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Abstract— Network monitoring and diagnosis are key to im-
proving network performance. The difficulties of performance
monitoring lie in today’s fast growing Internet, accompanied
by increasingly heterogeneous and unregulated structures. More-
over, these tasks become even harder since one cannot rely on
the collaboration of individual routers and servers to directly
measure network traffic. Even though the aggregatory nature of
possible network measurements gives rise to inverse problems,
existing methods for solving inverse problems are usually com-
putationally intractable or statistically inefficient.

In this paper, a pseudo likelihood approach is proposed to
solve a group of network tomography problems. The basic
idea of pseudo likelihood is to form simple subproblems and
construct a product of marginal likelihood of subproblems by
the ignoring their dependences. As a result, it keeps a good
balance between the computational complexity and the statistical
efficiency of the parameter estimation. Some statistical properties
of the pseudo likelihood estimator, such as consistency and
asymptotic normality, are established. A pseudo expectation-
maximization (EM) algorithm is developed to maximize the
pseudo log-likelihood function. Two examples with simulated or
real data are used to illustrate the pseudo likelihood proposal: (1)
internal link delay distribution inference through multicast end-
to-end measurements; (2) origin-destination matrix estimation
through link traffic counts.

Index Terms— End-to-end measurement, multicast tree, net-
work tomography, origin-destination matrix, pseudo likelihood.

I. INTRODUCTION

With today’s fast growing Internet, network monitoring and
inference need to deal with a large number of network perfor-
mance parameters, such as link loss and packet delay. Usually
one cannot rely on the collaboration of individual routers
or servers to measure network traffic directly; estimation of
performance parameters can only be based upon measurements
made at a limited subset of computers. Network Tomography
was first coined by Vardi (1996) to illustrate the similarities
between the network inference and medical tomography. In
order to harness such challenging tasks, the simplest possible
model is adopted and intricate details regarding network trans-
portation are ignored. But even with this, the full likelihood
method is still computationally infeasible or time consuming
for most network tomography problems.

In this paper, a unified pseudo likelihood method is pro-
posed for a group of network tomography problems. The
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idea of modifying likelihood actually is not new, and some
likelihood modification methods have already been proposed,
e.g., pseudo likelihood [1], [2] in Markov random fields (MRF)
by Besag (1974), partial likelihood [3] in hazards regression by
Cox (1973), and quasi-maximum likelihood [4] in finance by
White (1994). Our method is partly motivated by the pseudo
likelihood method in solving MRF problems by Besag: both
pseudo likelihood functions are constructed by focusing on
smaller and simpler local dependence structures instead of the
global complex one. Sub-problems are formed by considering
variables involved in such local structures. Usually subprob-
lems are dependent, but ignoring such dependencies allows
for obtaining a pseudo likelihood function. The key difference
between Besag’s method and ours is how to form subprob-
lems. Besag’s pseudo likelihood is based on the neighborhood
conditional likelihood decomposition. While the problem of
inferencing internal link delay distributions through multicast
end-to-end traffic can be viewed in his MRF framework,
all nodes are fully connected; therefore, the neighborhood
decomposition scheme is no longer advantageous here, and
further dependence simplification is necessary.

This paper is organized as follows. In Sec. II, we introduce
a general network tomography model, and two examples are
used to illustrate the general model: (1) internal link delay
distribution inference through multicast end-to-end measure-
ments; (2) origin-destination matrix inference through link
traffic counts. Then, in Sec. III, a pseudo likelihood approach
is proposed for the general network tomography model. Fi-
nally, in Sec. IV, we apply the pseudo likelihood approach to
the above two examples. Proofs of Theorems 4 and 5 can be
found in Appendix.

II. MODEL AND FRAMEWORK

Fig. 1 illustrates a general network topology, in which
a node represents a computer or a subnet (a collection of
computers). A connection between any two nodes in the
network is called a path, which may consist of several links
— direct connections between two nodes without intermediate
nodes. A packet is a unit of data of bits. Information is
exchanged by sending packets along a path from a source
node to destination node(s).

Let X = (X1, ...,XJ )t be a J dimension random variable
vector, which reflects the network dynamics of interest, e.g.,
packet link delay, traffic flow counts. Let Y = (Y1, ..., YI)t
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Fig. 1. An illustration of Internet topology

be an I dimension measurement vector. Generally, there is a
linear relationship between observable Y and unobservable X.
As in Coates et al. [5], such network tomography problems can
be approximately (or exactly) represented by a linear model:

Y = AX, (1)

where A is a known I × J routing matrix, determined by the
network topology and routing tables at each router. In this
paper, we restrict ourselves to fixed routing schemes, so A is
a 0-1 matrix. It is worth noting that we assume there is no
measurement or any other errors in (1) to further simplify the
model.

Equation (1) reveals the aggregatory nature of network
measurements, which leads estimation of the distribution of X
to be an inverse problem. But in a general network tomography
scenario, A is not a full rank square matrix, where typically
I � J . Hence, constraints have to be introduced to ensure
the identifiability of the model. A key assumption of the
network tomography model is that all components of X are
independent of each other. Such an assumption does not hold
strictly in a real network due to the temporal and spatial
correlations between network traffic, but it is a good first step
approximation. We assume that

Xj ∼ fj(θj), j = 1, ..., J, (2)

where fj is a density function with parameter θj . Then the
parameter of the whole model is θ = (θ1, ..., θJ ).

Throughout the paper, let y1, ..., yT be the independent
observed data vectors at T consecutive time points or intervals
and x1, ..., xT be the corresponding unobserved network per-
formance quantities of interest. Let yti, xtj be the ith and jth
element of yt and xt respectively. (However, it is worth noting
that, if necessary, we could use the local likelihood approach
as employed in Cao et al. [6] to deal with the nonstationary
nature of the data. In that approach, the data are assumed iid
within a small time window.) Next we will use two concrete
examples to illustrate the above setup.

A. Example: Multicast Internal Delay Inference

Packet link delay is a major indicator of the network
performance. Two different approaches have been used for link
delay monitoring: internal and external. The internal approach
measures the network link delays at link-level interfaces di-
rectly, while the external approach monitors delays through

end-to-end measurements. The Multicast-based Inference of
Network-internal Characteristics (MINC) Project [7] pioneered
the use of multicast probing for network delay distribution esti-
mation. The use of end-to-end measurement through multicast
probing is due to the limitations of the internal approach: the
collaboration between internal routers is not always available,
and an extra heavy load burden will be imposed by the
probing process. A similar approach through unicast end-to-
end measurements [8] can be found in Coate et al. (2001).
In this paper, we use the multicast-based external approach to
estimate internal link delay distributions.

Consider a general multicast tree depicted in Fig. 2. Each
node is labeled with a number, and we adopt a notation that
link i connects node i to its parental node. Each probing packet
with a time stamp sent from root node 0 will be received
by all end receivers 4–7. For any pair of receivers, packets
experience the same amount of delay over their common path.
For instance, copies of the same packet received by receiver 4
and 5 experience the same amount of delay on link 1 and 2.
Measurements are made at end receivers, so only aggregated
delays over the paths from root to end receivers are observed.
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Fig. 2. An arbitrary virtual multicast tree with four receivers. Link i connects
node i with its parental node, e.g., link 4 is the link connects node 4 and 2.

Due to aggregation of measured delays, the network tomog-
raphy model defined by (1) and (2) can be naturally applied to
the multicast internal delay distribution inference problem. For
each probing packet, X is the vector of unobserved delays over
each link, and Y is the vector of observed path-level delays
at each end receiver. A is an I ×J routing matrix determined
by the multicast spanning tree, where I is the number of end
receivers and J the number of internal links. As an example,
for the multicast tree depicted in Fig. 2, (1) becomes





y1
y2
y3
y4



 =





1 1 0 1 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1









x1
x2
...
x7



 ,

where y1, ..., y4 are the measured delays at end receivers
4, ..., 7 and x1, ..., x7 are the delays over links 1,..., 7.

Each link has a certain amount of minimal delay (overhead),
which are assumed to be known beforehand. After compensat-
ing the minimal delay for each link, a discretization scheme is
imposed on link-level delay by Lo Presti et al. (1999), such that
Xj can only take finite possible values {0, q, 2q, ...,mq,∞},
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where q is the bin width and m is a constant. Assume q is
known, without loss of generality, set q = 1. Therefore, each
Xj is an independent multinomial variable with parameter
θj = (θj0, θj1, ..., θjm, θj∞). When the delay is infinite, it
implies the packet is lost during the transmission. The choice
of m enables us to decide how fine we want to approximate
the true delay distributions. In order to ensure identifiability,
we only consider canonical multicast trees [9] defined as those
satisfying

P (Xj = 0) > 0, j = 1, ..., J,

i.e. each individual packet has a positive probability to have
zero delay over any internal link.

For the problem of multicast internal delay inference, the
maximum likelihood method is usually infeasible for realistic
size networks, because the likelihood function involves finding
all possible internal delay vectors x, which can account for
each observed delay vector y. We can show that the com-
putational complexity grows at a non-polynomial (NP) rate.
Lo Presti et al.’s recursive algorithm [9] is a computational
efficient method in estimating internal delay distributions,
but it suffers from some performance drawbacks. In later
section, we will apply a pseudo likelihood approach to the
multicast delay distribution inference problem, and compare
its performance with that of recursive algorithm in terms of
estimation precision.

B. Example: Origin-Destination Matrix Inference

Origin-destination (OD) tomography quantifies path-level
network dynamics through viable network measurements. OD
matrix estimation is very important because it is a key input
to many routing algorithms, e.g., it can be used to assign
appropriate link weights in the Open Shortest Path First
(OSPF) routing protocol. Two types of approaches are used to
carry out the OD matrix inference: direct and indirect. Direct
approaches are made possible via some router software such as
Netflow supported by Cisco routers [10]. Indirect approaches
use link traffic counts at router interfaces, which are much
easier to obtain. Such indirect approaches do not impose a
heavy data collection burden on routers. In this paper, we will
concentrate on an indirect approach through link traffic counts.

Vardi [11] was the first to investigate this problem. Assum-
ing iid Poisson distributions for the OD traffic byte counts on
a general network topology, he specifies the identifiability of
the Poisson model and develops an expectation-maximization
(EM) algorithm to estimate Poisson parameters in both de-
terministic and Markov routing schemes. In order to ease the
difficulty in implementing the EM algorithm, he proposes a
moment estimation method and briefly discusses the normal
model as an approximation to the Poisson model. Related work
treated the special case involving a single set of link counts:
Vanderbei and Iannone (1994) apply the EM algorithm, and
Tebaldi and West (1998) have a Bayesian perspective and a
Markov Chain Monte Carlo implementation.

With real network data, Cao et al. [6] revise the Poisson
assumption and propose a normal model. They also address the

non-stationarity of network OD traffic. Their methodologies
are validated through comparisons with directly collected
(but expensive) OD traffic in a simple network at Lucent
Technologies depicted in Fig. 3. Another recent work in
OD traffic matrix estimation is done by Medina et al. [12].
They have a detailed comparative evaluation of the three
existing techniques and propose a new direction for OD matrix
estimation based on choice models in order to incorporate
additional data and information about the network into OD
traffic modelling. Our pseudo likelihood method is based
on Cao et al.’s work, so next we will briefly review their
normal model and methodologies in the network tomography
framework.

The network tomography model specified by (1) is appli-
cable to the OD matrix inference through link traffic counts.
Here, Y = (Y1, Y2, ..., YI)′ is the vector of observed traffic
byte counts measured on each link interface during a given
time interval and X = (X1,X2, ...,XJ )′ is the corresponding
vector of unobserved true OD traffic byte counts at the same
time period. X is called OD traffic matrix, even though it
is arranged as a column vector for notational convenience.
Under a fixed routing scheme, Y is determined uniquely by
X through the I×J routing matrix A, in which I is the number
of measured incoming/outgoing unidirectional links and J is
the number of possible OD pairs. For instance, considering
the single-router network shown in Fig. 3(b), we can write its
routing matrix A (0 for entries not indicated) as

A =

orig-1
orig-2
orig-3
orig-4
dst-1
dst-2
dst-3
dst-4





1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1




.

Each column of A is associated with one OD pair and each
row corresponds to an observed link traffic. For instance, the
first row of the above A means that the traffic originated from
node fddi consists of 4 pairs of unobserved OD pair traffic
originated from fddi and destinated for to all other 4 nodes
(including itself).

In the normal model [6], each component of X is assumed
to be independent normally distributed, satisfying the follow-
ing mean-variance relationship: Xj ∼ N(λj , φλ

c
j) indepen-

dently, where φ is a positive scalar applicable to all OD pairs
and c is a power constant. It implies that

Y = AX ∼ N(Aλ,AΣA′),

where λ = (λ1, · · · , λJ ) and Σ = φdiag(λc
1, · · · , λc

J ). So the
parameter of the full model is θ = (φ, λ).

The mean-variance relationship is a key assumption to
ensure the identifiability of the normal model. It implies that
an OD pair with large traffic byte counts tends to have large
variance with the same scale factor φ. For the power constant
c, both c = 1 and 2 work well with the Lucent network data
as shown in [6], [13]. Because c = 1 or c = 2 give similar
results, in this paper, we use c = 1 as done in [13]. But note
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Fig. 3. (a) A Simple Router Network at Lucent Technologies, (b) Network Topology around Router 1.

that the pseudo likelihood method we will propose later can
deal with c = 2 without any additional technical difficulties.

Cao et al. [6] also address the non-stationarity of network
traffic by a local likelihood model, i.e., for any given time
interval t, analysis is based on observations within a symmetric
window of size w around t. Within each window, observations
are assumed to be independent. Maximum likelihood estimate
is carried for each window via a combination of EM algorithm
and a second-order optimization routine. In order to estimate
the underlying true OD traffic x, the conditional expectation
Eθ̂(xt|yt, xt > 0) is computed as an initial estimate of x.
Then an iterative proportional fitting (IPF) algorithm [14],
widely used in contingency table analysis to adjust table to
match the observed margins, is employed to enforce the linear
constraint y = Ax to obtain the final estimate of OD traffic
x. In [6], to smooth the parameter estimate, a random walk
model is applied to the parameter λ’s and φ over the sliding
time windows.

For the normal model, the computational complexity is high.
Let n be the number of edge nodes in a network, as discussed
in [13], the computational complexity of each EM step is
O(n5) after exploiting sparse matrix calculation. A pseudo
likelihood approach will be applied to the above normal model,
and comparisons will be made between full likelihood and
pseudo likelihood methods with respect to the computational
complexity and estimation efficiency in later sections.

III. PSEUDO LIKELIHOOD IN NETWORK TOMOGRAPHY

INFERENCE

A. Forming Subproblems

Either in the problem of internal link delay distribution
estimation through multicast end-to-end delay measurements,
or in the problem of OD matrix inference through link byte
counts, the maximum likelihood estimate (MLE) is compu-
tationally intensive. A pseudo likelihood approach would be
desirable if its computation cost is much lower, while its
estimation efficiency is still comparable to MLE.

Our pseudo likelihood approach is motivated by the decom-
position of multicast spanning trees. After decomposition, it
is equivalent to the delay inference problem in the unicast
framework [8]. Consider a subtree decomposition scheme
depicted in Fig. 4. A virtual two-leaf subtree is formed by

only considering two receivers R1, R3 in the original multicast
tree. The marginal likelihood function of the virtual two-leaf
subtree is tractable because of its simple structure. Each virtual
link in a subtree may consist of several real links, so each
subtree only gives the specific path-level but not link-level
delay distributions. For a multicast tree with I end receivers,
there are totally I(I−1)/2 subtrees: different subtrees contain
delay distribution information on different paths. All these
path-level delay information together enable us to recover the
link-level delay distributions. An efficient way of estimating
link-level delay parameters is to consider all subproblems
simultaneously. If we ignore dependences between subtree
problems, then the pseudo likelihood function is obtained by
multiplying marginal likelihood functions of all subproblems.

Root

m m

Root

RRRR 21 3 1 3R

Fig. 4. Pseudo Likelihood: subtree decomposition

The above treatment for internal link delay distribution
estimation is equivalent to picking up a pair of rows from
its routing matrix A to form a subproblem. Such an idea
can be extended to the general network tomography model
specified in (1). Let S denote the set of subproblems by
picking up all possible pairs of rows from the routing matrix
A: S = {s = (i1, i2) : 1 ≤ i1 < i2 ≤ I}. Here, we define two
notations for later use:

given s, Js = {j : Xj is involved in s };
given j, Sj = {s : Xj is involved in s }.

For each s ∈ S,
Ys = AsXs, (3)

where Xs is the vector of network dynamic components
involved in the given subproblem s, Ys = (Yi1 , Yi2)

′ is the
observed network performance measurements of s, and As

is the corresponding sub-routing matrix. For instance, in the
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multicast tree depicted in Fig. 2, the subproblem formed by
only considering end receivers 4 and 5 can be written as:

(
y1
y2

)
=

(
1 1 1 0
1 1 0 1

)




x1
x2
x4
x5



 ,

where y1, ..., y4 are the measured delays at end receivers
4, ..., 7 and x1, ..., x7 are the delays over links 1,..., 7 as before.

Let θs be the model parameter of a subproblem s, and
ls(Ys; θs) be its log-likelihood function. For an observed
vector Y, define the pseudo log-likelihood function as

Lp(Y; θ) =
∑

s∈S

ls(Ys; θs). (4)

Given observed independent data vectors y1, ..., yT , let
xs

1, ..., x
s
T and ys

1, ..., y
s
T , respectively, be the unobserved and

observed data vectors for the subproblem s, then the overall
pseudo log-likelihood function is defined as:

Lp
T (y1, ..., yT ; θ) =

T∑

t=1

Lp(yt; θ). (5)

Maximizing the pseudo likelihood function gives the maxi-
mum pseudo likelihood estimate (MPLE) of θ. Often one seeks
to solve the following pseudo likelihood equation:

∂

∂θ
Lp

T (y1, ..., yT ; θ) = 0. (6)

For constructing a pseudo likelihood function, picking up
three or even more rows each time may also sound reasonable,
but there is a trade-off between the computational complexity
incurred and the estimation efficiency achieved by taking more
dependence structures into account. Our experience with these
two examples shows that picking up two rows each time gives
satisfactory estimation results while keeping the computational
cost within a reasonable range.

B. Asymptotic Properties of MPLE

Consistency and asymptotic normality are basic properties
of MLE. Under some general conditions, the consistency and
asymptotic normality of MPLE in (5) can also be established.
In the rest of the paper, let θ0 be the true parameter of the
network tomography model defined in (1) and (2), and θs

0 be
the true parameter of a subproblem s.

Theorem 1: (Consistency) For a network tomography
model defined in (1) and (2), assume following conditions are
satisfied:

A1) Lp(y; θ) is distinct, i.e., for any θ1 �= θ2, there exists a
set ∆ with positive probability, such that for all y ∈ ∆,
Lp(y; θ1) �= Lp(y; θ2);

A2) The parameter space contains an open interval ω of
which the true parameter θ0 is an interior point;

A3) Lp
T (y1, ..., yT ; θ) is differentiable with respect to θ. The

pseudo likelihood equation (6) has unique solution in ω
almost surely when T → ∞.

Then the pseudo likelihood estimate θ̃p
T is consistent, i.e.,

θ̃p
T → θ0 in probability as T → ∞.

For asymptotic normality, stronger conditions are needed to
ensure the second-order expansion at a neighborhood of the
true parameter θ0. Assume that the pseudo log-likelihood func-
tion Lp

T (y1, ..., yT ; θ) is twice continuously differentiable. Let
H(θ) = Eθ0(∇2Lp(Y ; θ)) and B(θ) = Varθ0(∇Lp(Y ; θ)).

Theorem 2: (Asymptotic normality) In additional to the
assumptions specified in Theorem 1, if the following condi-
tions are also satisfied:
B1) Lp

T (y1, ..., yT ; θ) is twice continuously differentiable
with respect to θ. In addition, expectation and differ-
entiation operations of Lp

T (y1, ..., yT ; θ) can be inter-
exchanged;

B2) As T → ∞, the Hessian matrix ∇2Lp
T (y1, ..., yT ; θ) is

invertible in an open neighborhood ω around θ0 with
probability 1;

B3) For θ ∈ ω, ∇2Lp
T (y1, ..., yT ; θ) → H(θ) in distribution

uniformly.
Then the maximum pseudo likelihood estimate θ̃p

T is strongly
consistent and as T → ∞,

√
T (θ̃p

T − θ0) → N(0, C(θ0)) in distribution,

where C(θ) = H(θ)−1B(θ)H(θ)−1.
The uniformly convergence of ∇2Lp

T (y1, ..., yT ; θ) to H(θ)
in an open interval ω can be often verified by checking the
boundness of E∂3Lp

T /∂θj∂θk∂θl , which is true for most Lp
T

of analytic functions. With satisfied continuous conditions, the
invertibility of the Hessian matrix ∇2Lp

T (y1, ..., yT ; θ) can
be verified by the convexity of Eθ0∇2Lp

T (Y; θ) at the true
parameter θ0. These observations are used in the proofs of
Theorem 4 and Theorem 5.

Because almost identical proofs can be found in [15] or
[4], proofs of Theorem 1, 2 are omitted. Please see Lehmann
(1998) and White (1994) for more details.

C. Pseudo-EM Algorithm

Maximizing the pseudo function leads to our estimate, but
usually the pseudo likelihood equation (6) cannot be solved
analytically; hence, a numeric optimization algorithm has to
be adopted. The EM algorithm [16] is a well known method
for maximizing the likelihood function numerically, but it does
not work for any objective function. The following Theorem 3
shows that pseudo-EM (an EM like algorithm) is applicable
in maximizing the pseudo likelihood.

Let ls(Xs; θs) be the log-likelihood function of a subprob-
lem s given the complete data Xs. Let θ(k) be the estimate of θ
obtained in the kth step; then the objective function Q(θ, θ(k))
to be maximized in the (k + 1)th step of the pseudo-EM
algorithm is defined as

Q(θ, θ(k)) =
∑

s∈S

T∑

t=1

Eθs(k) (ls(xs
t ; θ

s)|ys
t ) . (7)

which is obtained by assuming the independence of subprob-
lems in the expectation step. As holds for the EM algorithm,
we have the following theorem for the pseudo-EM algorithm.
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Theorem 3: During the pseudo-EM iteration steps, the
value of the objective pseudo log-likelihood function Lp

T

is non-decreasing. If Lp
T is unimodal, then the pseudo-EM

algorithm will converge to the unique maximum point.

IV. APPLICATIONS OF PSEUDO LIKELIHOOD

A. Multicast Internal Delay Distribution Inference

1) Parameter Estimation through Pseudo-EM: For any
subproblem s in the problem of the internal delay distribution
estimation through multicast end-to-end measurements, each
component of Xs is an independent multinomial random
variable, so the log-likelihood function given the complete data
xs

1, ..., x
s
T can be written as

ls(xs
1, ..., x

s
T ; θ

s) =
∑

j∈Js

∑

l

ns
jl log(θjl),

where θjl = P (Xj = l), and ns
jl =

∑
t 1{xs

tj=l}.

Let θ(k) be the parameter estimate obtained in the kth step
of the pseudo-EM. According to (7), we have

Q(θ, θ(k)) =
∑

s∈S

∑

j∈Js

∑

l

log(θjl)Eθs(k)

(
T∑

t=1

1{xs
tj=l}

∣∣∣∣y
s
t

)
.

E-step: Compute

n̂jl =
∑

s∈S

Eθs(k)

(
T∑

t=1

1(xs
tj = l)

∣∣∣∣y
s
t

)
.

M-step: Update θ(k) by

θ
(k+1)
jl =

n̂jl∑
n̂j·
.

The initial value of the pseudo-EM algorithm can be cho-
sen arbitrarily. We find that small starting values may have
difficulties increasing even when the true parameter is large.
A uniform distribution, i.e., θ(0)jl = 1/(m+2) for all possible
j and l, is used as the starting point for our simulations below.
Such a uniform starting point gives satisfactory results.

Let P be the average number of links per path, then the
overall complexity of each step of the pseudo-EM algorithm
is O(m3I2P 2). Meanwhile, we have the following theorem
about the consistency and asymptotic normality of the MPLE.

Theorem 4: Let θ̃p
T be the MPLE of the problem of inter-

nal delay distribution inference through multicast end-to-end
measurements, then θ̃p

T is a consistent estimator and
√
T (θ̃p

T − θ0)

converges to a multivariate normal random variable in distri-
bution when T → ∞.

2) Experiment results: In order to assess the performance
of the pseudo likelihood methodology, model simulations are
carried out on a 4-leaf multicast tree depicted in Fig. 2. The
MLE method is implemented for this multicast tree due to
its small size, so we can compare the performance of MPLE
with those of MLE and recursive algorithm. The initial value
of the EM algorithm in computing MLE is also set to be the
uniform distribution. For each link, the number of bins m
is set to be 14. During each simulation, 2000 iid multicast
measurements are generated with each internal link having an
independent discrete delay distribution. For three arbitrarily
selected links, the results of delay distribution estimate from
one experiment are shown in Fig. 5 along with their true delay
distributions. The plot shows both MPLE and MLE capture
most of the link delay distributions and their performace is
comparable, while the recursive algorithm sometimes gives
estimate far from the truth. The recursive algorithm is derived
from relationships between a multicast tree and its subtrees,
which yield polynomial constraints. The poor performance of
recursive algorithm in this case is partly due to instability of
the roots of such polynomial functions. Also from the plot,
both MPLE and MLE still have some estimates quite different
from the true probability. Mainly, this is because the number of
parameters needs to be estimated, 7× 16 = 112, is large, and
moreover by its nature such an inverse problem is ill-posed.

The same procedure is repeated independently 30 times
for T = 2000. Fig. 6 shows the L1 error norm of MPLE,
MLE and recursive estimate for each link, as averaged over
those 30 independent simulations. For each link, the L1 error
norm is simply the sum of the absolute difference between
probability estimates and the true probabilities. As a common
measure of the performance of density estimates, the L1 error
norm enjoys several theoretical advantages as discussed in
[17]. The plot shows that MLE and MPLE have comparable
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estimation performance for tracking link delay distributions,
while the recursive algorithm has much larger L1 errors on
all links. Meanwhile, we can see that MPLE has smaller
SD of L1 error norm than MLE on all links, implying that
MPLE is more robust than MLE. This is possibly because the
pseudo likelihood function, which is a product of less complex
likelihood functions on subproblems, has a nicer surface than
the full likelihood function.

1 2 3 4 5 6 7

0.
0
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5

1.
0

1.
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Links
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1 

E
rr
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 N
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m

Fig. 6. Link L1 error norm averaged over 30 simulations: solid line is
MPLE, dashed line is MLE, and dotted line is recursive algorithm. For each
link, the vertical bar shows the SD of L1 error norm for the given link.

B. OD Matrix Tomography

1) Parameter Estimation through pseudo-EM: For the
problem of the OD matrix estimation through link byte counts,
Y is the observed vector of link-level byte counts during a
given time period and X is the corresponding unobserved OD
byte counts.

For each sub-problem s, Ys is the vector of observed traffic
byte counts and As is the sub-routing matrix. Xs is the vector
of OD pair traffic counts involved in s. Let λs, Σs be the
mean vector and covariance matrix of Xs respectively. The
parameter of the sub-problem s is then θs = (φ, λs). The
log-likelihood function for sub-problem s given complete data
xs

1, ..., x
s
T is

ls(xs
1, ..., x

s
T ; θ

s)

= −T
2
log |Σs| − 1

2

T∑

t=1

(xs
t − λs)′Σ−1

s (xs
t − λs).

Let θ(k) be the estimate of the parameter in the kth step.
According to (7), the objective function to be maximized in
the (k + 1)th step is

Q(θ, θ(k)) ∝ −
∑

s∈S

{
T

(
log |Σs| + tr(Σ−1

s Rs(k))
)

+
T∑

t=1

(ms(k)
t − λs)′Σ−1

s (ms(k)
t − λs)

}
(8)

where

m
s(k)
t = Eθs(k)(xs

t |ys
t ), Rs(k) = Varθs(k)(xs

t |ys
t ).

Furthermore, we have

m
s(k)
t = λs(k) +Σ(k)

s As′(AsΣ(k)
s As′)−1(ys

t −Asλs(k)),
Rs(k) = Σ(k)

s − Σ(k)
s As′(AsΣ(k)

s As′)−1AsΣ(k)
s .

Because Σs is a 2 × 2 matrix, (8) can be simplified as

Q(θ, θ(k)) ∝ −
∑

s∈S

∑

j∈Js

{
T∑

t=1

(ms(k)
tj − λj)2

φλj

+ T

[
log φ+ log λj +

r
s(k)
j

φλj

] }

where rs(k)
j and ms(k)

tj are, respectively, the elements in Rs(k)

and ms(k)
t corresponding to OD pair j.

Let dj be the number of elements in Sj and

a
(k)
j =

1
dj

∑

s∈Sj

(
r

s(k)
j +

1
T

T∑

t=1

(ms(k)
tj )2

)

b
(k)
j =

1
Tdj

∑

s∈Sj

T∑

t=1

m
s(k)
tj

then it can be shown that the system equation ∂
∂θQ(θ, θ

(k)) =
0 is equivalent to

λ2
j + φλj − a(k)

j = 0, j = 1, ..., J (9a)
J∑

j=1

(λj − b(k)
j ) = 0. (9b)

E-step: Compute coefficients a(k)
j and b(k)

j . Compared with
the full likelihood method, the computation is much faster
because AsΣsA

s′ is a 2 × 2 matrix; hence, there is no need
to invert a very high dimensional matrix.
M-step: Solve (9). Equation (9a) shows a quadratic constraints
between λj and φ. Hence, we can find positive solutions to
these equations explicitly. In conjunction with these solutions,
(9b) gives a functional constraint on φ. This function is strictly
increasing, so fast algorithms are available to solve these
equations. Because the cost of the E-step is high related to
M-step, a Multiple-Step Gradient EM algorithm (a natural
extension to Lange’s Gradient EM algorithm [18]) is employed
to solve these equations only roughly.

The starting point θ(0) can be quite arbitrary for the pseudo-
EM algorithm. For the OD matrix inference experiments
below, we adopt the same initial value used in [6], such
that λ(0) is a constant vector with each component to be∑T

t=1 1′yt/(T1′A1) and φ(0) = Var(yti)/E(yti), where the
sample variance and expectation is computed by pooling all yti

together. Such a starting point gives very stable performance
for the Lucent data set.

For a network with n nodes, the number of observed
unidirectional linka I is O(n), and the number of OD pairs J is
n2. Assuming that the average number of links between an OD
pair is O(

√
n), it can be shown that on average each subprob-

lem involves O(n1.5) OD traffic pairs. The computation cost of
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each subproblem is proportional to its number of OD pairs, so
for the n2 subproblems, the overall computational complexity
of each pseudo-EM step is O(n3.5). Compared with the one-
step complexity of the full likelihood, O(n5), the pseudo
likelihood approach reduces the computational complexity
considerably. Moreover, the pseudo likelihood approach fits
in the framework of distributed computing, which can be
advantageous for practical applications. Therefore, the pseudo
likelihood approach is more scalable to larger networks.

Theorem 5: Let B be an [I(I + 1)/2] × J matrix whose
rows are the rows of A and the component-wise products of
each different pair of rows from A. If B is of full column rank,
then the model is identifiable. Let θ̃p

T be the parameter estimate
through pseudo likelihood, then θ̃p

T is a consistent estimator
and when T → ∞,

√
T (θ̃p

T − θ) converges in distribution to
a multivariate normal random variable.

2) Experiment results: We apply the pseudo likelihood
approach to a small but real network depicted in Fig. 3(b),
then our results are compared with those of full likelihood. For
this network, the true OD traffic counts are collected through
Netflow in every 5 minutes, so we can compare the estimated
traffic counts (derived from the parameter estimates) with the
true traffic counts. In order to have a good comparison, we
use the the data collected on Feb 22, 1999, the same day used
in [6], which consists of 288 data points.

In order to capture the time varying nature of the network
traffic, we adopt the same window size 11 from Cao et al.
for the local moving iid model. Fig. 7 shows the MPLE
of λ, the mean OD traffic, along with its MLE estimate.
For comparison, the 11-points moving average of true OD
traffic counts are also plotted. The average absolute error for
MLE is about 5.5k, while 9.6k for MPLE. It shows that both
likelihood methods capture the dynamics of the OD traffic
counts quite well, and the full likelihood method has slightly
better performance than the pseudo likelihood method for this
dataset.

For estimating the actual time-varying OD traffic counts
xt, estimates of OD network traffic counts near high peaks
usually have a relatively smaller error rate. In order to exhibit
small-scale features, a zoomed-in version of some selected
OD traffic counts estimate with its vertical axis magnified
by a factor of 20 is shown in Fig. 8. These OD pairs are
selected because of large errors in their estimates. The plot
demonstrates that both pseudo and full likelihood methods
have quite comparable performance even in error-prone small
scales. Even though sometimes the estimation errors are large,
both estimates performs well if compared to the range of all
feasible OD traffic estimates which are non-negative and may
account for the observed link counts, i.e., the largest possible
error we can make. For instance, we compute the estimate
errors of all 16 OD pairs for both MLE and MPLE at 3:30
AM, then divide them by their largest possible errors. Ratios
for these two methods are close: the maximum error ratio for
MLE is 8%, while 9% for MPLE. In this measure, we can see
both methods contribute a substantial amount in capturing the
network OD traffic.

The above computations are completed using R 1.5.0 [19]
on a 1G Hz laptop. In producing Fig. 7, it takes about 12
seconds for computing the MPLE, and about 49 seconds for
the MLE. In the pseudo likelihood approach, the computation
of coefficients a(k)

i and b
(k)
i is done by C codes because

the performance of R will be severely affected by multiple
loops introduced by dealing with numerous subproblems.
Similarly, EM algorithm is used to compute MLE, and the
only difference between EM and pseudo-EM in this problem
is how they compute coefficients a(k)

i and b(k)
i . In the E-step

of EM for the full likelihood method, one matrix inversion
and a few matrix multiplications are needed. All operations
can be done in R very efficiently, hence the introduction of C
codes in the E-step of the full likelihood method will barely
speed up its execution.

V. CONCLUSION

In this paper, we proposed a pseudo likelihood approach to
the network tomography problem and used two special cases
(multicast link delay estimation and OD traffic estimation) to
demonstrate the potential of the proposed approach. In the two
special cases, the MPLE shows strengths through its estimation
efficiency and manageable computational complexity. Even
though the basic idea of divide-and-conquer is not new, it is
very powerful when combined with pseudo likelihood for large
network problems. We believe more decomposition schemes
may emerge to solve other network tomography problems
beyond the two special cases demonstrated here.
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APPENDIX

For fixed observation data vectors y1, ..., yT , let Lp
T (θ) be

a shorthand notation for the pseudo log-likelihood function
Lp

T (y1, ..., yT ; θ), and ls(θs) = ls(ys
1, ..., y

s
T ; θ

s).

Proof of Theorem 4
Proof: First, in order to show the distinctness of Lp

T (θ), we
only need to prove that for any θ1 �= θ2, there exists some s,
such that ls(Ys; θs

1) �= ls(Ys; θs
2). If we have ls(Ys; θs

1) =
ls(Ys; θs

2) for all s, then for each s, it is easy to show its three
virtual sub-paths, e.g., in Fig. 2(b), 0 → m, m → R1 and
m→ R3, have the same distribution when the true parameter
is either θ1 or θ2. Iterate the argument over all sub-problems,
we have all such sub-paths have the same distribution under
θ1 or θ2. By deconvolution, it implies each internal link must
have the same distribution under θ1 or θ2, i.e., θ1 = θ2. Hence,
we prove the distinctness of Lp

T (θ).
Second, we want to show Lp

T (θ) is strictly convex at a
neighborhood of the true parameter θ0 with probability 1
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Fig. 7. Mean OD traffic λ estimate for 4 nodes network around Router1 from pseudo and full likelihood against the moving average of true OD traffic.
Marginal panels show the marginal traffic.
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Fig. 8. OD traffic counts estimate for 4 nodes network around Router1 from pseudo and full likelihood against the true OD traffic counts: only 9 selected
pairs are shown. The scale is zoomed in by a factor of 20 to show detailed features.

0-7803-7753-2/03/$17.00 (C
) 2003 IE

E
E

IE
E

E
 IN

F
O

C
O

M
 2003



when T goes to infinity. Because y1, ..., yT are iid copies
of Y, we only need to prove that ELp(Y; θ) is strictly
convex at a neighborhood of θ0, i.e., the Hessian matrix
−E∇2Lp(Y; θ0) = −E∇2Lp(Y; θ)|θ=θ0 is positive definite.
Note that ls(Ys; θs) is the true log-likelihood function of
subproblem s with θs

0 being its true parameter, so we have
E∇ls(Ys; θs

0) = 0 and

−E∇2ls(Ys; θs
0) = Var∇ls(Ys, θs

0)

is a non-negative definite matrix. By observing that Lp(Y; θ)
is a sum of log-likelihood functions of subproblems, we have
E∇Lp(Y; θ0) = 0 and the Hessian matrix −E∇2Lp(Y; θ0)
is non-negative definite. Now we want to show it is actually
positive definite. Suppose the true parameter θ0 is in the
interior of the parameter space. If there is a vector α, such
that

0 = −α′E∇2Lp(Y; θ0)α =
∑

s∈S

Var(α′∇ls(Ys, θs
0)).

It implies α′∇ls(Ys, θs
0) = 0 for any Y and s. Now we will

iterate all subproblems in a deterministic way to show α = 0.
For instance, consider the multicast tree depicted in Fig. 2(a).
α′∇ls(Ys, θs

0) = 0 in the subproblem s = (1, 4) (subproblem
formed by considering only end nodes 4 and 7) shows the
components of α corresponding to Link 1 are all 0. Combining
with such information, subproblem s = (1, 2) will show the
components of α corresponding to Link 2 are all 0. Iterate all
subproblems in such a top-down (or bottom-up) fashion, we
have α = 0, i.e., the Hessian matrix is positive definite.

By Theorem 1, the MPLE is consistent. Also we can
check that the third derivative of of Lp

T (θ) exists and its
expectation is bounded. By Theorem 2, when T → ∞,√
T (θ̃p

T −θ0) converges in distribution to a normal distributed
random variable.

Proof of Theorem 5
Proof: Similarly for OD matrix inference problem, Lp

T (θ) is
distinct if and only if ls(θs

1) = ls(θs
2) for all sub-problem s

implies θ1 = θ2. For a sub-problem s = (i1, i2), let Bs be
a 3 × J matrix, with the i1th, i2th rows of A be the first
two rows and their component-wise product be the third row,
then ls(θs

1) = ls(θs
2) implies φ1 = φ2 and Bsλ1 = Bsλ2.

So we have Bλ1 = Bλ2 and φ1 = φ2. Because B has full
column rank, Bλ1 = Bλ2 implies λ1 = λ2, it establishes the
distinctness of Lp

T (θ).
For subproblem s,

ls(θ) = −T
2
log |AsΣsA

s′|

− 1
2

T∑

t=1

(ys
t −Asλs)(AsΣsA

s′)−1(ys
t −Asλs)′

Let W s = As(AsΣsA
s′)−1 with ijth element ws

ij . Then the
Fisher information −E(∂2ls/(∂λs)2) has entries

−E

(
∂2ls

∂λs
i∂λ

s
j

)
= ws

ij +
1
2
φ2(ws

ij)
2.

W s is a nonnegative definite matrix, so is matrix
(
[ws

ij ]
2
)
.

Therefore −E(∂2Lp
T /∂λ

2) is positive definite near θ0, i.e.,
Lp

T (θ) will converge to a convex function in a neighborhood
of θ0 when T → ∞, so the maximum point is almost surely
unique in ω. By Theorem 1, MPLE θ̃p

T is consistent.
Suppose the true parameter θ0 is in the interior of the

parameter space, the asymptotic normality follows by the fact
that the third derivative of of Lp

T (θ) exists and its expectation
is bounded in a neighborhood of θ0.
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