment of the linear dependence achievable by ‘classic’ sliding
windows.

Our current study analyzes optimal strategies limited to
simple retransmissions only. A potentially better scheme for
increasing the success probability of a group of packets is
that of forward error correction (FEC) coding; generally, a
(n, k) FEC code encodes a group of k packets into n > k
‘copies’, so that any k successful ones allow reconstructing the
original data. We wish to emphasize that the ideas presented
in this paper are not inconsistent with FEC coding, but rather
complement it. If the code parameters are fixed (e.g. in a
lower layer), our analysis can be readily applied by treating
each encoded block as a “super-packet” with the appropriate
loss probability. If the code can be controlled, the problem
becomes that of finding an optimal coding strategy, which,
though more complex, is based essentially on the methodology
introduced here, except that the number of retransmissions is
replaced by the notion of coding redundancy. In particular, it
is to be expected that the optimal strategy would use higher-
redundancy coding for the first packets in every window than
for later ones.

The special concerns raised by connections with large delay-
bandwidth products in general, and satellite links in particular,
have attracted considerable research in recent years, e.g., [6],
[7], [8], [9], [10]. Most of these studies are in the context
of the widely-used TCP protocol and study how to improve
its performance, either by tuning existing features [7], [8], or
by introducing extensions, such as explicit congestion noti-
fications [10]. Considerable attention has also been devoted
to FEC coding that is able to adapt to higher-layer protocol
requirements, and to TCP in particular (e.g. [11], [12], [13]).
None of these works, however, suggested improvements of the
sliding-window mechanism itself. In fact, to the best of our
knowledge, the idea of basing the number of retransmissions
(or the FEC coding redundancy) on the position of the packet
within a window, which is central to this paper, has not been
suggested before. We emphasize that this idea is generic, and
can be incorporated in any sliding-window protocol.

The rest of the paper is structured as follows. Section II
describes the model and formally defines the underlying
optimization problems. Section III describes basic structural
properties of the solution and derives bounds on the optimal
strategy performance. Efficient approximation approaches for
the ‘inner’ problem are established in Section IV and incorpo-
rated into an overall solution algorithm in Section V. Finally,
Section VI concludes with a discussion of our methodology
and its possible extensions, and outlines directions for further
research.

II. MODEL AND PROBLEM FORMULATION

A. The model

As explained in the Introduction, we are interested in
network connections with a high delay-bandwidth product, in
which the receiver accepts packets only in order (with only
a small buffer space, if at all, to hold a limited number of
out-of-order packets). For our analysis, we shall bring these
two characteristics to an extreme. That is, we assume that the
receiver is unable to accept out-of-order packets at all, and we
take the packet transmission time to be zero, which implies
that the size of the window that can be transmitted within a
round-trip period is unlimited. Furthermore, we assume there
are no other factors that may limit the window size; e.g., the
receiving application processes the arriving packets instantly,
if necessary, hence no buffer space is consumed by packets
arriving in order. These assumptions simplify the analysis
and allow it to concentrate on the essential properties of the
resulting strategies, without having to deal, from the outset,
with details of secondary importance. Section VI discusses the
extensions required to alleviate these assumptions, and argues
that the solution methodology remains similar nonetheless.

We denote the loss rate in the network by L, and assume
that losses are independent among packets, as is the case, e.g.,
for white noise or a random discard policy such as RED [4].
In addition, we neglect the loss rate of acknowledgments,
since they are, typically, much shorter than data packets, and
therefore suffer less from noise and their paths are often less
congested; moreover, since acknowledgments only carry the

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

next-expected packet index, a loss of one has no significance
if a later one in that window is received successfully. Con-
sequently, for each packet, the sender knows whether it was
successfully received after a round-trip time, which we denote
by T .

We introduce a cost composed of a ‘price’ of a per unit
of time and b per transmitted packet, and define an optimal
strategy as one that minimizes the cost/throughput ratio over
time; as explained in the Introduction, these prices can have
generic interpretations. Incidentally, we chose to base our
analysis on this cost structure, which is linear in the time
and number of packets, reckoning that it is appropriate for
a variety of scenarios and cost interpretations [5]. A different
(nonlinear) cost structure may be used instead, provided that
the cost of transmitting a window depends only on its size,
and not on the identities of its packets or the actual number
successfully received. This may affect only the analytical
results, e.g. the asymptotic dependence of the optimal strategy
performance on the costs, whereas the actual algorithm for
finding it remains intact.

The computation of the optimal strategy from the connec-
tion parameters (L,T ,a,b) implicitly assumes that they are
known; therefore, they must either remain constant or change
quasi-statically, allowing the strategy to adapt after a change
is detected. If any of the parameters, e.g. the round-trip time,
changes quickly and unpredictably, it should be modeled by a
random variable (e.g., as in [5]) rather than a constant value.
We point out, however, that this is not typical of the kind
of network connections that are the subject of this study:
e.g., for satellite links, the round-trip time is dominated by
the propagation delay, which can be considered essentially
constant.

The above assumptions readily imply two fundamental
properties. First, in the optimal strategy, packets are trans-
mitted only at multiples of T ; sending packets at other times
cannot gain, since no extra information is present. Second,
once a sequence of packets is sent at time t, the index of
the last one to arrive in order is known by time t + T , so
the strategy simply restarts (‘slides’) at the subsequent packet.
Consequently, the description of a strategy consists simply of
a single vector that specifies the number of copies to be sent
of every packet, relative to the next-expected index, at every
multiple of T . The purpose of the subsequent analysis will be
to find the optimal such vector.

B. Problem formulation

Consider a vector �n = 〈n1, . . . , ni, . . . 〉, where ni are whole
and non-negative, and define a random variable S to be the
number of in-order successful packets at the receiver if the
sender transmits n1 repetitions of packet 1, followed by n2
repetitions of packet 2, etc.† The distribution of S is

PS(j) =
j∏

i=1

(1 − Lni) · Lnj+1 . (1)

†Obviously, transmitting the same packets in any other order can only
decrease the expected number of in-order arrivals.

We define the score of �n, denoted by φ(�n), to be the expected
value of S; thus

φ(�n) � E[S] =
∞∑

j=1

j ·
j∏

i=1

(1 − Lni) · Lnj+1 =

∞∑

j=1

j ·

[
j∏

i=1

(1 − Lni) −
j+1∏

i=1

(1 − Lni)

]
=

∞∑

j=1

j∏

i=1

(1 − Lni) . (2)

We seek the vector �n = 〈n1, . . . , ni, . . . 〉 that minimizes

a · T + b ·
∑∞

i=1 ni

φ(�n)
=

a · T + b ·
∑∞

i=1 ni∑∞
j=1
∏j

i=1 (1 − Lni)
. (3)

The above expression describes the cost/throughput ratio at-
tained by the strategy �n over time. The numerator is the
fixed cost of a period of T , during which one window is
transmitted, and the denumerator is the expected number of
packets successfully communicated in that period.

Consider expression (3) more closely. For any N , all the
vectors with

∑∞
i=1 ni = N , i.e. suggesting the same total

window size, attain the same numerator value; hence, the
comparison among them is based merely on their score.
Consequently, let us define

EL(N) � max
n1,n2,...

s.t.
∑

i ni=N

∞∑

j=1

j∏

i=1

(1 − Lni)

 , (4)

and rewrite expression (3) accordingly as

a · T + b ·N
EL(N)

. (5)

Then, the problem of finding the strategy vector that mini-
mizes (5) can be separated into the following (sub-)problems:

Inner problem: Computing EL(N) for a given N .
Outer problem: Searching for N∗ that minimizes (5).

This separation is convenient in that it isolates the infinite-
dimensional part of the problem to depend solely on L, while
the dependence on the other parameters reduces to a one-
dimensional optimization only. Furthermore, the vector that
actually attains the maximum in (4) is not needed until the
final stage, after N∗ has been found; during the search of N ,
it suffices to be able to evaluate EL(N), without the need to
find the maximizing vector explicitly.

To conclude this section, we digress to consider the case
of ‘classic’ sliding windows, where each packet is sent only
once in a window; this corresponds to the vector n1 = · · · =
nN = 1, with a cost/throughput ratio of

a · T + b ·N
∑N

j=1 (1 − L)j
=

L

1 − L
· a · T + b ·N
1 − (1 − L)N

. (6)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Maximizing this (e.g. by differentiating with respect to N)
yields an optimal window size of

N∗ =
1

log 1
1−L

[
−plog

(
− (1 − L)

aT
b

e

)
− 1+

aT

b
log(1 − L)

]
≈

(if aT�b)

log
(

aT
b log 1

1−L + 1
)

log 1
1−L

, (7)

where plog (·) (the product-log function) denotes the inverse
function of f (t) = t · et, such that t = −plog (−y) (for
0 < y ≤ 1

e) is the largest positive solution to the equation
y = t · e−t; in the final approximation we used the property
that −plog (−e−x) ≈ x + log x for x 	 1.† Thus, as the
time cost a increases with respect to the other parameters, the
optimal window size increases logarithmically in a. Since the
denominator of (6) tends to a finite value as N → ∞, the
cost/throughput ratio, overall, increases linearly in a.

III. BASIC PROPERTIES AND BOUNDS

In this section, we show some basic structural properties
of the optimization problems’ solutions, and derive important
bounds, in particular, on their asymptotic behavior.

A. Properties of the inner problem

Our first two lemmas state basic and intuitively obvious
structural properties.

Lemma 1. EL(N) decreases in L and increases in N .

Proof. Consider the maximizing vector in (4) for some L and
N , and suppose that L is then decreased. The score of that
vector then increases; if it is no longer the maximizer for the
new L, then, obviously, the maximum value can only be even
higher. Therefore, the value of (4) increases.

Alternatively, suppose that N is increased, and add the
entire amount of the increase to the first element (arbitrarily).
Again, this results in an increase of the score; if the resulting
vector is not the maximizer for the new N , the value of (4)
can only increase further.

Lemma 2. For a given N , the elements of the vector that
achieves the maximum in (4) maintain a non-increasing order,
i.e. n1 ≥ n2 ≥ · · · ≥ ni ≥

Proof. Suppose, by contradiction, that there exists a pair of
indices i1 < i2 with ni1 < ni2 . Consider the score of the vec-
tor resulting by swapping ni1 , ni2 , as given by expression (2).
All the sum elements (products) for j < i1 (which depend on
neither ni1 nor ni2), as well as for j ≥ i2 (which contain both
(1 − Lni1) and (1 − Lni2) in the product), remain unchanged.
The elements for i1 ≤ j < i2, which contain only (1 − Lni1)
but not (1 − Lni2) in the product, are strictly increased by
the swap, thereby increasing the value of the entire sum.
Consequently, the original vector cannot be a maximizer.

†The product-log function is also known elsewhere as Lambert’s W-
function [14], or, more precisely, as one of its real-valued branches.

Corollary 1. In the maximizing vector, all the elements after
the first zero element are also zero.

Corollary 2. For a given N , the index of the last nonzero
element in the maximizing vector is bounded by N .

We proceed to derive an important bound on the number of
transmissions required to attain a given score. For this purpose,
we introduce a variable change that makes the subsequent
presentation more convenient. Define pi � 1 − Lni (i.e. pi

is the individual probability of packet i to arrive successfully,
regardless of other packets). We shall refer to the vector �p =
〈p1, . . . , pi, . . . 〉 as completely equivalent to the vector �n and
interchange them freely for convenience; in particular, with a
slight abuse of notation, we refer to φ(�p) =

∑∞
j=1
∏j

i=1 pi as
the score of �p.

Lemma 3. If �n is the maximizing vector in (4), then p1 =
1 − Ln1 ≥ φ(�n)

φ(�n)+1 .

Proof. Lemma 2 implies that pi ≤ p1 for all i; therefore,

φ(�n) =
∞∑

j=1

j∏

i=1

pi ≤
∞∑

j=1

(p1)
j =

p1

1 − p1
, (8)

and the lemma immediately follows by extracting p1.

Theorem 1. For any vector �n, N =
∑

i ni ≥
log1/L {[φ(�n) + 1]!}.‡

Proof. Obviously, since the factorial and the logarithm are
monotonously increasing operations, it suffices to prove the
theorem for the vector with the maximum score for a given
N . Such a vector must satisfy lemmas 2–3.

Consider the equivalent vector �p = 〈p1, . . . , pM , 0, . . . 〉,
where M denotes the index of the last non-zero ele-
ment. Define the following sequence of subvectors, �p(m) �
〈pm, pm+1, . . . , pM , 0, 0, . . . 〉, and of their corresponding
scores, φm = φ

(
�p(m)

)
=
∑M

j=m

∏j
i=m pi, for all 1 ≤ m ≤

M ; note that φ1 is the score of the original vector. Observe
that φm = pm (1 + φm+1), and, therefore, φm+1 ≥ φm − 1,
for all 1 ≤ m < M ; successively applying this inequality,
we get φm ≥ φ1 − (m − 1) for all m. On the other hand,
applying Lemma 3 on each of the subvectors in turn, we have
pm ≥ φm

φm+1 , or 1
1−pm

≥ φm + 1. Consequently,

[
M∏

m=1

(1 − pm)

]−1

≥
M∏

m=1

(φm + 1) ≥

M∏

m=1

max [φ1 − (m− 1) + 1, 1] . (9)

Now, consider the factorial (φ1 + 1)!. Denote φ1� to be
the integer part of φ1 (and, thereby, (φ1 − φ1�) to be its

‡Recall that the factorial t!, for any t ≥ 0, is defined by t! =∫∞
0 xte−xdx; this definition conincides with the more common t! = 1 · 2 ·

. . . · t for integer t. A well-known property of the factorial is t! = t · (t − 1)!
for any t ≥ 1.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

fractional part). Successively applying the factorial property
of t! = t · (t− 1)! for any t ≥ 1, we have

(φ1 + 1)! = (φ1 + 1) · φ1 · (φ1 − 1) · . . . · (φ1 − φ1�)! =
M∏

m=1

max [φ1 − (m− 1) + 1, 1] · (φ1 − φ1�)! ≤

M∏

m=1

max [φ1 − (m− 1) + 1, 1] . (10)

Note that we implicitly used the obvious fact that φ1 ≤ M ,
and also that t! ≤ 1 for any 0 ≤ t < 1.

Combining inequalities (9) and (10), we obtain
[
∏

m (1 − pm)]−1 ≥ (φ1 + 1)!. Taking the logarithm of
both sides and noting that log1/L (1 − pm) = −nm, we
finally get

∑
m nm ≥ log1/L [(φ1 + 1)!].

Finally, the following fundamental theorem presents the
asymptotic relation between the window size and the maxi-
mum score that can be obtained by a vector of that size.

Theorem 2. EL(N) = Θ
(

N
log1/L N

)
.†

Proof. We apply the well-known Stirling’s factorial approxi-
mation formula, t! ≈

√
2πt
(

t
e

)t
for large t, to the inequality

established in Theorem 1, and obtain

N ≥ log1/L [EL(N) + 1]! ≈ log1/L

(
EL(N) + 1

e

)
·

[EL(N) + 1] + log1/L

√
2π[EL(N) + 1]; (11)

thus, N = Ω
(
EL(N) · log1/L EL(N)

)
. This implies directly

that EL(N) = O
(

N
log1/L N

)
.

To show that EL(N) = Ω
(

N
log1/L N

)
as well, it suf-

fices to find one example of a vector that attains a
score of Ω

(
N

log1/L N

)
. Accordingly, consider the vector

〈n1, . . . , nM , 0, . . . 〉, such that n1 = · · · = nM = log1/L N

and M = N
log1/L N . Its score is

M∑

j=1

j∏

i=1

(1 − Lni) =

N
log1/L N∑

j=1

(
1 − Llog1/L N

)j
=

N

(
1 − 1

N

)
·

[
1 −
(
1 − 1

N

) N
log1/L N

]
≥

N

(
1 − 1

N

)(
1 − e

− 1
log1/L N

)
, (12)

completing the proof, as e− 1
x ≈ 1 − 1

x for large x.‡

†Recall that f(N) = O(g(N)), for positive functions f(N), g(N), means
that limN→∞

f(N)
g(N) < ∞; in addition, f(N) = Ω(g(N)) is equivalent

to g(N) = O(f(N)), and f(N) = Θ(g(N)) means that both f(N) =
O(g(N)) and f(N) = Ω(g(N)).

‡The fact that log1/L N and/or N
log1/L N

may not be integers is insignif-

icant: rounding both expressions up to the nearest integers only increases the
vector’s score further, with an asymptotically negligible impact on the window
size.

It is insightful to compare the result of Theorem 2 with the
total number of packets received successfully (not necessarily
in order), which is, obviously, N · (1−L), i.e., Θ(N). Hence,
it can be said that discarding out-of-order packets impacts the
performance by a logarithmic factor. This theorem can also
be used inversely: in order to have an expected number of φ
packets arriving successfully and in-order to the destination,
the total number of packet copies transmitted by the source
must be Θ(φ · log1/L φ).

B. Properties of the outer problem

This subsection is concerned with the dependence of the
optimal window size N∗ on the cost factors a, b. Theorem 3
states an intuitively evident monotonicity property. Theorem 4
presents the central result of this section, regarding the asymp-
totic dependence of the cost/throughput ratio on the time cost
a.

Theorem 3. The optimal N∗ is non-decreasing in aT
b .

Proof. Consider two sets of parameters a1, b1, T1 and
a2, b2, T2 such that a1T1

b1
≥ a2T2

b2
, and suppose that N∗

1 , N∗
2

are their corresponding solutions (to the outer problem). This
implies, in particular, that

a1T1
b1

+N∗
2

EL (N∗
2)

≥
a1T1

b1
+N∗

1

EL (N∗
1)

,

a2T2
b2

+N∗
2

EL (N∗
2)

≤
a2T2

b2
+N∗

1

EL (N∗
1)

.

Subtracting the second inequality from the first and noting
that the common factor

(
a1T1

b1
− a2T2

b2

)
is positive, we obtain

EL (N∗
1) ≥ EL (N∗

2). In light of the monotonicity of EL(N)
(Lemma 1), this implies N∗

1 ≥ N∗
2 .

Theorem 4. As a → ∞ (for fixed values of T , b, L),
the cost/performance ratio attained by the optimal strategy
increases logarithmically in a.

Proof. Consider the expression h(x) � a·T+b·x
x/ log1/L x , as a

function of a (continuous) variable x. By differentiation with
respect to x, it is easily found that its minimum is attained at
x∗ = aT

b ·
[
−plog

(
−e · b

aT

)]
.§ Using again the property that

−plog (−e−y) ≈ y+ log y for large y, we obtain x∗ = Θ(a ·
log a), and the minimum value of h(x) is therefore Θ(log a).
This proves the theorem, since, in light of Theorem 2, the
cost/throughput ratio is itself Θ(h(N)), and its minimum value
can, therefore, deviate from that of h(N) by a constant factor
at most.

Thus, the ability to use retransmissions within the window
enables the average cost per successful packet to increase
merely logarithmically in a, rather than linearly as in the case
of ‘classic’ sliding windows. Incidentally, note that no similar
result exists for b → ∞ with the other parameters constant;
indeed, as aT

b → 0, the optimal strategy tends to 〈1, 0, 0, . . . 〉
(simple stop-and-wait), and the value of expression (5) simply

§Recall the definition of the plog function at the end of Section II.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Initialization: Set �n = 〈0, 0, . . . 〉
Do N times:

For every j such that either j = 1 or nj−1 > nj :
Temporarily set nj ← nj + 1
Compute the score of �n
Restore nj

For the j that got the best score:
Set nj ← nj + 1

Fig. 1. Algorithm Greedy-Inner (GI).

increases linearly in b. This is true, of course, for the ‘classic’
case as well.

IV. SOLUTION OF THE INNER PROBLEM

The function EL(N) can be computed directly by exhaus-
tive search among vectors with nonnegative integer elements
that sum up to N . In light of Lemma 2, it suffices to limit
the search to vectors in which the elements maintain a non-
increasing order. This reduces the search space considerably;
e.g., for N = 10 there are only 42 vectors to check, and the
number increases to 204 226 for N = 50 and 190 569 292 for
N = 100. Hence, this approach is quite viable for relatively
small N .

For larger N , however, exhaustive search may be impracti-
cal, and we seek alternatives to yield reasonable approxima-
tions at a low computational cost. Subsection A presents a
‘greedy’ direct-search algorithm; then subsection B presents a
solution method for a similar auxiliary problem in continuous
variables. The two approaches are evaluated and compared in
subsection C.

A. Greedy search

Our first approach for approximation of EL(N) is a direct
search algorithm, shown in Figure 1, which we term GI (for
“Greedy Inner”). It begins with a vector of all-zeros and
performs N iterations, incrementing one element each time –
specifically, the one whose increment brings about the highest
score in that iteration. The following example demonstrates
the algorithm results as opposed to exhaustive search; a more
detailed discussion of the algorithm’s performance appears in
subsection C.†

Example: The following table summarizes the optimal vectors and
their scores for N = 15 and selected values of L.

L Optimal vector Score
0.1 〈2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, . . . 〉 8.41131
0.3 〈3, 2, 2, 2, 2, 2, 1, 1, 0, 0, . . . 〉 5.39436
0.5 〈4, 3, 3, 2, 2, 1, 0, 0, . . . 〉 3.61954
0.7 〈6, 5, 3, 1, 0, 0, . . . 〉 2.24336
0.9 〈11, 4, 0, 0, . . . 〉 0.92217

In accordance with intuition, for low loss rates, it is best to send
at least one copy of more individual packets; conversely, when

†Other greedy algorithms can be devised based on moves instead of incre-
ments; e.g., one may start with 〈N, 0, 0, . . . 〉 and seek score improvements
by “moving to the right”, or start with 〈1, . . . , 1

︸ ︷︷ ︸
N

, 0, 0, . . . 〉 and “move to the

left”. In [15], such algorithms are shown to result in occasional and usually
insignificant improvements over GI, while possessing a complexity that is
higher by a factor of N at least.

the loss rate is high, the expected number of successful in-order
arrivals is maximized by duplicating just the first few packets. In
fact, it is obvious that, for any N , the optimal vector tends to
〈1, . . . , 1︸ ︷︷ ︸

N

, 0, 0, . . . 〉 for L → 0 and to 〈N, 0, 0, . . . 〉 for L → 1.

The values in the above table were found by exhaustive search.
Algorithm GI does not converge to these vectors in all cases; specifi-
cally, for L = 0.3, it finds the vector 〈3, 3, 2, 2, 2, 2, 1, 0, 0, . . . 〉, with
a somewhat lower score of 5.38234, and for L = 0.5, it converges
to 〈4, 4, 3, 3, 1, 0, 0, . . . 〉, with a score of 3.59482.

B. Approximation through continuous relaxation

We now analyze the properties of the optimization problem
that defines the function EL(N), expressed by (4), omitting
the requirement for the elements of �n to be integers. This
way, we have a relaxed optimization problem in a continuous
space, which can be analyzed more easily by ‘traditional’
methods from optimization theory. Obviously, this technique
results in a value that is higher than EL(N) (unlike direct-
search algorithms such as GI, which result in vectors with
lower scores than EL(N)).

To distinguish the relaxed problem from the original one,
we denote the maximum score by ΦL(s), where s (rather
than N) is used to denote the vector size, to emphasize that
ΦL(·), unlike EL(·), is well-defined for non-integer arguments.
Additionally, we again make the convenient variable change
of pi � 1 − Lni , after which the score expression is simply∑∞

j=1
∏j

i=1 pi, while the constraints on the vector elements
become

ni ≥ 0 =⇒ 0 ≤ pi ≤ 1; (13)
∑

i

ni = s =⇒
∏

i

(1 − pi) = Ls. (14)

We immediately observe that the problem essentially de-
pends on just one parameter, Ls, i.e. ΦL(s) = Φ(Ls) (even
though the translation back to the original variables, ni =
logL (1 − pi), involves the specific value of L).

Obviously, the solution vector, which attains the globally
maximum score, must, in particular, be also a local maximum;
as both the target expression and the constraint are differ-
entiable, this means that it has to satisfy the corresponding
Kuhn-Tucker conditions [16], [15]. These can be verified, by
a straightforward simplification, to require that there exists a
constant λ such that

(1 − pm)
∞∑

j=m

j∏

i=1
i 	=m

pi = λ (if 0 < pm < 1), (15)

∞∑

j=m

j∏

i=1
i 	=m

pi ≤ λ (if pm = 0).‡ (16)

Using (15)–(16), we can prove the following claim about
the structure of the solution vector.

‡In principle, there should also be a condition for pm = 1; however, it is
immediately seen that pm = 1 for any m contradicts constraint (14).

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Lemma 4. A vector that satisfies conditions (13)–(16) has the
form 〈p1, p2, . . . , pM , 0, 0, . . . 〉, where M is finite, p1 > · · · >
pM > 0, and pM ≤ 1

2 .

Proof. First, note that if pk = 0 for some k, then condi-
tion (15) cannot be satisfied for any m > k, since all the
products contain pk and hence equal 0. Therefore, there are
no positive elements after the first zero element.

For any 1 ≤ m < M , condition (15) implies that

1 − pm

pm

∞∑

j=m

j∏

i=1

pi =
1 − pm+1

pm+1

∞∑

j=m+1

j∏

i=1

pi. (17)

Since, obviously,
∑∞

j=m

∏j
i=1 pi >

∑∞
j=m+1

∏j
i=1 pi, it

follows that 1−pm

pm
< 1−pm+1

pm+1
, which implies pm > pm+1.

Comparing expression (16) for pM+1 with expression (15)
for pM , we have

M∏

i=1

pi ≤ (1 − pM)
M−1∏

i=1

pi, (18)

and after dividing both sides by the common factor of∏M−1
i=1 pi, it reduces to pM ≤ 1 − pM , hence pM ≤ 1

2 .
It remains to show that M is finite, i.e., the vector cannot

have infinitely many positive elements. Suppose, by contra-
diction, that such a vector exists. Then constraint (14) implies
that pk −→

k→∞
0. Consequently, choose an index K such that

pK < 1
2 . We now show that the assumption pK+1 > 0 leads

to a contradiction.
If pK+1 > 0, then condition (15) implies

1 − pK+1

pK+1

∞∑

j=K+1

j∏

i=1

pi =
1 − pK

pK

∞∑

j=K

j∏

i=1

pi, (19)

or, dividing both sides by the common factor of
∏K

i=1 pi,

1 − pK+1

pK+1

∞∑

j=K+1

j∏

i=K+1

pi =

1 − pK

pK
·

1 +
∞∑

j=K+1

j∏

i=K+1

pi

 , (20)

therefore
∞∑

j=K+1

j∏

i=K+1

pi =
(1 − pK) pK+1

pK − pK+1
. (21)

However, we showed above that the positive elements of �p
must maintain a decreasing order; hence, pi < pK+1 for i >
K + 1, and the following inequality holds:

∞∑

j=K+1

j∏

i=K+1

pi ≤
∞∑

j=K+1

(pK+1)
j−K =

pK+1

1 − pK+1
. (22)

Substituting this inequality into (21), we get

1 − pK

pK − pK+1
≤ 1

1 − pK+1
=⇒ 1 + pKpK+1 ≤ 2pK , (23)

which contradicts pK < 1
2 . Thus, condition (15) cannot be

satisfied; therefore, pK+1 = 0.

Suppose that a vector 〈p1, p2, . . . , pM , 0, 0, . . . 〉 is known to
satisfy conditions (13) and (15)–(16), and that only the value
of the last element pM is known. Then the other elements can
be uniquely determined by a procedure of backward iteration.
Specifically, once the values of pm+1, . . . , pM are known, one
can equate expression (15) for pm and pm+1, divide by the
common factor of

∏m−1
i=1 pi, and extract pm. This results in

the formula

pm =
1 +
∑M

j=m+1
∏j

i=m+1 pi

2 +
∑M

j=m+2
∏j

i=m+2 pi

. (24)

Conversely, it is easy to see that, for any M and 0 <
pM ≤ 1

2 , the vector obtained through formula (24) satisfies
conditions (15)–(16). For convenience, we define a function
�p : R

+ �−→ R
∞, such that, for any t > 0, �p(t) is the vector

corresponding to M = �t�† and pM = 1
2 (t+ 1 − �t�). This

puts the set of all vectors that satisfy conditions (15)–(16)
(and are therefore “eligible candidates” to be solutions to the
optimization problem for the corresponding values of Ls) in
one-to-one correspondence with the positive real axis. We also
define pi : R

+ �−→ R to be the i-th component of �p.

Lemma 5. The function �p is continuous.

Proof. The continuity of �p at non-integer points (continuity
in pM only, for a fixed M) is obvious from formula (24),
which shows pm, for any 1 ≤ m ≤ M − 1, to be continuous
in pm+1, . . . , pM , and therefore (applying backward induction
from m = M − 1 to m = 1) to be continuous in pM .

To show the continuity of �p at t = K for an integer K, one
must prove limt→K− �p(t) = limt→K+ �p(t). Consider first the
component pK . For t → K−, pK(t) is simply the last nonzero
element of �p(t); that is, M = K and pK(t) = 1

2 (t+ 1 −K).
Therefore,

lim
t→K−

pK(t) = lim
t→K−

1
2
(t+ 1 −K) =

1
2
. (25)

For t → K+, pK(t) is the penultimate nonzero element; that
is, M = K+1, pM = 1

2 (t−K), and pK(t) can be computed
from (24):

lim
t→K+

pK(t) = lim
t→K+

1 + 1
2 (t−K)
2

=
1
2
. (26)

Hence, the component pK(t) is continuous at t = K. From
here, the continuity of p1(t), . . . ,pK−1(t) in t follows from
their continuity in pK , according to (24) (again, using back-
ward induction from m = K − 1 to m = 1).

Figure 2 shows plots of a few functions derived from the
definition of �p(t). Figure 2-a shows a plot of p1(t), using a
logarithmic vertical axis to emphasize the ‘waviness’ of the
function. Note that, by construction, pi(t) = pi+k(t + k) for

†The operator �t� denotes the integer obtained by rounding up of t, i.e.
the smallest integer that is not less than t.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0 5 10 15 20 25 30 35 40 45 50
0

0.5

0.7

0.9

0.95

0.97

0.99

0.995

Fig. 2-a. Plot of p1(t).

0 5 10 15 20 25 30 35 40 45 50
10

−100

10
−90

10
−80

10
−70

10
−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

Fig. 2-b. Plot of Ls(t) �∏i (1 − pi(t)).

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Fig. 2-c. Plot of φ(t) �∑∞
j=1

∏j
i=1 pi(t).

any integer k and any t > 0; hence, appropriately shifted, the
plot is valid for any component pm(t). Figure 2-b shows a plot
of Ls(t) �

∏∞
i=1 (1 − pi(t)), i.e. the value of Ls for which

the vector �p(t) would satisfy constraint (14); for convenience,
the vertical axis is logarithmic here as well. Finally, Figure 2-c
shows a plot of the score attained by �p(t).

Conceptually, the solution of the optimization problem
for a given Ls is obtained by locating the set of points
{t |
∏

i [1 − pi(t)] = Ls } (e.g., from Figure 2-b), and selecting
the point that attains the maximal value of

∑
j

∏j
i=1 pi(t)

(e.g., from Figure 2-c). Note that the set contains more than
one point for Ls � 1.586 · 10−43 (the function of Figure 2-b
ceases to be strictly decreasing after t = 27). An algorithm
to compute the solution could begin by evaluating Ls(t) at
integer points, exploiting the function’s continuity to find
an initial search range, and then perform a detailed search,
e.g., by evaluation of Ls(t) on a sufficiently dense grid of
points (depending on the required precision) and subsequent
interpolation. The implementation details of such an algorithm
are tedious yet entirely straightforward, and are not considered
here further.

Our experience from running this computation for various
problem instances suggests that different values of t that
correspond to the same Ls tend to attain very close values of φ
as well, hence simply finding any such t is nearly optimal. In
graphical terms, this means that the plots in figures 2-b and 2-c
are very nearly “mirror images” of each other (and become
ever more so as t gets larger). To illustrate this, Figure 3
shows a parametric plot of φ(t) versus Ls(t). Observe that
the plot is virtually indistinguishable from a function; it takes
a great deal of “zooming in” to notice that the plot actually
zig-zags back and forth, and that every Ls � 1.586 ·10−43 has
several corresponding values of φ, of which only the topmost
one is the ‘true’ Φ(Ls). Thus, strictly speaking, the function
Φ(Ls) is not continuous; however, its ‘jumps’ are markedly
minuscule.

Incidentally, it can be observed that the proof of Theorem 1
is easily extended to the continuous version of the problem; it
then states that Ls ≤ 1

[Φ(Ls)+1]! . This bound is plotted by the
dotted line in Figure 3. Thus, it can be seen that the auxiliary
function Φ(Ls), while not difficult to compute, provides a

10
−140

10
−120

10
−100

10
−80

10
−60

10
−40

10
−20

10
0

0

10

20

30

40

50

60

70

80

Ls

φ φ(t) vs Ls(t)

()
1
1 !

sL
φ

=
+

Fig. 3. Parametric plot of φ(t) vs Ls(t), and comparison to the bound
implied by Theorem 1.

much tighter bound.

C. Evaluation of the approaches

We begin with a theorem that provides the asymptotic
connection between EL(N) and the auxiliary function ΦL(s).
It states that, in a certain sense, ΦL(s) closely approximates
EL(N) for large values of N .

Theorem 5. For any L,s, E(Ls)1/N (N) −→
N→∞

ΦL(s).

Proof. Define the following auxiliary function, for 0 < Λ < 1
and 0 ≤ p < 1: YΛ(p) = 1 − Λ�logΛ(1−p)�, where ·� denotes
the integer-part operator. Thus, YΛ(p) is the highest number
that is no higher than p and can be expressed as 1 − Λn, for
some integer n. It is obvious that as Λ → 1, the set of points
expressable as 1 − Λn for some integer n becomes dense in
the segment [0, 1], i.e., any 0 ≤ p < 1 can be approximated
with an arbitrarily small difference by such a point, for Λ
sufficiently close to 1. Therefore, limΛ→1 YΛ(p) = p for any
0 ≤ p < 1.

Now, denote the maximizing vector of ΦL(s) by
�p∗ = 〈p∗

1, . . . , p
∗
M , 0, 0, . . . 〉, and define the vector

�p|N � 〈YΛN
(p∗

1) , . . . , YΛN
(p∗

M) , 0, 0, . . . 〉, where ΛN �

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0 50 100 150 200 250 300
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

N

S
co

re
 r

at
io

Fig. 4. Performance of the GI algorithm, relative to exhaustive search (N ≤
100, worst L) and relative to continuous relaxation (N > 100, L = 0.5).

(Ls)1/N . Define also the corresponding vector �n|N �
〈logΛN

(1 − p∗
1)�, . . . , logΛN

(1 − p∗
M)�, 0, 0, . . . 〉, and de-

note N ′ =
∑

�n|N ; note that N ′ ≤
∑

i logΛN
(1 − p∗

i) =
logΛN

∏
i (1 − p∗

i) = logΛN
Ls = N.

Now, consider the score of �p|N . It cannot be higher than
EΛN

(N ′), since �n|N is just one of the ‘eligible’ vectors over
which EΛN

(N ′) is maximized. In light of Lemma 1, it is
therefore not higher than EΛN

(N) as well. Thus, EΛN
(N) is

‘sandwiched’ between the scores of �p|N and �p∗ (the latter,
by definition, being simply ΦL(s)). However, since ΛN → 1
as N → ∞, we have �p|N −→

N→∞
�p∗, which finally implies

EΛN
(N) −→

N→∞
ΦL(s).

Unfortunately, we do not have a similar formal result for
the approximation quality of algorithm GI; however, our
experience shows that it generally achieves very good results.
We have compared the score it attains with the one found by
exhaustive search, for all N ≤ 100 and all L between 0.001
and 0.999 in increments of 0.001. The solid line in Figure 4
shows the worst ratio between the scores, taken over all values
of L, as a function of N . It can be seen that the score ratio does
not drop below 0.96 (reached at N = 5, L = 0.5, where the
score attained by GI is 1.53125 versus the optimal 1.59375),
and it tends to get closer to 1 as N increases. In fact, for
N ≥ 43, the score ratio never drops below 0.99, for any L.

A significant related observation is that, for all N , the
worst-ratio points always corresponded to L around 0.5 (more
precisely, 0.416 ≤ L ≤ 0.559), while for ‘extreme’ values of
L (close to 0 or to 1), the GI algorithm converged much closer
to the optimal score.† This can be intuitively explained by the
fact that, for L ≈ 0.5, the optimum is much less proclaimed,
i.e., there exist many vectors with scores that are very close

†In fact, it can be easily proved by induction that when the maximizing
vector is either 〈1, . . . , 1

︸ ︷︷ ︸
N

〉 or 〈N, 0, . . . , 0〉, algorithm GI converges to it

correctly (we omit the formal proof here); note that the above are the limits
of the optimal vector for L → 0 and L → 1, respectively.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

N

C
T

R

20 30 40 50 60 70 80
4.26

4.28

4.3

4.32

4.34

4.36

4.38

4.4

4.42

4.44

Fig. 5. The ratio a·T+b·N
EL(N) as a function of N , for a = 10, T = 1, b = 1,

L = 0.3. The inset ‘zooms in’ on 20 ≤ N ≤ 80.

to the optimum.
Consequently, to evaluate the performance of GI for larger

N (for which exhaustive search is too time-consuming), it
makes sense to plot the ratio between the score it attains
for L = 0.5 and the corresponding value computed by the
continuous relaxation method; this estimates a lower bound
on the score ratio between GI and the true optimum. This
plot is shown as the dotted line in Figure 4 (and, incidentally,
is similar for nearby values of L as well). We conclude that
algorithm GI, being arguably the cheapest imaginable in terms
of computation complexity, attains a score at most 1% lower
than the optimum, probably acceptable for most purposes.

V. FINDING THE OPTIMAL WINDOW SIZE

We now turn to discuss the solution of the ‘outer problem’,
namely, finding the window size (N) that minimizes the
cost/throughput ratio (5). To begin, note that generic search
algorithms (e.g. Fibonacci or golden-section search [16], [15]),
with any of the methods outlined in the previous section
as a ‘subroutine’ for computing EL(N), are inefficient, as
they neglect the internal redundancy between computations
for different N . For example, observe that, in algorithm GI,
N only sets the total number of iterations, each of which by
itself is independent of N . This raises the idea of proceeding
with such iterations until the cost/throughput ratio (computed
on the fly) ceases to decrease, instead of setting an advance
limit.

Figure 5 shows a typical plot of the target ratio as a
function of N . Observe that the function decreases steeply
at first but quickly becomes quite ‘flat’, eventually rising
slowly amid a somewhat noise-resembling behavior.‡ This
shape is indeed expected, considering that the ratio expression
is Θ

(
a·T+b·N

N/ log1/L N

)
(recall Theorem 2): thus, for small N

‡The plot in Figure 5 was obtained with the exact values of EL(N), found
by an exhaustive search; however, the plot shape is essentially similar if any
of the approximate evaluation methods is used instead.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Initialization: Set �n = 〈0, 0, . . . 〉, N ← 0, Best CTR ← ∞
Loop:

N ← N + 1
For every j such that either j = 1 or nj−1 > nj :

Temporarily set nj ← nj + 1
Compute the score of �n
Restore nj

For the j that got the best score:
Set nj ← nj + 1

Set CTR ← the cost/throughput ratio for �n
If CTR < Best CTR

Set Best CTR ← CTR, N∗ ← N
If N = 2N∗, terminate; else go back to Loop.

Fig. 6. Algorithm Greedy-Outer (GO).

(N � aT
b), it decreases at a rate of 1

N/ log1/L N , while for

N 	 aT
b , it increases at a rate of log1/L N , i.e., much more

slowly. The noise-like non-monotonocity, especially apparent
around the minimum point, is due to combinatorial effects
that we do not go into further; however, it may cause a
potentially large number of ‘false’ local minima (e.g. N =
{29, 31, 34, 37, 40, 44, 48, . . . } in Figure 5), requiring care to
avoid terminating the search prematurely.

To decide on an appropriate termination condition, we
tested the algorithm for all L between 0.001 and 0.999
in increments of 0.001, with b = 1, T = 1, and a ∈
{1, 2, . . . , 10, 20, . . . , 100, 200, . . . , 1000} (recall that, for a
given L, the optimal N∗ depends only on aT

b). We point out
that this range covers all the practically interesting cases: for
aT
b < 1, the optimal window size rarely gets above 1, while for

aT
b = 1000 the search already reaches window sizes of many

thousands of packets. In all these runs, we found that, similarly
to Figure 5, the local minima indexes formed nearly arithmetic
sequences with periods much smaller than N∗ itself (in a
few cases, there were two separate regions of local minima
sequences with different periods, both much smaller than the
corresponding N∗). A simple termination condition that is
based on the above observation is N = 2N∗, i.e., stop the
search after completing twice the iteration number in which
the optimum was found. Figure 6 describes the algorithm
with this condition employed; this algorithm, termed GO (for
“Greedy Outer”), did not fail to find the global minimum
even in a single instance. Admittedly, this condition is quite
conservative; however, considering that the optimal strategy
computation is performed off-line and infrequently, and that
the best strategy found so far can be employed even before
the search is completed, perfecting the termination condition
to reduce the computation by a constant factor at most does
not seem to be of major importance.†

Finally, Figure 7 plots the optimal cost/throughput ratio as
a function of a, for a few select values of the loss rate; note
that the horizontal axis is logarithmic. These plots clearly

†We point out that termination criteria based on the target value itself, rather
than the window size (such as “stop when the current target value has risen
to 5% above the optimum so far”), also work, but may lead to exponential
complexity, due to the logarithmic increase rate of the target expression for
large N .

1 10 100 1000
0

5

10

15

a

O
pt

im
al

 C
T

R

L=0.001

L=0.1

L=0.5

Fig. 7. Optimal cost/throughput versus a for several loss rates.

demonstrate the property predicted by Theorem 4, namely,
that the ratio increases logarithmically in a.

We close this section with a conclusive example that demon-
strates the performance of the GO algorithm, as well as other
techniques presented earlier.

Example: For the parameter values depicted in Figure 5 (namely,
L = 0.3, T = 1, b = 1, a = 10), algorithm GO finds the strategy 〈3,
3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 0, 0, . . . 〉, at N∗ = 34. It has a score
of 10.295, which leads to a cost/throughput ratio (i.e. average cost
per successfully communicated packet) of 4.2739. Incidentally, the
greedy search happens to find the optimal strategy in this case; no
further improvement can be gained by exhaustive search.

For comparison, the optimal window size with ‘classic’ sliding
windows, found by formula (7), is 5 (i.e., the strategy is 〈1, 1, 1,
1, 1, 0, 0, . . . 〉 in our terms), with a corresponding cost/throughput
value of 7.7273. Thus, using a strategy with advance retransmissions
nearly halves the average cost per packet.

Let us now try a = 100, with the other parameters as before. This
time, GO finds N∗ = 531, with the strategy 〈6, . . . , 6︸ ︷︷ ︸

12

, 5, . . . , 5︸ ︷︷ ︸
66

,

4, . . . , 4︸ ︷︷ ︸
23

, 3, . . . , 3︸ ︷︷ ︸
9

, 2, 2, 2, 2, 1, 1, 0, 0, . . . 〉. Its score is 97.6449, and

the corresponding cost/throughput value is 6.4622. The ‘classic’
optimal window size here is 10, yielding a cost/throughput value of
48.513; thus, in this case, the advantage of using a strategy with
retransmissions is much greater. In fact, it can be seen that the
cost/throughput increased only mildly from the previous case, despite
the tenfold raise of the time cost, due to using a significantly larger
window; this resulted in a nearly-tenfold increase in the throughput
as well, which, therefore, nearly canceled the extra time cost.

It is interesting to note that, this time, the strategy found by GO
is not optimal. While exhaustive search for the inner problem is
unfeasible for N = 531, a local search around GO’s result found the
strategy 〈6, . . . , 6︸ ︷︷ ︸

10

, 5, . . . , 5︸ ︷︷ ︸
68

, 4, . . . , 4︸ ︷︷ ︸
24

, 3, . . . , 3︸ ︷︷ ︸
9

, 2, 2, 2, 1, 1, 0, 0, . . . 〉,

with a slightly higher score of 97.651. The continuous relaxation
method in this case results in an upper bound of 98.6863 for the
score; therefore, the strategy obtained by greedy search, with a score
of 97.6449, cannot be off by more than about 1% from the ‘truly’
optimal one.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

VI. CONCLUSION

We have investigated optimal sliding-window strategies in
network connections where the packet transmission time is
negligible compared to the round-trip delay. We associated
a cost per unit of time and per packet transmission with
the connection, and defined the optimal strategy as one that
minimizes the expected cost/throughput ratio. We derived
several important bounds on the optimal strategy performance;
specifically, for a window size of N , we showed the number
of successful in-order packets to be Θ

(
N

log N

)
, and used this

result to prove that the cost/throughput ratio increases logarith-
mically in the time price. We then studied practical solution
algorithms, and found that strategies that are suboptimal by
only a few percent can be computed with a very efficient
‘greedy’ algorithm. Our approach was demonstrated to attain a
significantly lower cost/throughput ratio than ‘classic’ sliding
windows, where a packet is retransmitted only after a timeout
or negative acknowledgment.

Our attention was limited to strategies that use simple re-
transmissions only; however, as explained in the Introduction,
the methodology can be extended for FEC coding as well.
The optimization problem in that case is somewhat more
complex (it involves an extra parameter, namely the size of
the coding block), yet its solution follows essentially the same
approach, except that the strategy score expression is based on
the coding redundancy rather than number of retransmissions.
In particular, the optimal strategy can be expected to use a
higher-redundancy coding for the first packets in every window
than for later ones.

Similarly, our technique can be extended to the case that
the receiver has a buffer capable of accepting packets out of
order, and reports its state in the acknowledgments (this is
known as a receiver capable of selective repeat). Instead of
a single vector specifying the number of retransmissions for
each packet, the optimal strategy in this case is described by
a set of such vectors, corresponding to the possible buffer
states and specifying the optimal sequence of tranmissions for
each state. Still, the computation of these vectors involves the
optimization of essentially the same score expression. Fur-
thermore, the strategy remains invariant to the next-expected
packet index and thus can be considered to be of the sliding-
windows type.

The strategies discussed in this paper were assumed to wait
for all the acknowledgments from a window before setting
out to transmit the next one. We explained, while presenting
the general model, why such behavior is optimal if the packet
transmission time is neglected. In reality, of course, a packet
transmission takes a certain time tx > 0. This can be simply
catered to by replacing the packet transmission price b with
b + a · tx, i.e. including the extra per-packet cost due to the
time it takes to transmit it, with no further changes in the
solution algorithm. Strategies thus computed are adequate if
the connection’s delay-bandwidth product is large (and, hence,
tx � T). Otherwise, i.e. if a packet transmission takes a
significant fraction of the round-trip time, it may be better not

to wait for all acknowledgments from the previous window,
and proceed with transmission with only a partial information
on previous successes and losses. Then, a strategy is no longer
described by a vector applied at every multiple of the round-
trip time, but, rather, by a rule applied after every packet
transmission and specifies the packet most worthwhile to
transmit next (if at all), according to the information available
up to that moment. The investigation of optimal strategies
and their properties in this framework, as well as further
development of the other extensions outlined above, form a
subject for future work.

REFERENCES

[1] A. Tanenbaum, Computer Networks, 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 1996.

[2] “ISO/IEC standard 13239:2000 (HDLC procedures),” Feb. 2002.
[3] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “RFC 2018: TCP

selective acknowledgment options,” Oct. 1996.
[4] S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, Aug. 1993.

[5] L. Libman and A. Orda, “Optimal timeout and retransmission strategies
for accessing network resources,” IEEE/ACM Transactions on Network-
ing, vol. 10, no. 4, Aug. 2002.

[6] M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T. Henderson,
J. Heidemann, J. Touch, H. Kruse, S. Ostermann, K. Scott, and J. Semke,
“RFC 2760: Ongoing TCP research related to satellites,” Feb. 2000.

[7] M. Allman, C. Hayes, H. Kruse, and S. Ostermann, “TCP performance
over satellite links,” in Proc. 5th International Conference on Telecom-
munication Systems, Nashville, TN, Mar. 1997.

[8] C. Barakat, N. Chaher, W. Dabbous, and E. Altman, “Improving TCP
performance over geostationary satellite links,” in Proc. IEEE Globecom,
Dec. 1999.

[9] E. Altman, K. Avrachenkov, and C. Barakat, “TCP network calculus:
The case of large delay-bandwidth product,” in Proc. IEEE Infocom,
New York, NY, June 2002.

[10] D. Katabi, M. Handley, and C. Rohrs, “Internet congestion control
for future high bandwidth-delay product environments,” in Proc. ACM
SIGCOMM, Pittsburgh, PA, Aug. 2002.

[11] K. Park and W. Wang, “AFEC: An adaptive forward error correction
protocol for end-to-end transport of real-time traffic,” in Proc. 7th
International Conference on Computer Communications and Networks
(ICCCN), Lafayette, LA, Oct. 1998.

[12] C. Barakat and E. Altman, “Bandwidth tradeoff between TCP and link-
level FEC,” in Proc. IEEE International Conference on Networking,
Colmar, France, July 2001.

[13] B. Liu, D. Goeckel, and D. Towsley, “TCP-cognizant adaptive forward
error correction in wireless networks,” in Proc. IEEE Infocom, New
York, NY, June 2002.

[14] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, “On the
Lambert W function,” Advances in Computational Mathematics, vol. 5,
1996.

[15] L. Libman and A. Orda, “Optimal sliding-window strategies in net-
works with long round-trip delays,” CCIT Report #384, Dept. of
Electrical Engineering, Technion, Israel, May 2002. Available from
http://www.ee.technion.ac.il/˜libman/papers/ccit384.ps.gz.

[16] D. Luenberger, Linear and Nonlinear Programming. Reading, MA:
Addison-Wesley, 1984.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

