
Core-stateless Guaranteed Throughput Networks∗

Jasleen Kaur Harrick M. Vin
Department of Computer Science Department of Computer Sciences

University of North Carolina at Chapel Hill University of Texas at Austin

Abstract — End-to-end throughput guarantee is an important
service semantics that network providers would like to offer to their
customers. A network provider can offer such service semantics
by deploying a network where each router employs a fair packet
scheduling algorithm. Unfortunately, these scheduling algorithms
require every router to maintain per-flow state and perform per-
packet flow classification; these requirements limit the scalability
of the routers. In this paper, we propose the Core-stateless Guar-
anteed Throughput (CSGT) network architecture—the first work-
conserving architecture that, without maintaining per-flow state or
performing per-packet flow classification in core routers, provides
to flows throughput guarantees that are within an additive constant
of what is attained by a network of core-stateful fair routers.

1 Introduction
With the commercialization of the Internet, there is a signif-
icant incentive for network service providers to export richer
service semantics —with respect to end-to-end delay and
throughput guarantees— to customers. Over the past decade,
several packet scheduling algorithms that enable a network
to offer such richer semantics have been proposed [2, 6, 9,
19]. A network can, for instance, provide end-to-end de-
lay guarantees by employing Virtual Clock [20] and Delay
Earliest-Due-Date (Delay EDD) [14, 18] scheduling algo-
rithms; and delay-cum-throughput guarantees by employing
fair packet scheduling algorithms —such as Weighted Fair
Queuing(WFQ) [6, 12], Start-time Fair Queuing (SFQ) [9],
and Self-clocked Fair Queuing (SCFQ) [7]— in routers. Un-
fortunately, these scheduling algorithms require every router
to maintain per-flow state and perform per-packet flow clas-
sification; these requirements limit the scalability of the
routers, especially routers in the core of the network that may
carry a very large number of flows.

The topic of designing scalable network architectures that
can export to flows1 rich service semantics, but without main-
taining per-flow state or performing per-packet flow classifi-
cation in core routers, has received considerable attention in
the recent past [10, 17, 21]. For instance, the Core-stateless
Jitter Virtual Clock (CJVC) scheduling algorithm [17] and
the class of Core-stateless Guaranteed Rate (CSGR) algo-
rithms [10] enable a network to provide end-to-end delay
guarantees similar to their core-stateful counterparts. CJVC
also provides end-to-end throughput guarantees, but at the ex-
pense of making the network non-work-conserving. There
have also been attempts at designing core-stateless versions

∗This research was supported in part by grants from NSF (award ANI-
0082294), Intel, IBM, and Cisco.

1We refer to a sequence of packets transmitted by a source as a flow.

of fair scheduling algorithms [4, 5, 13, 16]. Most of these
attempts only provide statistical fairness at large time-scales;
they do not provide any fairness or throughput guarantees for
short-lived flows or for short intervals of interest in long-lived
flows.

In this paper, we propose the Core-stateless Guaranteed
Throughput (CSGT) network architecture—the first work-
conserving network architecture that provides throughput
guarantees to flows over finite time-scales, but without main-
taining per-flow state in core routers. We develop the ar-
chitecture in two steps. First, we show that for a network
to provide end-to-end throughput guarantees, it must also
provide end-to-end delay guarantees. Second, we demon-
strate that two simple mechanisms —tag re-use and source
rate control— when integrated with a work-conserving, core-
stateless network that provides end-to-end delay guarantees,
lead to the design of a CSGT network that provides end-to-
end throughput bounds within an additive constant of that at-
tained by a core-stateful network of fair servers.

The rest of this paper is organized as follows. In Section 3,
we formulate the problem of providing end-to-end throughput
guarantees. In Section 4, we present our CSGT network ar-
chitecture, and derive bounds on the end-to-end throughput.
Section 5 discusses deployment considerations. We summa-
rize our contributions in Section 6.

2 Notation and Assumptions
Throughout this paper, we use the following symbols and no-
tations.

pk
f : the kth packet of flow f

ak
f,j : arrival time of pk

f at node j on its path
dk

f,j : departure time of pk
f from node j

lkf : length of packet pk
f

rf : rate reserved for flow f
πj : upper bound on propagation delay of

the link connecting node j and (j + 1)
Cj : outgoing link capacity at node j

H denotes the number of routers along the path of flow f .
The source of flow f is connected to router 1 and the desti-
nation is connected to router H . A source is said to transmit

packets at least at its reserved rate rf , if ak
f,1 ≤ ak−1

f,1 +
lk−1
f

rf
.

The kth packet, pk
f , transmitted from the source, is said to

have a sequence number of k. Throughout our analysis, we
use the terms server and router interchangeably; further, we
assume that the sum of rates reserved for flows at any server
does not exceed the server capacity (i.e., the link bandwidth).
For improving readability, we include the proofs of all the
Lemmas and Theorems in the appendix.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

3 Problem Formulation
A flow f with reserved rate rf expects the network to provide,
during any time interval, throughput at least at rate rf . This
service semantic is captured in the following definition of an
end-to-end throughput guarantee:

Definition 1 For a flow f , whose source transmits pack-
ets at least at its reserved rate rf , a network is said to pro-
vide an end-to-end throughput guarantee if in any time inter-
val [t1, t2], the network guarantees a minimum throughput,
Wf,H(t1, t2), to flow f given by:

Wf,H(t1, t2) > rf (t2 − t1) − rfγ
net
f,H (1)

where H is the path length traversed by flow f and γnet
f,H is a

constant that depends on the traffic and server characteristics
at nodes along the path.

From the definition, a network guarantees a non-zero
throughput to flow f if t2 − t1 > γnet

f,H ; thus, the value of
γnet

f,H bounds the longest time interval for which a flow may
receive no throughput from the network. Clearly, the smaller
the value of γnet

f,H , the better the quality of network service for
applications that require sustained network throughput.

Observe that most networks that reserve a rate for each
flow guarantee an average throughput at the reserved rate;
however, these networks differ in the time-scales (namely,
the value of γnet

f,H) at which this guarantee is provided. For
instance, for a network where each router employs an un-
fair packet scheduling algorithm (e.g., Virtual Clock or De-
lay EDD), the throughput received by a flow during a time
interval is a function of the throughput received by the flow
in the past. In fact, for such networks, γnet

f,H is not bounded,
indicating that an unfair network cannot guarantee non-zero
throughput at finite time scales. To provide throughput guar-
antees at short time-scales, networks employ fair packet
scheduling algorithms at routers [3, 6, 7, 9]. Fair schedul-
ing algorithms ensure that in any time interval in which two
flows are backlogged, they receive service in proportion to
their reserved rates. It can be shown that, when coupled with
admission control, a network of fair servers provides an end-

to-end throughput guarantee with γnet
f,H = (H + 1)

lmax
f

rf
+

∑H−1
j=1 πj +

∑H
j=1 γf,j , where γf,j characterizes the through-

put guarantee provided by fair server j in isolation [1, 11].
To provide throughput guarantees, existing fair scheduling

algorithms define a concept of virtual time at each router; the
virtual time at a router is inherently a function of the current
state of each flow passing through the router. Implementa-
tions of fair scheduling algorithms, therefore, require every
router to maintain per-flow state and perform per-packet flow
classification. In this paper, our objective is to design a work-
conserving core-stateless network architecture2 that provides

2Throughout this paper, the core-stateless property refers to a network
that does not require its core routers to maintain per-flow state or perform

deterministic end-to-end throughput guarantees, similar to
those provided by a network where each router employs a
fair scheduling algorithm.

4 CSGT Networks
We design core-stateless guaranteed throughput networks
in two steps. First, we show that for a network to pro-
vide throughput bounds similar to those in fair networks, it
must also provide end-to-end delay guarantees. Second, we
demonstrate that two mechanisms —tag re-use and source
rate control— when integrated with a core-stateless network
that provides end-to-end delay guarantees, lead to the design
of the Core-stateless Guaranteed Throughput (CSGT) net-
works that provide end-to-end throughput bounds within an
additive constant of that attained by a core-stateful network
of fair servers. Throughout this section, we assume that a
source transmits equal-sized packets.

4.1 Need for Delay Guarantees
Let the expected arrival time of a packet pk

f of flow f at the
first server, EAT (pk

f), be defined as:

EAT (p1
f) = a1

f,1

EAT (pk
f) = max

(
ak

f,1, EAT (pk−1
f)

)
+
lk−1
f

rf
, k > 1

Then, a network is said to provide an end-to-end delay guar-
antee to flow f , if, for all packets pk

f , the network provides an
upper bound on (dk

f,H −EAT (pk
f)), where dk

f,H is the depar-
ture time for packet pk

f from node H . We use this definition
of end-to-end delay guarantee to prove Theorem 1.

Theorem 1 If a network provides lower-bounds on
throughput of the form: Wf,H(t1, t2) ≥ rf (t2 − t1) − Φ to
any flow f whose source transmits at least at its reserved rate,
then it also provides to flow f an end-to-end delay guarantee

of the form: dk
f,H − EAT1(pk

f) ≤ Φ+lmax
f

rf
.

The converse of Theorem 1 indicates that a network that
does not provide delay guarantee to packets cannot provide
throughput bounds. Hence, a work-conserving, core-stateless
network that provides delay guarantee is a crucial building
block for designing CSGT networks.

In [10], the authors propose Core-stateless Guaranteed
Rate (CSGR) networks that provide the same delay guaran-
tee as a network that employs stateful scheduling algorithms
from the Guaranteed Rate (GR) class at the core routers. As
we illustrate below, a work-conserving CSGR network, how-
ever, does not provide throughput guarantees at short time-
scales. Our design of a CSGT network uses the CSGR net-
work as a building block and enhances it with a set of end-
to-end mechanisms that allow the network to retain its de-
lay properties while providing throughput guarantees at short

per-packet flow classification.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

time-scales. We describe the derivation of a CSGT network
in the context of a Core-stateless Virtual Clock (CSVC) net-
work [10, 21]—a specific instance of the class of CSGR net-
works.

4.2 Defining CSGT Networks
CSVC Networks A CSVC network consists of two
types of routers: edge routers and core routers. Edge routers
maintain per-flow state and perform per-packet flow classi-
fication. The ingress router —the edge router where a flow
enters the network— assigns to each packet pk

f a service tag
vector [V Corek

f,1, V Core
k
f,2, ..., V Core

k
f,H] where H is the

number of servers along the path, and V Corek
f,j , the service

tag value for server j, is derived as follows3:

V Corek
f,1 = max

(
ak

f,1, V Core
k−1
f,1

)
+
lkf
rf

V Corek
f,j = V Ck

f,1 +
j−1∑

h=1

(βf,h + πh + max
1≤i≤k

lif
rf

), j ≥ 1

where V Core0f,1 = 0 and βf,h = lmax
h

Ch
. At both the edge and

core routers, packets are transmitted in the increasing order of
their service tags. Note that the core routers only perform a
sorting operation on the tag values; there is no need to main-
tain per-flow state or perform per-packet flow classification.

It has been shown that a CSVC network provides a dead-
line guarantee [10, 21]: packet pk

f is guaranteed to depart
server j by (V Corek

f,j+βf,j). However, the following exam-
ple shows that a CSVC network does not provide throughput
guarantees at finite time-scales.

Example 1 Consider the first server, with a transmission
capacity of 10 packets/sec, in a CSVC network. Let the
sum of reserved rates of all flows be equal to the capacity.
Let the rate reserved by a flow f be 1 packet/sec. At time
t = 0, let f be the only backlogged flow. In this setting, by
t = 1, 10 packets of flow f are serviced by the server; further,
V Core11f,1 = 11. Now, let all other flows become backlogged
at time t = 1. Since the server services packets in the in-
creasing order of virtual clock values, packet p11

f may not be
serviced until t = 10; hence, flow f receives no throughput
during the interval [2, 10]. Given any time interval of arbi-
trary length, it is easy to extend this example to show that
flow f receives no throughput during the interval of interest.

3In practice, the ingress router computes only V Corek
f,1 for packet pk

f .
Before transmitting the packet, it encodes in the packet header a quantity
called the slack—the difference between V Corek

f,1 and the actual departure

time—and max1≤i≤k

li
f

rf
. When the second router receives the packet, it

adds the slack, β2, and max1≤i≤k

li
f

rf
, to the arrival time of the packet to

compute V Corek
f,2 [10]. Subsequent routers compute their local V Core

values in a similar manner.

Therefore, for any interval length, the CSVC server does not
provide any non-trivial (non-zero) lower bound on through-
put.

In the above example, until time t = 1, because of the
availability of idle bandwidth and the work-conserving nature
of the CSVC server, flow f receives service at a rate greater
than its reserved rate. Due to the way deadlines are com-
puted, though, during the same period, flow f accumulates
a debit at the rate rf (indicated by the increase in its VCore
value much beyond current time t), and is subsequently pe-
nalized for the duration of the accumulated debit once all the
other flows become backlogged. It is important for networks
to provide throughput guarantees at short time-scales, inde-
pendent of the past usage of idle bandwidth by a flow, for two
reasons:

1. In many settings, it is difficult for sources to predict pre-
cisely their bandwidth requirements at short time-scales.
For instance, the bit-rate requirement of a variable bit-
rate video stream may vary considerably and over short
time-scales. Suppose a video stream, with a reserved
bit-rate of 1Mbps, transmits at 2Mbps for 4 seconds us-
ing idle bandwidth. In a network that does not provide
throughput guarantees, the video stream may not receive
any throughput at all in the next 4 seconds. The perfor-
mance of the video application in such a network may
therefore be unacceptable.

2. It is in the best interest of a network to allow sources
to transmit data in transient bursts (i.e., at a rate greater
than the reserved rate); bursty transmissions allow a net-
work to benefit from statistical multiplexing of the avail-
able network bandwidth among competing traffic. In
networks that penalize sources for using idle bandwidth,
however, sources have no incentive to transmit bursts
into the network. They may prefer to use constant bit-
rate flows, instead of allowing the network to enforce
arbitrary penalties. This, in turn, would reduce the sta-
tistical multiplexing gains and thereby reduce the overall
utilization of network resources.

It is important to observe that while a CSVC network does
not provide lower bounds on throughput at finite time-scales,
it does guarantee an average throughput at the rate of rf to
a backlogged flow f over infinite time-scales. This implies
that, the throughput of flow f in any interval [t1, t2] would be
below its reserved rate rf only if the flow f receives service at
a rate higher than rf prior to t1. In such an event, there must
exist t′, t” < t1 such that during interval [t′, t”], packets of
flow f arrive at the destination much ahead of their deadline
guarantee (derived based on the reserved rate rf). More for-
mally, for packets pk

f that reach destination at time t during
the interval [t′, t”], V Corek

f,H � t.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

The Principle of Deadline Re-use The property
of allowing a flow to accumulate arbitrarily large amount of
debit —by increasing the deadline values (or service tag val-
ues) assigned to packets of the flow much beyond the current
time— is central to the inability of CSVC networks to pro-
vide throughput guarantees at small time-scales. Hence, for
a network to provide throughput bounds at small time-scales,
it must reduce debit accumulation; this can be achieved by
allowing the ingress routers to re-use for future packets the
deadline (or service tag) values of packets that reach the des-
tination much prior to their deadlines. This is the central con-
cept in transforming a CSVC network into a CSGT network
that provides throughput bounds.

The Definition of CSGT Network A CSGT net-
work, like the CSVC network, consists of two types of
routers: edge routers and core routers. The ingress edge
router, in addition to maintaining per-flow state, maintains a
sorted-list R of re-usable tag vectors. On receiving a packet
pk

f of flow f , the ingress router assigns to it a service tag
vector [F1(pk

f), F2(pk
f), ..., FH(pk

f)] where H is the number
of servers along the path, and Fj(pk

f) is the service tag for
server j. The assignment of the tag vector to packet pk

f pro-
ceeds as follows: If R �= ∅, an incoming packet is assigned
the smallest tag vector from R. Otherwise, a new tag vector
is created as follows:

F1(pk
f) = max (ak

f,1, F̂ (ak
f,1)) +

lkf
rf

(2)

Fj(pk
f) = F1(pk

f) +
j−1∑

h=1

(βf,h + πh + max
1≤i≤k

lif
rf

), j > 1 (3)

where βf,h = lmax
h

Ch
, and F̂ (t) is the maximum of the service

tags for server 1 assigned to any packet by time t. All servers
in the CSGT network transmit packets in the increasing order
of their service tags for that server.

Observe that if R = ∅, then the assignment of tag vector in
CSGT is identical to the CSVC network. When R �= ∅, then,
by reusing a tag assigned to an earlier packet, CSGT prevents
accumulation of unbounded debit for flow f . To instantiate
such a CSGT network, we need to address the following is-
sues.

1. When can an ingress server reuse a previously assigned
tag vector for a new packet? What are the constraints
that govern the re-usability of tag vectors? How does
the ingress router create and maintain the sorted-list R?
We address these questions in Section 4.2.1.

2. With the reuse of previously assigned tag vectors in the
CSGT network, packets of flow f with higher sequence
number may, in fact, carry a smaller tag value (i.e.,
Fh(pj

f) < Fh(pi
f) even if i < j). Since the tag val-

ues determine the priority for servicing packets in each

router, it is quite possible that packet pj
f may reach the

egress edge router prior to packet pi
f , even though packet

pi
f was transmitted prior to packet pj

f at server 1. We
discuss the associated packet re-ordering requirement in
Section 4.2.2.

4.2.1 Maintaining the Sorted-list of Re-usable
Tag Vectors

Reusing tag vectors allow CSGT networks to prevent un-
bounded debit accumulation for flows. Determination of
whether a tag vector is eligible for reuse, however, is tricky
because of two reasons.

• A CSGT network must ensure that the reuse of tag vec-
tors for packets of flow f does not violate the deadline
guarantees provided to other flows.

To meet this requirement, the tag assigned to a packet pk
f

must differ by at least lf
rf

from the tags assigned to all

packets pi
f that were transmitted prior to packet pk

f but
have not reached the destination. This is because, if the
separation is less than lf

rf
, then flow f will be guaranteed

service at a rate greater than its reserved rate rf ; this, in
turn, could violate the deadline guarantees provided to
other flows.

• A CSGT network must ensure that it can provide a dead-
line guarantee on the re-used tag vector.

To meet this requirement, at the time of assigning a re-
usable tag to a packet, the ingress router must ensure that
the tag value for the first server exceeds the current time
by at least lf

rf
.

Using these eligibility criteria, we formally define re-
usability of a tag vector as follows.

Definition 2 A previously assigned tag vector
[F1, F2, ..., FH] is said to be re-usable for a packet pm

f

at time t if it satisfies the following properties:

∀pi
f ∈ U : |Fj − Fj(pi

f)| ≥ lf
rf

(4)

t ≤ F1 − lf
rf

(5)

where U is the set of packets transmitted by server 1 prior to
packet pm

f but have not reached the destination by time t.

A CSGT network can enforce these conditions as follows.

1. An ingress router should consider a tag vector for re-use
only after a packet carrying that tag vector departs the
egress router H . This ensures that condition (4) is met.
This can be achieved by requiring the egress router to
send, on transmitting a packet pm

f of flow f , an acknowl-
edgment for that packet to the ingress router for flow f .

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

The ingress router, on receiving such an acknowledg-
ment, can add the tag vector assigned to packet pm

f to
the sorted-list R of re-usable tag vectors for flow f .

2. On receiving a packet pk
f from flow f at time t, the

ingress router can scan through the sorted-list R, discard
all the tag vectors that violate condition (5), and assign
to packet pk

f the first re-usable tag that meets condition
(5).

Observe that the tag vector assigned to a packet pm
f is

likely to re-usable (i.e., satisfy condition (5)) only if packet
pm

f departs server H ”sufficiently” prior to its deadline. In
particular, if Dmin is the minimum latency incurred by the
acknowledgment packet to reach the ingress router, then us-
ing (5), the tag vector of packet pm

f can be re-used only if:

dm
f,H +Dmin ≤ F1(pm

f) − lf
rf

. From (3), this is the same as:

dm
f,H ≤ FH(pm

f) − (
H−1∑

j=1

(βf,j + πj + max
1≤i≤m

lif
rf

)

+Dmin +
lf
rf

) (6)

Thus, the egress server sends an acknowledgment to the first
server, only if packet pk

f departs the network much before—as
given by condition (6)—its deadline. We prove, in Lemma 2
(see Section 4.3), that if a CSGT network reuses tag vectors in
accordance with the scheme described above, then it provides
the same deadline-guarantee as a CSVC network.

4.2.2 Addressing Packet Re-ordering Require-
ments

With the tag re-use scheme described above, in a CSGT net-
work, packets of flow f may reach the egress router out-of-
order. For applications that desire in-order delivery seman-
tics, a CSGT network needs to employ a sequencer that can
buffer packets received out-of-order and then deliver to the
applications packets in-order. A sequencer can reside either
on the egress router, on a special network appliance located
between the egress edge router and the destination node, or
on the destination node itself4. Figure 1 depicts the setting
where a sequencer is logically inserted between the egress
router and the destination node. For the simplicity of anal-
ysis, we assume zero propagation delay between the egress
router and the sequencer.

Now, let us consider the issues in designing the sequencer.
The following example shows that, in a naive implementation
of a CSGT network, the number of packets that may need to
be buffered at the sequencer is not bounded.

4Deploying a sequencer on the destination node itself may require
changes to end-hosts. Hence, the architectural options of instantiating the
sequencer on the egress router or on an appliance located at the edge of the
customer network may be more desirable.

Example 2 Consider the case when the tag vector of
packet pk

f becomes re-usable at the source, there are n un-

acknowledged packets, pk+1
f , . . . , pk+n

f , with larger tag vec-

tors in the network. Let the tag vector of pk
f be re-assigned to

packet pk+n+1
f . Now let the tag vectors of the first (n−1) un-

acknowledged packets pk+1
f , . . . , pk+n−1

f also become avail-
able for re-use; let these tag vectors be assigned to subse-
quent (n − 1) packets, namely, pk+n+2

f , . . . , pk+n+n
f . Con-

sider the case where packet pk+n
f departs the egress node at

its deadline, FH(pk+n
f). Since packets pk+n+1

f , . . . , pk+n+n

have smaller deadlines, they are guaranteed to depart the
egress router earlier than pk+n

f . Therefore, these n packets
need to be buffered, simultaneously for some time, at the se-
quencer till packet pk+n

f arrives. Larger the value of n, the
larger the buffer space requirement at the sequencer.

In practice, a sequencer would have a fixed amount of
buffer space. In order to avoid packet loss due to over-
flow of the sequencer buffers, therefore, the aggressiveness
of sources using a CSGT network may need to be controlled.
We do this by employing a flow control algorithm that limits
the maximum number of deadlines that are simultaneously
in use for packets of a flow. Specifically, the flow control
algorithm ensures that at any point in time t, no packet is
assigned a deadline larger than t + W

lf
rf

, where W is a con-
figuration parameter. When a packet arrives at time t, if no
deadline smaller than t+W

lf
rf

is available for assigning to it,
the packet is held till one is available.

Observe that a large value of W increases the buffer space
requirement at the sequencer (Example 2). A small value of
W , on the other hand, limits the extent to which the source
can utilize idle bandwidth in the network. In fact, if W = 1,
the first server does not transmit a packet before its expected
arrival time; in this case the server reduces to the non-work-
conserving Jitter Virtual Clock server. In practice, the largest
value of W—such that buffer overflow at the sequencer can
be avoided—should be selected. If B denotes the available
sequencer buffer space, in units of the packet size lf , then
Lemma 1 provides a condition that when satisfied by W ,
avoids packet loss due to buffer overflow.

Lemma 1 Packets of flow f will not be dropped at the se-
quencer due to unavailability of re-ordering buffers if W sat-
isfies:

B ≥

(N + 1)(W − 1) − (N)(N + 1)kmin

2 ,

if Tmin ≥ lf
rf

W (W−1)
2kmin , if Tmin <

lf
rf

(7)

where N =
⌊

W−2
kmin

⌋
, kmin = T min

lf /rf
, and Tmin is a lower

bound on the round-trip time5.
5T min is a lower bound on the time difference between the transmission

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

2

Ingress
Router

1

Router
Core

... H

Egress
Router Sequencer

Application
ThroughputThroughput

Network

CustomerCustomer
Cloud Cloud

Source Destination

Figure 1: The CSGT Network Architecture

Given the largest value ofW that satisfies (7), there is a bound
on the maximum amount of available bandwidth that a flow
f can utilize. Conversely, one can provision buffer space at
the sequencer that allows a flow to utilize up to a maximum
bandwidth (say r′). In Appendix C, we show that to allow a
source to utilize bandwidth r′, the chosen value of W should
satisfy the following condition6:

W ≥ r′

lf

H−1∑

j=1

πj +
H∑

j=1

βf,j +Dmax

 +H + 1 (8)

Such a value of W can then be used to provision the se-
quencers with the appropriate amount of buffers. In partic-
ular, given r′, the maximum bandwidth that a flow should be
allowed to utilize, one can derive a bound on W using (8);
this value of W when substituted in (7) determines the mini-
mum buffer requirement at the sequencer.

4.3 Properties of CSGT Networks
Delay Guarantee The following lemma proves that
deadline guarantees of CSVC are preserved in a CSGT net-
work.

Lemma 2 A packet pk
f is guaranteed to depart server j in

a CSGT network by (Fj(pk
f) + βf,j).

It is important to observe that the deadlines assigned to a
packet in a CSGT network are never larger than the dealines
assigned to the same packet in a corresponding CSGR net-
work. From Lemma 2, therefore, it follows that a CSGT net-
work is guaranteed to deliver a packet no later than a CSGR
network. This is true despite the additional delay introduced
by the sequencer—the sequencer is guaranteed to deliver a
packet pk

f by its CSGR deadline. This is because all pack-
ets with smaller sequence numbers are guaranteed to arrive at
the sequencer before their CSGR deadlines, which are smaller
than the CSGR deadline of packet pk

f .

of a packet at the first server and the arrival of its acknowledgment at the
first server. For instance, the sum of propagation and minimum transmission
latencies on all the links on both the forward and reverse path qualifies as a
lower bound.

6The condition in (8) can be intuitively seen to be a form of the commonly
used delay-bandwidth product rule-of-thumb.

Throughput Guarantee To quantify the effect of
packet re-ordering on the throughput received by the appli-
cations, we define two different throughput measures. We
define network throughput as the number of bits that depart
the egress router during a given time interval, and application
throughput as the number of bits that depart the sequencer (af-
ter re-ordering) during the interval. Note that the application
throughput in any given interval may be different from the
network throughput. Theorem 2 provides lower bounds on
the network and application throughput in a CSGT network.

Theorem 2 If the source of flow f transmits packets at
least at its reserved rate, and Dmax is an upper bound on
the latency after which an acknowledgment packet sent by the
egress node reaches the ingress node, then the network guar-
antees a minimum throughput in any time interval [t1, t2],
Wf,H(t1, t2), given by:

Wf,H(t1, t2) > rf (t2 − t1) − rf ∗Dmax −

rf

(H + 2)
lf
rf

+
H−1∑

j=1

πj +
H∑

j=1

βf,j

Further, the sequencer guarantees a minimum throughput,
W app

f (t1, t2), given by:

W app
f (t1, t2) > rf (t2 − t1) − rf ∗Dmax −W ∗ lf −

rf

(H + 1)
lf
rf

+
H−1∑

j=1

πj +
H∑

j=1

βf,j

The bound on the network throughput derived in Theorem 2
for a CSGT network differs from that provided by a core-
stateful network of fair servers (Section 3), by a constant term
E1 = rf ∗ [Dmax −

∑H
j=1(γf,j − βf,j)] + lf . The bound on

application throughput differs by the additional term E2 =
(W − 1) ∗ lf .

Observe that for a CSGT network derived from CSVC,
βf,j = lmax/Cj . Further, for most fair schedulers, γf,j ≥
lmax/Cj . Therefore,E1 ≤ rf ∗Dmax+lf , which is primarily
governed byDmax, the maximum latency on the reverse path.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

N
on

-z
er

o
th

ro
ug

hp
ut

 m
in

im
um

-t
im

es
ca

le
 (

m
s)

H : Path Length

WF2Q+
Net: D=pi
Appl:D=pi

Net: D=2pi
Appl:D=2pi
Net: D=3pi
Appl:D=3pi

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2 3 4 5 6 7 8 9 10

S
eq

ue
nc

er
 B

uf
fe

r
S

pa
ce

 R
eq

ui
re

m
en

t (
B

)

Reserved Rate, r (Mbps)

Rmax / r =2
Rmax / r =4
Rmax / r =5

reference

(a) Non-zero throughput time-scale (b) Sequencer buffer space requirement

Figure 2: Evaluation of a CSGT Network

5 Evaluation of CSGT Networks
5.1 The Throughput Guarantee

Theorem 2 states that when measured over any time interval
larger than γnet

f,H , the network guarantees a non-zero through-
put at a rate equal to the reserved rate. As discussed in Sec-
tion 3, the smaller the value of γnet

f,H , the better the network
can support applications with stringent timeliness require-
ments. To evaluate the throughput guarantee of a CSGT net-
work numerically, we compute γnet

f,H for example networks,
where link capacities are 100Mbps and link propagation la-
tencies are 1ms. In figure 2(a), we plot γnet

f,H against the num-
ber of hops on the end-to-end path of a sample flow with a
reserved bit-rate of 10Mbps. Dmax is varied from a multiple
of 1 to 3 of the end-to-end propagation latency on the reverse
path. For comparison, we also plot γnet

f,H for a representative
core-stateful network of fair WF 2Q+ [3] servers. We ob-
serve the following:

1. When Dmax is equal to the end-to-end link propagation
latency, the throughput guarantee of the CSGT networks
is similar to that of the core-stateful WF 2Q+ networks.

2. γnet
f,H increases with Dmax. Therefore, the throughput

guarantee of a CSGT network improves by provision-
ing low-delay feedback channels. However, even when
Dmax is three times the end-to-end propagation latency,
the application is guaranteed a non-zero throughput over
any time interval larger than 150ms.

These observations imply that by provisioning low-delay
feedback channels, a CSGT network can provide non-zero
throughput guarantees at very short time-scales, and similar
to those in core-stateful networks.

5.2 Sequencer Buffer Space vs. Maximum
Throughput

Recall that there is a tradeoff between the amount of buffer
space required at the sequencer and the maximum rate that
the source is allowed to achieve. We numerically character-
ize this tradeoff for the same example network as above (link
capacity = 100Mbps, link propagation latency = 1ms). In
figure 2(b), we plot the minimum sequencer buffer space re-
quired to allow sources to achieve a given maximum bit-rate,
Rmax (varied from 2 to 5 times the reserved rate). We ob-
serve that:

1. To enable a flow, with a reserved bit-rate of up to
10Mbps, to achieve an end-to-end bit-rate of up to
5 times that (50Mbps), less than 1MB of sequencer
buffer space is sufficient.

2. The buffer space requirement grows slower with in-
crease in the bit-rate of the sample flow (for reference,
we plot a line where the buffer requirement grows at the
same rate as the reserved bit-rate).

These observations imply that a small amount of sequencer
buffer space is sufficient to allow flows to utilize bandwidth
up to multiple times their reserved rate. Further, a CSGT net-
work can reduce the total buffer requirement at the sequencer
by aggregating into a single large flow, all micro-flows that
traverse the same path between a pair of edge routers.

5.3 Deployment Considerations
A CSGT network introduces two main overheads—namely,
additional state in every packet, and additional traffic due to
feedback messages—in order to provide throughput guaran-
tees in a core-stateless architecture. To address the first over-
head, several techniques for encoding state in packets effi-
ciently have been discussed in [15]. We expect the overhead

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

due to feedback traffic to also be small because of two rea-
sons. First, the size of each feedback packet is small; ad-
ditionally, the packetization overhead can further be reduced
by acknowledging the receipt of multiple sequence numbers
in the same feedback message. In applications that involve
a bidirectional transfer of data, in fact, the feedback can be
piggy-backed onto data packets transmitted on the reverse
path. Second, feedback messages are transmitted only when
data packets depart the network much earlier than their dead-
lines. This happens only when sufficient spare bandwidth
is available on the forward path. While it would be useful
to quantify precisely the expected amount of feedback traf-
fic generated in practice, the lack of real testbeds and traffic
characteristics prevents us from doing so.

6 Summary
End-to-end throughput guarantees is an important network
service semantics to offer. Existing network architectures ei-
ther provide throughput guarantees at the cost of introducing
the complexity of per-flow state maintenance in all routers,
or do not provide throughput guarantees at finite time-
scales. In this paper, we propose the Core-stateless Guar-
anteed Throughput (CSGT) network architecture—the first
work-conserving network architecture that provides through-
put guarantees to individual flows over finite time-scales, but
without maintaining per-flow state in core routers. We de-
velop the architecture in two steps. First, we show that for
a network to provide end-to-end throughput guarantees, it
must also provide end-to-end delay guarantees. Second, we
demonstrate that two mechanisms —tag re-use and source
rate control— when integrated with a work-conserving, core-
stateless network that provides end-to-end delay guarantees,
lead to the design of CSGT network that provides end-to-end
throughput bounds within an additive constant of what is at-
tained by a core-stateful network of fair rate servers.

References
[1] J.C.R. Bennett, K. Benson, A. Charny, W.F.Courtney, and J.Y.

LeBoudec. Delay Jitter Bounds and Packet Scale Rate Guarantee for
Expedited Forwarding. to appear in IEEE/ACM Transactions on Net-
working.

[2] J.C.R. Bennett and H. Zhang. WF2Q: Worst-case Fair Weighted Fair
Queuing. In Proceedings of INFOCOM’96, pages 120–127, March
1996.

[3] J.C.R. Bennett and H. Zhang. Hierarchical Packet Fair Queueing Al-
gorithms. In IEEE/ACM Transactions on Networking, volume 5, pages
675–689, Oct 1997.

[4] Z. Cao, Z. Wang, and E. Zegura. Rainbow Fair Queueing: Fair Band-
width Sharing Without Per-Flow State. In Proceedings of IEEE INFO-
COM, March 2000.

[5] A. Clerget and W. Dabbous. TUF: Tag-based Unified Fairness. In
Proceedings of IEEE INFOCOM, April 2001.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a
Fair Queueing Algorithm. In Proceedings of ACM SIGCOMM, pages
1–12, September 1989.

[7] S.J. Golestani. A Self-Clocked Fair Queueing Scheme for High Speed
Applications. In Proceedings of INFOCOM’94, 1994.

[8] P. Goyal and H.M. Vin. Generalized Guaranteed Rate Scheduling Al-
gorithms: A Framework. Technical Report TR-95-30, Department of
Computer Sciences, The University of Texas at Austin, 1995. Available
via URL http://www.cs.utexas.edu/users/dmcl.

[9] P. Goyal, H.M. Vin, and H. Cheng. Start-time Fair Queuing: A
Scheduling Algorithm for Integrated Services Packet Switching Net-
works. In Proceedings of ACM SIGCOMM’96, pages 157–168, August
1996.

[10] J. Kaur and H.M. Vin. Core-stateless Guaranteed Rate Scheduling Al-
gorithms. In Proceedings of IEEE INFOCOM, volume 3, pages 1484–
1492, April 2001.

[11] J. Kaur and H.M. Vin. Core-stateless Guaranteed Throughput Net-
works. Technical Report TR-01-47, Department of Computer Sciences,
University of Texas at Austin, November 2001.

[12] S. Keshav. On Efficient Implementation of Fair Queuing. Journal of
Internetworking Research, 2:157–173, September 1995.

[13] R. Pan, B. Prabhakar, and K. Psounis. CHOKE, A Stateless Active
Queue Management Scheme for Approximating Fair Bandwidth Allo-
cation. In Proceedings of IEEE INFOCOM, March 2000.

[14] S. Shenker, L. Zhang, and D. Clark. A Scheduling Ser-
vice Model and a Scheduling Architecture for an Integrated Ser-
vices Packet Networks. Available via anonymous ftp from
ftp://ftp.parc.xerox.com/pub/archfin.ps, 1995.

[15] I. Stoica. Stateless Core: A Scalable Approach for Quality of Service
in the Internet. PhD thesis, Carnegie Mellon University, Pittsburgh,
PA, December 2000.

[16] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocations in High Speed
Networks. In Proceedings of ACM SIGCOMM’98, Sept 1998.

[17] I. Stoica and H. Zhang. Providing Guaranteed Services Without Per
Flow Management. In Proceedings of ACM SIGCOMM’99, Sept 1999.

[18] H. Zhang. Service Disciplines For Guaranteed Performance Service in
Packet-Switching Networks. Proceedings of the IEEE, 83(10), October
1995.

[19] H. Zhang and S. Keshav. Comparison of Rate-Based Service Disci-
plines. In Proceedings of ACM SIGCOMM, pages 113–121, August
1991.

[20] L. Zhang. VirtualClock: A New Traffic Control Algorithm for Packet
Switching Networks. In Proceedings of ACM SIGCOMM’90, pages
19–29, August 1990.

[21] Z.L. Zhang, Z. Duan, and Y.T. Hou. Virtual Time Reference System:
A Unifying Scheduling Framework for Scalable Support of Guarantees
Services. IEEE Journal on Selected Areas in Communication, Special
Issue on Internet QoS, Dec 2000.

A Proof of Theorem 1
Consider t1 = a1

f,1 and t2 = dk
f,H . Then

Wf,H(a1
f,1, d

k
f,H) =

∑k
i=1 l

i
f . Substituting into the through-

put bound, we get: dk
f,H ≤ a1

f,1 + Φ
rf

+
∑k

i=1
lif
rf

. Since

the source transmits at least at its reserved rate, EAT1(pk
f) =

a1
f,1 +

∑k−1
i=1

lif
rf

. Therefore, dk
f,H − EAT1(pk

f) ≤ Φ+lkf
rf

≤
Φ+lmax

f

rf
, for all k. Therefore, the network provides a delay

guarantee to flow f .

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

B Proof of Lemma 1

We refer to packets that are assigned re-used tags as future
packet. We assume that a future packet is removed from
the sequencer re-ordering buffers as soon as all packets with
smaller sequence numbers arrive.

Let B(t) denote the occupancy of the sequencer re-
ordering buffers of a flow f at time t. Let ti denote the time
instant at which the ith future packet is removed from these
buffers. For ease of analysis, we assume that even if all pack-
ets with smaller sequence numbers reach the sequencer be-
fore it, a future packet is still buffered and removed (in such
as scenario, at time instances t−i and ti respectively). Let t0
denote the initial time at which the source starts transmitting
packets, and B(t0) = 0. It follows that, B(ti) ≤ B(t−i) − 1
(more than one future packets may be removed from the
buffers at the same instant). The buffer occupancy in any time
interval [ti, ti+1) is non-decreasing with time (since no pack-
ets are removed in this interval). Therefore, the maximum
buffer occupancy in this interval is given by B(t−i+1).

Consider the first server (ingress node) at a time ti. Con-
sider all future packets transmitted by this server, that have
not departed the sequencer (by time ti). Of these, let b1 de-
note the future packet with the smallest sequence number.
Consider the set of all packets with smaller sequence num-
bers than packet b1, that have not yet (at ti) reached the se-
quencer. Among these, let p′ have the largest tag-vector—
then all of these packets would reach the sequencer at most
by time (FH(p′) + βf,H), and the packet b1 would not need
to be buffered after that.

Let t′ be the time at which packet p′ arrives at the first
server, and is assigned a tag-vector. Since all future packets
that have not departed the sequencer by time ti, have a larger
sequence number than p′, they are transmitted from the first
server after t′. Let B” be the total number of future pack-
ets that get transmitted from the first server in the interval
(t′, F1(p′)], with smaller tag-vectors than p′. Since p′ has not
reached the sequencer by ti, any future packets transmitted
after t′ with larger tag-vectors than p′ have also not reached
the sequencer. Hence, B(ti) ≤ B”, and B” is the maximum
number of future packets that would need to be buffered at the
sequencer before p′ gets delivered, that is, B(t−i+1) ≤ B”.

Due to source flow control, observe that: t′ ≥ F1(p′) −
W ∗ lf/rf . The number of distinct tag-vectors that lie in the

interval (t′, F1(p′)] is given by: W ′ =
⌊

(F1(p′))−−t′

lf /rf

⌋
≤ W −

1. Let Tmin denote a lower bound on the round-trip time—
the time difference between the transmission of a packet at
the first server and the arrival of its acknowledgment at the
first server. The maximum number of tags that can become
re-usable from the interval (t′, F1(p′)] after time t′, which is

an upper bound on B(t−i+1), is given by:

≤

W ′ + (W ′ − �kmin�) + ...+ (W ′ − �N ′kmin�),
if Tmin ≥ lf

rf⌊ 1
kmin

⌋
+

⌊ 2
kmin

⌋
+ . . .+

⌊
W ′

kmin

⌋
, if Tmin <

lf
rf

where kmin = T min

lf /rf
, and N ′ =

⌊
W ′−1
kmin

⌋
. The right-hand-

side of the above is an increasing function ofW ′. SinceW ′ ≤
W − 1,

B(t−i+1) ≤

(N + 1)(W − 1) − (N)(N + 1)kmin

2 ,

if Tmin ≥ lf
rf

W (W−1)
2kmin , if Tmin <

lf
rf

where N =
⌊

W−2
kmin

⌋
. Since this upper bound on B(t−i+1) is

independent of i, it is an upper bound on the maximum buffer
occupancy in all time intervals [ti, ti+1), i ≥ 0. Therefore, if
the provisioned buffer space, B, is at least as large as given
by this upper bound, no packets are lost at the sequencer re-
ordering buffers.

C Condition on W to Allow Large
Throughput to be Achieved

Suppose r′ > rf is the bottleneck bandwidth available to the
flow f at time t0 (and thereafter). Without loss of generality,
assume that the first server is the bottleneck server7. We de-
rive a condition onW such that if there is only a single packet
at the bottlenecked first server (and in the network) at a time
t0, then there continues to be at least one packet at the bot-
tlenecked server at all future times (given that the source has
packets to transmit). If this is the case, then the bottleneck
bandwidth available to flow f is not wasted.

Suppose packet p1
f arrives at the server queue at time

t0. Then it can be shown that packet pk
f , (where packets

p1
f , . . . , p

k
f are transmitted back-to-back) would incur a max-

imum delay of (
∑H−1

j=1 πj +
∑H

j=1 βf,j +(H+k−1)∗ lf/r′)
before it departs from the network. The acknowledgment for
packet pk

f would reach the ingress node after an additional de-
lay of at most Dmax. The corresponding S1 of this packet at
the ingress node would be S1(pk

f) = t0+(k−1)lf/rf . There-
fore, the tag-vector of packet pk

f would definitely be avail-

able for re-use at the first server, if k satisfies:
∑H−1

j=1 πj +
∑H

j=1 βf,j +(H+k−1)∗ lf/r′ +Dmax ≤ (k−1)∗ lf/rf .
This implies:

k ≥
∑H−1

j=1 πj +
∑H

j=1 βf,j +Dmax +H ∗ lf
r′

lf
rf

− lf
r′

+ 1 (9)

7Suppose this is not the case. Then even if the first server transmits pack-
ets once only every lf /r′ time units, the bottleneck server will remain back-
logged.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Now observe that, if the bottlenecked first server remains
backlogged till the time the acknowledgment for pk

f arrives,
then the subsequent acknowledgments (spaced lf/r

′ apart)
clock the transmission of new packets, and the bottleneck
server, that transmits a packet every lf/r

′ units, would re-
main backlogged subsequently.

Further, due to source flow control, the tags for packet pk
f

would become available for re-use at most by the time W +
mk packets arrive for transmission at the first server after t0,
where mk is given by the term:
⌊∑H−1

j=1 πj +
∑H

j=1 βf,j + (H + k − 1) lf
r′ +Dmax

lf/rf

⌋
(10)

Therefore, if the time it takes for the first server to transmit
W + mk packets at the rate r′, is at least as large as the
maximum time it takes for the acknowledgment of packet
pk

f to arrive after t0, the first server always remains back-
logged with packets to transmit. That is, the following condi-
tion would ensure that the server remains continuously back-
logged: (W +mk)∗ lf

r′ ≥
∑H−1

j=1 πj +
∑H

j=1 βf,j +Dmax +

(H + k − 1) ∗ lf
r′ . From (9) and (10), this yields:

(W − 1)lf ≥ r′(
H−1∑

j=1

πj +
H∑

j=1

βf,j +Dmax) +H lf (11)

If, on the other hand,W does not satisfy condition (11) for the
available bottleneck bandwidth r′, then it can be seen, using
a similar argument as above, that the throughput rate that the
source can sustain, Rmax(W, r′), is given by:

� rf +

(
1 − rf

r′

)
(W − 1) ∗ l

∑H−1
j=1 πj +

∑H
j=1 βf,j +Dmax +H ∗ lf

r′

D Proof of Lemma 2
In the following, a non-preemptive scheduling algorithm is
one that does not preempt the transmission of a lower priority
packet even after a higher priority packet arrives. On the other
hand, a preemptive scheduling algorithm always ensures that
the packet in service is the packet with the highest priority
by possibly preempting the transmission of a lower priority
packet. A non-preemptive algorithm is considered equivalent
to a preemptive algorithm if the priority assigned to all the
packets is the same in both. The following lemma is stated
and proved in [8].

Lemma 3 If PS is a work conserving preemptive schedul-
ing algorithm, NPS its equivalent non-preemptive schedul-
ing algorithm and the priority assignment of a packet is not
changed dynamically, then

LNPS(pk) − LPS(pk) ≤ lmax

C

where LPS(pk) and LNPS(pk) denote the time a packet
leaves the server when PS and NPS scheduling algorithms
are employed, respectively. Also, lmax is the maximum length
of a packet and C is the capacity of the server.

Lemma 4 If the jth server’s capacity is not exceeded, then
the time at which packet pk

f departs a Preemptive CSGT

server, denoted by Lj
PCSGT (pk

f), is

Lj
PCSGT (pk

f) ≤ Fj(pk
f) j ≥ 1 (12)

Proof: Let Sj(pk
f) = Fj(pk

f) − lkf/rf . At server j, define
the quantity Rf,j(t) for flow f as follows:

=
{

rf if ∃k � (ak
f,j ≤ t) ∧ (Sj(pk

f) < t ≤ Fj(pk
f))

0 otherwise
(13)

Let S be the set of flows served by server j. Then server j
with capacity Cj is defined to have exceeded its capacity at
time t if

∑
n∈S Rn,j(t) > Cj . Let Kf,j(t1, t2) be the set of

all flow f packets that arrive at server j in interval [t1, t2] and
have deadlines no greater than t2. For packet pk

f , let T k
f,j =

Fj(pk
f) − max (ak

f,j , Sj(pk
f)). The proof of Lemma 4 is by

induction on j.
Base Case : j = 1. From (2) and (5), we have: F1(pk

f) ≥
ak

f,1 + lkf/r
k
f . Then it can be observed from (4) and (13) that:

∫ t2

t1

Rf,1(t)dt =
∑

i∈Kf (t1,t2)

(ri
f,1 ∗ T i

f,1)

≥
∑

i∈Kf (t1,t2)

(ri
f,1 ∗

lif
ri
f

) ≥
∑

i∈Kf (t1,t2)

lif

Therefore, the cumulative length of all flow f packets that
arrive in interval [t1, t2] and have deadline value no greater
than t2, denoted by APf (t1, t2), is given as APf (t1, t2) ≤∫ t2

t1
Rf,1(t)dt.

We now prove the lemma by contradiction. Assume that
for packet pk

f , L1
PCSGT (pk

f) > F1(pk
f). Also, let t0 be

the beginning of the busy period in which pk
f is served and

t2 = F1(pk
f). Let t1 be the least time less than t2 dur-

ing the busy period such that no packet with deadline value
greater than t2 is served in the interval [t1, t2] (it can be
shown that such a t1 exists). Clearly, all the packets served
in the interval [t1, t2] arrive in this interval (else they would
have been served earlier than t1) and have deadline value
less than or equal to t2. Since the server is busy in the in-
terval [t1, t2] and packet pk

f is not serviced by t2, we have:∑
f∈S APf (t1, t2) > C1(t2 − t1). Since APf (t1, t2) ≤

∫ t2
t1
Rf,1(t)dt, we have:

∫ t2

t1

∑

f∈S

Rf,1(t)dt > C1(t2 − t1) (14)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Since the server capacity is not exceeded,
∑

f∈S Rf,1(t) ≤
C1. Hence,

∫ t2
t1

∑
f∈S Rf,1(t)dt ≤ C1(t2 − t1). This contra-

dicts (14) and hence the base case is proved.
Induction Hypothesis : Assume (12) holds for 1 ≤ j ≤ m.
Induction Step : We will show that (12) holds for 1 ≤ j ≤
m+ 1.
From (3) and the Induction Hypothesis, we get: Fm+1(pk

f) ≥
ak

f,m+1 + lkf/r
k
f . The induction step can now be proved in

exactly the same manner as the base case. Therefore, from
induction, the lemma follows.

Since Preemptive CSGT is work conserving and does not
dynamically change the priority of a packet, Lemma 2 follows
immediately from Lemma 4 and Lemma 3.

E Proof of Theorem 2
Since Dmax is the maximum latency after which a packet
from the egress node reaches the ingress node, the following
condition is sufficient to ensure that the tags of packet pk

f will
be reused by the ingress node:

dk
f,H +Dmax ≤ F1(pk

f) −
lkf
rf

(15)

Consider any tag value F at the last server H . Let kF denote
the sequence number of the last packet that is ever assigned
the deadline tag F at server H . Then the departure time of
packet pkF

f from the last server, dkF

H , must not satisfy con-
dition (15)—otherwise, tag F would be re-used for another
packet, and pkF

f does not qualify to be the last packet to be
assigned the tag F . We therefore have:

F − dkF

H < Dmax +
lkF

f

rkF

f

+
H−1∑

j=1

(βf,j + πj + max
1≤i≤kF

lif
rf

)

Let T̂ be the upper bound on the right hand side of the above
for all F . That is, for a source with equal-sized packets, let
T̂ = Dmax +H

lf
rf

+
∑H−1

j=1 πj +
∑H−1

j=1 βf,j .

Now consider any time interval (t1, t2). From the def-
inition of T̂ , we know that given any F ≥ (t1 + T̂) that
has been assigned as a deadline tag at the last server H , at
least one packet with this tag F will be delivered after time
t1 (this is true even for t1 = a1

f,1, since F1(p1
f) ≤ a1

f,1 + T̂).
Further, from Lemma 2, we know that any packet with an as-
signed deadline tagF will be delivered no later than F+βf,H .
Therefore, for every F ∈ [t1 + T̂ , t2 − βf,H] that has been
assigned as a tag to any packet, at least one packet with that
deadline tag will depart the last server in the time interval
(t1, t2). Let B(t0, t) represent the total number of bits in
packets that are last assigned deadlines that lie in any time
interval (t0, t]. Then, Wf,H(t1, t2) ≥ B(t1 + T̂ , t2 − βf,H).

Let t3 = t1 + T̂ and t4 = t2 − βf,H . Let t′3 ≥ t3 be the
smallest time instant that coincides with a deadline—let the

corresponding packet be pk3
f . Let t′4 ≤ t4 be the largest time

instant that coincides with a deadline—let the corresponding
packet be pk4

f . Then, since the source transmits at least at its
reserved rate, the total number of bits in packets with deadline
in the range (t′3, t

′
4) is given by: B(t′3, t

′
4) = rf (t′4 − t′3).

Now note that t′3 < t3 + lf/rf . This is so because oth-
erwise, F (pk3−1

f) ∈ [t3, t′3), which violates the definition
of t′3. Similarly, t′4 > t4 − lf/rf . This is so because oth-
erwise, F (pk4+1

f) ∈ (t′4, t4], which violates the definition
of t′4. Therefore, we have: t′4 − t′3 > (t4 − t3) − 2lf/rf .
Therefore, we get: Wf,H(t1, t2) ≥ B(t3, t4) ≥ B(t′3, t

′
4) =

rf (t′4 − t′3) > rf (t4 − t3) − 2lf . This implies,

Wf,H(t1, t2) > rf (t2 − t1) − rf ∗Dmax −

rf

(H + 2)
lf
rf

+
H−1∑

j=1

πj +
H∑

j=1

βf,j

Next, consider a time instant t5 ∈ (t3, t4) that coincides with
a deadline tag at the last server. Let pk5

f be the last packet that

is assigned the deadline t5. Then pk5
f is received at the se-

quencer in the interval (t1, t2). If pk5
f is not a future packet, it

departs the sequencer (for simplicity, we assume that packets
depart the sequencer instantly). If not, it has to be buffered
till all packets with smaller sequence numbers reach the se-
quencer as well. Among all these packets with smaller se-
quence numbers than pk5

f , let p′ have the largest deadline (if
there are more than one such packets, let p′ be the last packet
to be assigned that deadline).

Packet pk5
f arrives for transmission at the first server latest

by F1(pk5
f) − lk5

f /rf . Let t′ be the time at which p′ arrives
for transmission at the first server. Since p′ has a smaller se-
quence number than pk5

f , t′ < F1(pk5
f) − lk5

f /rf . Further,
due to source flow control, F1(p′) ≤ t′ +W ∗ lf/rf . There-
fore, F1(p′) < F1(pk5

f) + (W − 1) ∗ lf/rf ⇒ FH(p′) <
t5 + (W − 1) ∗ lf/rf .

Since p′ is guaranteed to be delivered at the sequencer by
FH(p′) + βf,H , pk5

f will also be delivered by this time. This

implies that, for any deadline in the interval (t1 + T̂ , t2 −
βf,H − (W − 1) ∗ lf/rf), the last packet to be assigned
that deadline will depart the sequencer in the time interval
(t1, t2). Therefore, the number of bits that depart the se-
quencer in the time interval (t1, t2), W

app
f (t1, t2), is given

by: W app
f (t1, t2) ≥ B(t3, t4 − (W − 1) ∗ lf

rf
) ≥ B(t′3, t

′
4 −

(W − 1) ∗ lf
rf

) > rf (t4 − t3) − 2rf
lf
rf

− (W − 1)lf . This
implies,

W app
f (t1, t2) > rf (t2 − t1) − rf ∗Dmax −W ∗ lf

−rf

(H + 1)
lf
rf

+
H−1∑

j=1

πj +
H∑

j=1

βf,j

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

