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Abstract – In this paper, we develop failure-resilient tech-
niques for monitoring link delays and faults in a Service Provider
or Enterprise IP network. Our two-phased approach attempts
to minimize both the monitoring infrastructure costs as well as
the additional traffic due to probe messages. In the first phase
of our approach, we compute the locations of a minimal set
of monitoring stations such that all network links are covered,
even in the presence of several link failures. Subsequently, in
the second phase, we compute a minimal set of probe messages
that are transmitted by the stations to measure link delays and
isolate network faults. We show that both the station selection
problem as well as the probe assignment problem are NP-hard.
We then propose greedy approximation algorithms that achieve
a logarithmic approximation factor for the station selection
problem and a constant factor for the probe assignment problem.
These approximation ratios are provably very close to the best
possible bounds for any algorithm.

Keywords – Latency and Fault monitoring, Network Fail-
ures, Set Cover Problem, Approximation algorithms.

I. INTRODUCTION

The demand for sophisticated tools for monitoring network
utilization and performance has been growing rapidly as
Internet Service Providers (ISPs) offer their customers more
services that require quality of service (QoS) guarantees,
and as ISP networks become increasingly complex. Tools
for monitoring link delays and faults in an IP network are
critical for numerous important network management tasks,
including providing QoS guarantees to end applications (e.g.,
voice over IP), traffic engineering, ensuring service level
agreement (SLA) compliance, fault and congestion detection,
performance debugging, network operations, and dynamic
replica selection on the Web. Consequently, there has been a
recent flurry of both research and industrial activity in the area
of developing novel tools and infrastructures for measuring
network parameters.

Existing network monitoring tools can be divided into two
categories. Node-oriented tools collect monitoring information
from network devices (routers, switches and hosts) using
SNMP/RMON probes [5] or the Cisco NetFlow tool [6]. These
are useful for collecting statistical and billing information,
and for measuring the performance of individual network
devices (e.g., link bandwidth usage). However, in addition to
requiring monitoring agents to be installed at every device,

these tools cannot monitor network parameters that involve
several components, like link or end-to-end path latency. The
second category contains path-oriented tools for connectivity
and latency measurement like ping, traceroute [11],
skitter [12] and tools for bandwidth measurement such
as pathchar [13], Cprobe [14], Nettimer [15] and
pathrate [16]. As an example, skitter sends a sequence
of probe messages to a set of destinations and measures the
latency of a link as the difference in the round-trip times of
the two probes to the endpoints of the link. A benefit of path-
oriented tools is that they do not require special monitoring
agents to be run at each node. However, a node with such a
path-oriented monitoring tool, termed a monitoring station,
is able to measure latencies and monitor faults for only a
limited set of links in the node’s routing tree (e.g., shortest
path tree). Thus, monitoring stations need to be deployed at
a few strategic points in the ISP or Enterprise IP network so
as to maximize network coverage while minimizing hardware
and software infrastructure costs, as well as maintenance costs
for the stations.

A. Related Work

The need for low-overhead network monitoring has
prompted the development of new monitoring platforms. The
IDmaps [8] project produces “latency maps” of the internet
using special measurement servers called tracers that contin-
uously probe each other to determine their distance. These
times are subsequently used to approximate the latency of
arbitrary network paths. Different methods for distributing
tracers in the internet are described in [9], one of which
is to place them such that the distance of each network
node to the closest tracer is minimized. A drawback of the
IDMaps approach is that latency measurements may not be
too accurate. Essentially, due to the small number of paths
actually monitored, it is possible for errors to be introduced
when round-trip times between tracers are used to approximate
arbitrary path latencies. Recently, in [7], the authors propose a
monitoring scheme where a single network operations center
(NOC) performs all the required measurements. In order to
monitor links not in its routing tree, the NOC uses the IP
source routing option to explicitly route probe packets along
the link. Unfortunately, due to security problems, many routers
frequently disable the IP source routing option. Consequently,
approaches that rely on explicitly routed probe packets for
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delay and fault monitoring may not be feasible in today’s ISP
and Enterprise environments.

In other recent work on monitoring, [10] proposes to solve a
linear system of equations to compute delays for smaller path
segments from a given a set of end-to-end delay measurements
for paths in the network. Similarly, [2] considers the problem
of inferring link-level loss rates and delays from end-to-end
multicast measurements for a given collection of trees. Finally,
[4] studies ways to minimize the monitoring communication
overhead for detecting alarm conditions due to threshold
violations.

The problems studied in [18], [1] are most closely related to
our work. [18] considers the problem of fault isolation in the
context of large multicast distribution trees. The schemes in
[18] achieve efficiency by having each receiver monitor only
a portion of the path (in the tree) between it and the source,
but require receivers to have some monitoring capability (e.g.,
the ability to do multicast traceroute). In contrast, in our
approach, only the monitoring stations (or sources) transmit
probe messages, and network nodes are assumed to have very
limited support for monitoring. [1] focuses on the problem
of determining the minimum cost set of multicast trees that
cover links of interest in a network, which is similar to the
station selection problem tackled in this paper. However, there
are some significant differences. For instance, [1] does not
consider network failures, or issues like minimizing the mon-
itoring overhead due to probe messages. Also, our problem of
selecting the minimum number of monitoring stations whose
routing trees cover links of interest is more restrictive than the
link covering problem tackled in [1] since routing trees usually
are more constrained (e.g., shortest path trees) than multicast
trees.

B. Our Contributions

Most of the infrastructures for monitoring described above
suffer from three major drawbacks: (1) The systems do not
guarantee that all links of interest in the network are moni-
tored, especially in the presence of network failures, (2) The
systems have limited support for accurately pinpointing the
location of a fault when a network link fails, and (3) The
systems pay little attention to minimizing the overhead (due
to additional probe messages) imposed by monitoring on the
underlying production network. In this paper, we propose a
novel two-phased approach for fully and efficiently monitoring
link latencies and faults in an ISP or Enterprise IP network,
using path-oriented tools. Our schemes are failure-resilient,
and ensure complete coverage of measurements by selecting
monitoring stations such that each network link is always in
the routing tree of some station. Our methods also reduce
the monitoring overhead which consists of two costs: the
infrastructure and maintenance costs associated with monitor-
ing stations, and the additional network traffic due to probe
packets. Minimizing the latter is especially important when
information is collected frequently (e.g., every 15 minutes) in
order to continuously monitor the state and evolution of the
network.

In the first phase of our approach, we compute a minimal
set of monitoring stations (and their locations) that always
cover all links in the network, even if some links were to fail.
Subsequently, in the second phase, we compute the minimal
set of probe messages transmitted by each station such that the
latency of every network link can be measured, and every link
failure can be detected. The main contributions of our work
can be summarized as follows.

• Novel algorithms for Station Selection. We show that
the problem of computing the minimum set of stations
whose routing trees cover all network links is NP-hard.
The station selection problem maps naturally to the set
cover problem [3], and thus a polynomial-time greedy
algorithm yields a solution that is within a logarithmic
factor of the optimal. Further, using sophisticated re-
ductions from set cover, we are able to prove that the
logarithmic factor is indeed a lower bound on the degree
of approximation achievable by any algorithm. In the
presence of network failures, we show that the station
selection problem maps to a variant of the set cover
problem, which we again solve using a greedy algorithm,
while guaranteeing a logarithmic approximation ratio.

• Novel algorithms for Probe Assignment. We show that
the problem of computing the optimal set of probe mes-
sages for measuring the latency of network links is NP-
hard. We devise a polynomial-time greedy algorithm that
computes a set of probes whose cost is within a factor of 2
of the optimal solution. Again, this approximation factor
is very close to the best possible approximation result.
Finally, we show how our framework for monitoring link
latencies can also be extended to monitor link failures
with a near-optimal number of probe messages.

The remainder of this paper is organized as follows. Sec-
tion II presents the network model and a description of
the network monitoring framework is given in Section III.
Section IV describe our design for link monitoring systems
and we extend this design with fault detection mechanism in
Section V. Then, Section VI presents a robust link monitoring
system that is resilience to several failures and we conclude
this work in Section VII.

II. NETWORK MODEL

We model the Service Provider or Enterprise IP network
by an undirected graph G(V,E), where the graph nodes, V ,
denote the network routers and the edges, E, represent the
communication links connecting them. The number of nodes
and edges is denoted by |V | and |E|, respectively. Further, we
use Ps,t to denote the path traversed by an IP packet from a
source node s to a destination node t. In our model, we assume
that packets are forwarded using standard IP forwarding, that
is, each node relies exclusively on the destination address in
the packet to determine the next hop. Thus, for every node
x ∈ Ps,t, Px,t is included in Ps,t. In addition, we also assume
that Ps,t is the routing path in the opposite direction from
node t to node s. This, in turn, implies that, for every node
x ∈ Ps,t, Ps,x is a prefix of Ps,t. As a consequence, it follows
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that for every node s ∈ V , the subgraph obtained by merging
all the paths Ps,t, for every t ∈ V , must have a tree topology.
We refer to this tree for node s as the routing tree (RT) for
s, and denote it by Ts. Note that tree Ts defines the routing
paths from node s to all the other nodes in V and vice versa.

Observe that for a Service Provider network consisting of
a single OSPF area, the RT Ts of node s is its shortest path
tree. However, for networks consisting of multiple OSPF areas
or autonomous systems (that exchange routing information
using BGP), packets between nodes may not necessarily
follow shortest paths. In practice, the topology of RTs can
be calculated by querying the routing tables of nodes.

In case a link f in the network fails, the IP routing protocols
define a new delivery tree, Ts,f , for every node s ∈ V 1. The
new tree Ts,f has the property that every path Ps,t in Ts,
t ∈ V , that does not contain link f is also included in the
tree Ts,f . The reason for this is that the failure of link f
only affects those routing paths in Ts that contain f . Thus, it
may be possible to infer the topology of a significant portion
of Ts,f directly from Ts without any knowledge of the route
computation algorithms followed by the routers. Note that if
f �∈ Ts, then Ts,f = Ts.

We associate a positive cost cs,t with sending a message
along the path Ps,t between any pair of nodes s, t ∈ V . For
every intermediate node x ∈ Ps,t both cs,x and cx,t are at
most cs,t and cs,x + cx,t ≥ cs,t. Typical examples of this cost
model are the fixed cost model, where all messages have the
same cost, and the hop count model, where the message cost
is the number of hops in its route. Moreover, we denote by
hs,t the number of hops in path Ps,t.

III. DELAY MONITORING FRAMEWORK

In this section, we describe our methodology for complete
measurement of round-trip latency of network links in an
IP network. Our proposed framework can also be extended
to detect link failures as well as be resilient to them; we
discuss these extensions in more detail in Sections V and
VI, respectively. For monitoring the round-trip delay of a
link e ∈ E, a node s ∈ V such that e belongs to s’s RT
(i.e., e ∈ Ts), must be selected as a monitoring station. Node s
sends two probe messages2 to the end-points of e, which travel
almost identical routes except for the link e. Upon receiving
a probe message, the receiver replies immediately by sending
a probe reply message to the monitoring station. Thus, the
monitoring station s can calculate the round-trip delay of the
link by measuring the difference in the round-trip times of the
two probe messages (see also the skitter tool [12]).

From the above description, it follows that a monitoring
station can only measure the delays of links in its RT.
Consequently, a monitoring system designated for measuring
the delays of all network links has to find a set of monitoring
stations S ⊆ V and a probe assignment A ⊂ {m(s, u)|s ∈

1This typically takes a few seconds to a few tens of seconds depending on
the IP routing protocol parameter settings.

2The probe messages are implemented by using ”ICMP ECHO RE-
QUEST/REPLY” messages similar to ping.

S, u ∈ V }, where each message m(s, u) represents a probe
message that is sent from the monitoring station s to node
u. The set S and the probe assignment A are required to
satisfy two constraints: (1) A covering set constraint that
guarantees that all links are covered by the RTs of the nodes
in S, i.e.,

⋃
s∈S Ts = E, and (2) A covering assignment

constraint which ensures that for every edge e = (u, v) ∈ E,
there is a node s ∈ S such that e ∈ Ts and A contains
the messages m(s, u) and m(s, v)3. The covering assignment
constraint essentially ensures that every link is monitored by
some station. A pair (S,A) that satisfies the above constraints
is referred to as a feasible solution. Note that although we
only consider the problem of monitoring all network links in
this paper, our results also apply to the problem of monitoring
only a subset of links of interest.

The overhead of a monitoring system consists of two
components, the overhead of installing and maintaining the
monitoring stations, and the communication cost of sending
probe messages. In practice, it is preferable to have as few
stations as possible since this reduces operational costs, and
so we adopt a two-phased approach to optimizing monitoring
overheads. In the first phase, we select an optimal set of
monitoring stations, while in the second, we compute the
optimal probes for the selected stations. An optimal station
selection S is one that satisfies the covering set requirement
while simultaneously minimizing the number of stations. After
selecting the monitoring stations S, an optimal probe assign-
ment A is one that satisfies the covering assignment constraint
and minimizes the sum

∑
m(s,v)∈A cs,v . Note that choosing

cs,v = 1 essentially results in an assignment A with the
minimum number of probes while choosing cs,v to be the hop
distance, hs,v, yields a set of probes that traverse the fewest
possible network links.

A final component of our monitoring infrastructure is the
network operations center (NOC) which is responsible for
coordinating the actions of the set of monitoring stations S.
The NOC queries network nodes to determine their RTs, and
subsequently uses these to compute a near-optimal set of
stations and a probe assignment for them, as described in the
following section. In Section V, we extend our proposed mech-
anisms to also detect link failures, and finally in Section VI,
we present a link monitoring system that is resilient to multiple
link failures.

IV. DELAY MONITORING ALGORITHMS

In this section, we present polynomial-time approxima-
tion algorithms for solving the station selection and probe
assignment problems, for a scenario that does not consider
network link failures. After showing both problems to be
NP-hard, we develop a ln(|V |)-approximation algorithm for
station selection, and a 2-approximation algorithm for probe
assignment.

3If one of the endpoints of e = (u, v) is in S, say u ∈ S, then A is only
required to contain the probe m(u, v).
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(b) The graph GR(I)(V,E).
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Fig. 1. The graph GR(I)(V, E) for the given instance of the SC problem.

A. An Efficient Station Selection Algorithm

We are interested in solving the problem of covering all
graph edges with a small number of RTs.

Definition 1 (The Link Monitoring Problem - LM): Given
a graph G(V,E) and a RT, Tv , for every node v ∈ V , find
the smallest subset S ⊆ V such that

⋃
v∈S Tv = E. �

Due to space constraints, we only consider the unweighted
version of the LM problem. However, our results can be easily
extended to the weighted version of the problem, where each
node has an associated cost, and we seek a set S ⊆ V that
minimizes the total cost of the monitoring stations in S. The
latter can be used, for instance, to find a station selection when
monitoring stations can be installed only at a restricted set of
nodes. For restricting the station selection, nodes that cannot
support monitoring stations are assigned infinite cost. The LM
problem is similar to the set cover (SC) problem, which is a
well-known NP-hard problem. In an instance I(Z,Q) of the
SC problem, Z = {z1, z2, · · · , zm} is a universe of m elements
and Q = {Q1, Q2, · · · , Qn} is a collection of n subsets of Z
(assume that

⋃
Q∈Q Q = Z). The SC problem seeks to find

the smallest collection of subsets S ⊆ Q such that their union
contains all the elements in Z, i.e.,

⋃
Q∈S Q = Z.

A.1. The Hardness of the LM Problem

Theorem 1: The LM problem is NP-hard, even when the
RT of each node is restricted to be its shortest path tree.
Proof: We show that the LM problem is NP-hard by presenting
a polynomial reduction from the set cover problem to the LM
problem. Consider an instance I(Z,Q) of the SC problem.
Our reduction R(I) constructs the graph GR(I)(V,E) where
the RT of each node v ∈ V is also its shortest path tree. For
determining these RTs, each edge is associated with a weight4,
and the graph contains the following nodes and edges. For
each element zi ∈ Z, it contains two connected nodes ui and
wi. For each set Qj ∈ Q, we add a node, labeled by sj , and
the edges (sj , ui) for each element zi ∈ Qj . In addition, we
use an auxiliary structure, termed an anchor clique x, which
is a clique with three nodes, labeled by x(1), x(2) and x(3),
and only node x(1) has additional incident edges. For each
element zi ∈ Z, the graph GR(I) contains one anchor clique

4These weights do not represent communication costs.

(a) The RT of node
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r(1)

(b) The RT of node x2
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Fig. 2. The RTs of nodes r(2), x
(2)
2 and s1.

xi whose attachment point, x(1)
i , is connected to the nodes ui

and wi. The weights of all the edges described above is 1.
Finally, the graph GR(I) contains an additional anchor clique
r that is connected to the remaining nodes and anchor cliques
of the graph, and the weights of these edges is 1 + ε. An
example of such a graph is depicted in Figure 1 for an instance
of the SC problem with 3 elements {z1, z2, z3} and two sets
Q1 = {z1, z2} and Q2 = {z2, z3}. Moreover, we assume that
the RT, Tv , of every node v ∈ V is its shortest path tree.

We claim that there is a solution of size k to the given SC
problem if and only if there is a solution of size k+m+1 to the
LM instance defined by the graph GR(I)(V,E). We begin by
showing that if there is a solution to the SC problem of size k
then there exists a set S of at most k+m+1 stations that covers
all the edges in GR(I). Let the solution of the SC problem
consist of the sets Qi1 , . . . , Qik

. The set S of monitoring
stations contains the nodes r(2), x(2)

i (for each element zi ∈ Z)
and si1 , . . . , sik

. We show that the set S contains k + m + 1
nodes that cover all the graph edges. The tree Tr(2) covers
edges (r(1), r(2)), (r(2), r(3)), all edges (ui, r

(1)), (wi, r
(1)),

(x(1)
i , r(1)), (x(1)

i , x
(2)
i ), (x(1)

i , x
(3)
i ), for each element zi, and

the edges (sj , r
(1)) for every set Qj ∈ Q. An example of

such a Tr(2) is depicted in Figure 2-(a). Similarly, for every
zi ∈ Z, the RT T

x
(2)
i

covers edges (x(2)
i , x

(3)
i ), (x(2)

i , x
(1)
i ),

(x(1)
i , ui) and (x(1)

i , wi). Tx
(2)
i

also covers all edges (sj , ui)
for every set Qj that contains element zi, and edges (r(1), r(2))
and (r(1), r(3)). An example of the RT T

x
(2)
2

is depicted in
Figure 2-(b). Thus, the only remaining uncovered edges are
(ui, wi), for each element zi. Since Qij

, j = 1, . . . , k, is a
solution to the SC problem, these edges are covered by the
RTs Tsij

, as depicted in Figure 2-(c). Thus, S is a set of at
most k+m+1 stations that covers all the edges in the graph
GR(I).

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



S ← ∅, C ← Z
While C �= ∅ do

Q ← arg maxQv∈Q−S |Qv

⋂
C|

S ← S
⋃

{Q}
C ← C − Q

End While
Return S

Fig. 3. A formal description of the Greedy Algorithm.

Next, we show that if there is a set of at most k+m+1 stations
that covers all the graph edges then there is a solution for the
SC problem of size at most k. Note that there needs to be a
monitoring station in each anchor clique and suppose w.l.o.g
that the selected stations are r(2) and x

(2)
i for each element

zi. None of these m + 1 stations covers edges (ui, wi) for
elements zi ∈ Z. The other k monitoring stations are placed
in the nodes ui, wi and sj . In order to cover edge (ui, wi),
there needs to be a station at one of the nodes ui, wi or sj

for some set Qj containing element zi. Also, observe that the
RTs of ui and wi cover only edge (ui, wi) for element zi and
no other element edges. Similarly, the RT of sj covers only
edges (ui, wi) for elements zi contained in set Qj . Let S be
a collection of sets defined as follows. For every monitoring
station at any node sj add the set Qj ∈ Q to S, and for
every monitoring station at any node ui or wi we add to S
an arbitrary set Qj ∈ Q such that zi ∈ Qj . Since the set of
monitoring stations cover all the element edges, the collection
S covers all the elements of Z, and is a solution to the SC
problem of size at most k. �

The above reduction R(I) from the SC problem can be
extended to derive a lower bound for the best approximation
ratio achievable by any algorithm (see [17] for proof).

Theorem 2: The lower bound of any approximation algo-
rithm for the LM problem is 1

2 · ln(|V |).

A.2. A Greedy Algorithm for the LM Problem

We now present an efficient algorithm for solving the LM
problem. The algorithm maps the given instance of the LM
problem, involving graph G(V,E), to an instance of the SC
problem, and then uses a greedy heuristic for solving the
SC instance. In the mapping, the set of edges E defines the
universe of elements Z, and the collection of sets Q includes
the subsets Qv = {e|e ∈ Tv} for every node v ∈ V . The
greedy heuristic, depicted in Figure 3, is an iterative algorithm
that selects, in each iteration, the set Q with the maximum
number of uncovered elements. According to [3], the greedy
algorithm is a (ln(∆) + 1)-approximation algorithm for the
SC problem, where ∆ is the size of the biggest subset. Thus,
since for the LM problem, every subset includes all the edges
of the corresponding RT and its size is exactly |V | − 1, we
have the following result.

Theorem 3: The greedy algorithm computes a (ln(|V |)+1)-
approximation for the LM problem.

Note that the worst-case time complexity of the greedy
algorithm can be shown to be O(|V |3).

2ww1 3w

11u

12u 13u

u21

22u 23u 33u32u

31u

2ww1 3w

11u

12u 13u

u21

22u 23u 33u32u

31u

r r
1

1+e 1+e1+e 1+e

1 1 1

Fig. 4. The RTs of nodes r and u13.

B. An Efficient Probe Assignment Algorithm

Once we have selected a set S of monitoring stations, we
need to compute a probe assignment A for measuring the
latency of network links. Recall from Section III that a feasible
probe assignment is a set of probe messages {m(s, u)|s ∈
S, u ∈ V }, where each m(s, u) represents a probe message
that is sent from station s to node u. Further, for every edge
e = (u, v) ∈ E, there is a station s ∈ S such that e ∈ Ts

and A contains the probes5 m(s, u) and m(s, v). The cost of
a probe assignment A is COSTA =

∑
m(s,u)∈A cs,u and the

optimal probe assignment is the one with the minimum cost.

B.1. The Hardness of the Probe Assignment Problem

In the following, we show that computing the optimal
assignment is NP-hard.

Theorem 4: Given a set of stations S, the problem of
computing the optimal probe assignment is NP-hard.
Proof: We show a reduction from the vertex cover problem,
which is defined as follows: Given k ∈ Z

+ and a graph Ĝ =
(V̂ , Ê), find a subset V ′ ⊆ V̂ containing at most k vertices
such that each edge in Ê is incident on a node in V ′. For
a graph Ĝ, we define an instance of the probe assignment
problem, and we show that there is a vertex cover of size
at most k for Ĝ if and only if there exists a feasible probe
assignment A with cost at most COSTA = 5 · |V̂ | + |Ê| + k.
We assume that the cost of any probe cs,u = 1, thus, COSTA
is the number of probes in A (the proof for cs,u = hs,u is
similar).

For a graph Ĝ, we construct the network graph G(V,E) and
set of stations S for the probe assignment problem as follows.
In addition to a root node r, graph G contains for each node
v̂i in Ĝ four nodes, wi, ui1, ui2 and ui3, connected by the
edges (wi, r), (wi, ui1), (ui1, ui2), (ui1, ui3) and (ui2, ui3).
Also, for every edge (v̂i, v̂j) in Ĝ, we add the edge (wi, wj)
to G. Figure 4 shows an example of the constructed G for the
graph Ĝ containing nodes v̂1, v̂2 and v̂3, and edges (v̂1, v̂2)
and (v̂2, v̂3). Finally, we assign a weight 1 + ε to each edge
(wi, wj) in G, while the remaining edges are assigned a weight
of 1. These weights are used only for determining the RTs that
in our reduction are the shortest path trees, and we assume that
there are monitoring stations at node r and nodes ui3 for each
vertex v̂i ∈ Ĝ. Figure 4 illustrates the RTs of nodes r and

5If s is one of the edge endpoints, say node v, then the probe m(s, v) is
omitted from A.
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u14. Note that edge (wi, wj) is only contained in the RTs of
ui3 and uj3, and (ui1, ui2) is not contained in the RT of ui3.

We first show that if there is a vertex cover V ′ of size
at most k for Ĝ, then there exists a feasible assignment
A containing no more than 5 · |V̂ | + |Ê| + k probes. For
measuring the latency of the five edges corresponding to
v̂i ∈ V̂ , A contains five probe messages: m(r, wi), m(r, ui1),
m(r, ui2), m(ui3, ui1) and m(ui3, ui2). So edges (wi, wj)
(corresponding to (v̂i, v̂j) ∈ Ê) are the only edges in G whose
latency still remains to be measured. Since V ′ is a vertex
cover of Ĝ, it must contain one of v̂i or v̂j . Suppose v̂i ∈
V ′. Then, A contains the following two probes m(ui3, wi)
and m(ui3, wj) for each edge (wi, wj). Because the probe
message m(ui3, wi) is common to the measurement of all
edges (wi, wj) corresponding to edges covered by v̂i ∈ V ′

in Ĝ, and size of V ′ is at most k, A contains at most
5 · |V̂ | + |Ê| + k probes messages.

We next show that if there is a feasible probe assignment A
containing at most 5 · |V̂ | + |Ê| + k probes, then there exists
a vertex cover of size at most k for Ĝ. Let V ′ consist of all
nodes v̂i such that A contains the probe m(ui3, wi). Since
each edge (wi, wj) is in the RTs of only ui3 and uj3, A must
contain one of m(ui3, wi) or m(uj3, wj), and thus V ′ must
be a vertex cover of Ĝ. Further, we can show that V ′ contains
at most k nodes. Suppose that this is not the case and V ′

contains more than k nodes. Then, A must contain greater than
k probes m(ui3, wi) for v̂i ∈ V̂ . Further, in order to measure
the latencies of all edges in E, A must contain 5 · |V̂ | + |Ê|
additional probes. Of these, |Ê| are needed for edges (wi, wj),
3 · |V̂ | for edges (ui3, ui1), (ui3, ui2) and (r, wi), and 2 · |V̂ |
for edges (ui1, ui2). A contains 2 probe messages for each
edge (ui1, ui2) because the edge does not belong to the RT of
ui3 and thus 2 probe messages (v, ui2) and (v, ui1), v �= ui3
are needed to measure the latency of edge (ui1, ui2). This,
however, leads to a contradiction since A would contain more
than 5 · |V̂ |+ |Ê|+ k probes. Thus V ′ must be a vertex cover
of size no greater than k. �
B.2. The Simple Probe Assignment Algorithm

We now describe a simple probe assignment algorithm that
computes an assignment whose cost is within a factor of 2 of
the optimal solution. Consider a set of monitoring stations S
and for every edge e ∈ E, let Se = {s|s ∈ S ∧ e ∈ Ts} be the
set of stations that can monitor e. For each edge e = (u, v) ∈
E, the algorithm selects as the monitoring station of e the
node se ∈ Se for which the cost cse,u + cse,v is minimum. In
case of ties (that is, multiple stations have the same cost), it
selects se to be the station with the minimum identifier among
the tied stations. Then, it adds the probe messages m(se, u)
and m(se, v) to A.

Theorem 5: The approximation ratio of the simple probe
assignment algorithm is 2.
Proof: For monitoring the delay of any edge e ∈ E, at least
one station s ∈ S must send two probe messages, one to each
endpoint of e. As a result, in any feasible probe assignment,
at least one probe message can be associated with each edge
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Fig. 5. The affect of a link failure on the monitoring system.

e. Let it be the message that is sent to the farthest endpoint
of e from the monitoring station. Let A∗ be the optimal probe
assignment and let s∗

e be the station that monitors edge e in
A∗. So, in A∗, the cost of monitoring edge e = (u, v) is
at least max{cs∗

e ,u, cs∗
e ,v}. Let se be the selected station for

monitoring edge e in the assignment A returned by the simple
probe assignment algorithm. se minimizes the cost cs,u +cs,v ,
for every s ∈ Se. Thus, cse,u + cse,v ≤ cs∗

e ,u + cs∗
e ,v ≤ 2 ·

max{cs∗
e ,u, cs∗

e ,v}. Thus, COSTA ≤ 2 · COSTA∗ . �
Note that the time complexity of the simple probe assign-

ment algorithm can be shown to be O(|S| · |V |2).

V. DELAY MONITORING WITH FAULT DETECTION

The probe-based delay monitoring system described in the
previous section can be extended to also detect network link
failures. Using probes to pinpoint network faults has several
advantages over monitoring routing protocol messages (e.g.,
OSPF LSAs) or using SNMP traps to indentify failed links.
First, probe-based techniques are routing protocol agnostic;
as a result, they can be used with a range of protocols
like OSPF, IS-IS, RIP etc. Second, SNMP trap messages
may be somewhat unreliable since they are transported using
UDP datagrams. The probe-based fault detection algorithms
proposed in this section can be used either stand-alone, or in
conjunction with SNMP traps, to build a robust infrastructure
for accurately pinpointing network faults.

Our probe-based methodology from the previous section,
while suitable for estimating link delays, may not be able to
identify failed network links (unless it is modified).

Example 1: Consider the graph G(V,E) depicted in Fig-
ure 5-(a), where each link is labeled with its weight. Let
S = {s1, s2} be the set of selected monitoring stations. The
RTs Ts1 and Ts2 are the shortest path trees rooted at nodes s1
and s2 as illustrated in Figures 5-(b) and 5-(c), respectively.
The simple probe assignment algorithm assigns all graph links
to be monitored by s1 except the links (s2, a) and (c, d)
which are monitored by s2. Note that s2 transmits two probes
m(s2, c) and m(s2, d) that traverse nodes a, b and c to measure
the latency of link (c, d). Now, consider the failure of link
(a, b) that causes the RTs of s1 and s2 to be modified as shown
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in Figure 5-(d)6. Specifically, the new RT for s1 contains the
link (s2, a) instead of (a, b), while the tree for s2 contains
links (s1, b) and (y, d) instead of (a, b) and (c, d). Clearly,
neither s1 nor s2 detects the failure of link (a, b), and further
since the probes m(s2, c) and m(s2, d) traverse a diverse set of
nodes ({s1, b} and {s1, x, y}, respectively), they are no longer
measure the latency of link (c, d). �

In this section, we extend our delay monitoring framework
to also detect link failures. Our proposed fault monitoring
infrastructure utilizes the same set of stations S used for
delay monitoring – thus, the stations in S cover all links in
the network. However, as shown above in Example 1, we
require a new set of probe messages for identifying failed
links (in addition to measuring link delays). In the following
subsections, we begin by first computing a near-optimal set
of probes for detecting the failure of a network link, and then
we describe an algorithm for accurately pinpointing the faulty
link based on probe results from the various stations. Note
that our methods can be easily extended to also handle node
failures.

A. Detecting a Network Link Failure

In our fault monitoring solution, probe messages use the
time-to-live (TTL) field of the IP header. The TTL field
provides an efficient way to bound the number of hops that an
IP packet traverses in its path [11]. Essentially, the TTL field of
an IP packet is initialized by the source node to the maximum
number of hops that the packet is allowed to traverse. Each
router along the path followed by the packet then decrements
the TTL value by one until it reaches zero. When a router
decrements the TTL field to zero, it discards the packet and
sends an ICMP “time expired” reply to the packet’s source
node7.

Now suppose that we would like link e = (u, v) ∈ Ts to be
monitored by station s ∈ S, and let node v be the node that
is further from s. Our strategy is to appropriately set the TTL
values in the two probe messages m(s, u) and m(s, v) that
measure link e’s delay, such that the probes can also detect
changes in Ts due to e’s failure. One straightforward option
is to simply set the TTL field of probe message m(s, v) to
hs,v, the hop distance in Ts between nodes s and v. This
guarantees that the probe message does not traverse more than
hs,v hops. Thus, a reply message from a node other than v
indicates a link failure along the path Ps,v in Ts. While this
observation enables us to detect some failures, it may miss
others, as illustrated in Example 2 below.

Example 2: Consider the graph in Example 1, and assume
a failure of the link (a, b) monitored by s1. The hop distances
from s1 to nodes a, b before the failure are hs1,b = 1 and
hs1,a = 2, and they remain the same after (a, b) fails. Thus,
s1 cannot detect the failure of link (a, b). �

6RTs typically adapt to failures in a few seconds or a few tens of seconds
depending on the IP routing protocol parameter settings.

7This method is used by the traceroute application for discovering
routers in the path between a given pair of nodes.

The above problem can be fixed by associating the same
destination address with the two probe messages for link
e = (u, v). Let m(s, t, h) denote the probe message sent by
source s to a destination node t with TTL value set to h.
Further, let Rm(s,t,h) be the node that replies to the probe
message. Assuming that node u is closer to station s than
node v, i.e., hs,u < hs,v , station s can monitor both the
delay as well as failure of link e by sending the following two
probes: m(s, v, hs,u) and m(s, v, hs,v). These messages have
the same destination, v, but they are sent by s with different
TTL values. Clearly, in the absence of failures, the reply for
the first message is sent by node u while the reply for the
second message is sent by node v, i.e., , Rm(s,v,hs,u) = u
and Rm(s,v,hs,v) = v. Thus, the difference in the round-trip
times of the two probes gives link e’s delay. Further, if link e
fails, then since u and v are no longer adjacent in the new RT
Ts,e for s, then at least one of these replies will be originated
by a different node. This means that either Rm(s,v,hs,u) �= u
or Rm(s,v,hs,v) �= v or both. Thus, the probe assignment A
essentially contains, for each edge e = (u, v), the probes
m(se, v, hse,u) and m(se, v, hse,v), where se ∈ Se is the
station for which cse,u + cse,v is minimum (ties are broken
in favor of stations with smaller identifiers). Further, if for
e = (u, v), Rm(se,v,hse,u) �= u or Rm(se,v,hse,v) �= v, then
station se informs the NOC that a network link has failed.

Revisiting Example 2, s1 sends probe messages m(s1, a, 1)
and m(s1, a, 2) to monitor link (a, b). In case link (a, b)
fails, then with the new RT for s1, Rm(s1,a,1) would be s2
instead of b, and so s1 would detect the failure of link (a, b).
The probe assignment A described above thus monitors all
network links for both delay as well as faults. Further, using
the same arguments of Theorem 5, we can prove that the cost
of assignment A is within a factor of 2 of the optimal probe
assignment.

Let Ps,e denote the path between station s and link e (and
including e) in Ts. While assignment A ensures that the failure
of a link e will be detected by the station s that monitors e, s
may not always be able to infer (by itself) whether the faulty
link is e or some other link in Ps,e. The reason for this is that
replies for the probe messages for link e may be affected by
the failure of a link f in Ps,e, and f may not be monitored by
s. Thus, s may be unable to conclude whether the erroneous
replies to e’s probes were caused by the failure of e or f .

Example 3: Consider the graph in Example 1 where station
s2 monitors links (s2, a) and (c, d), and s1 monitors the re-
maining links. Suppose that for probe m(s2, d, 3) that monitors
link (c, d), Rm(s2,d,3) is y instead of c. This could be the result
of the failure of either link (c, d) or (a, b). In both cases, the
new routing path from s2 to d traverses nodes s1, x and y.
Since s2 does not monitor link (a, b), it cannot conclude by
itself, which of links (a, b) or (c, d) have failed. �
In the following subsection, we present an algorithm for ac-
curately pinpointing the faulty link, in which each monitoring
station sends its failure information to the NOC.
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B. Identifying the Failed Link

As shown in Example 3, with probe assignment A, when
a link fails, the station monitoring the link detects the failure,
but may not always be able to accurately identify the location
of the failed link. However, station s can narrow down the
possible candidates to links in the path connecting it to the
failed link.

Lemma 1: If for link (u, v) monitored by station s,
Rm(s,v,hs,u) �= u or Rm(s,v,hs,v) �= v, then there is a failure
along the path Ps,v in Ts.
Proof: Suppose in contrast that there is no failure in the
path Ps,v . Thus, the messages m(s, u, hs,u) and m(s, v, hs,v)
traverse the paths Ps,u and Ps,v , and reply messages are sent
by nodes u and v, respectively. This contradicts the statement
of the lemma that Rm(s,v,hs,u) �= u or Rm(s,v,hs,v) �= v. �

In the remainder of this subsection, we show how Lemma 1
can be used to identify the faulty link after a monitoring station
s detects a failure. We assume a single link failure, since the
likelihood of multiple concurrent link failures within a short
time interval is very small. Let Es ⊆ E be the set of links
monitored by a station s ∈ S as a result of assignment A.
Since a link failure may affect the paths of multiple probe
messages sent by s, we denote by Fs ⊆ Es the set of links
(u, v) ∈ Es for which Rm(s,v,hs,u) �= u or Rm(s,v,hs,v) �= v.
When a station s concludes a failure, it computes the set Fs,
and then finds the link fs ∈ Fs closest to s. Thus, there is no
other link e ∈ Fs in the path Ps,fs

, and due to Lemma 1, the
faulty link must be included in this path.

Clearly, if all the links in Ps,fs
are in Es, then fs must be

the failed link since none of the other links in Ps,fs
are in Fs.

However, it is possible that some links in Ps,fs
are not in Es

(in Example 3, link (a, b) is not in Ps2,(c,d)). Thus, s cannot
conclude that fs is the failed link since a link in Ps,fs

−Es may
have failed. One option is for s to simply send additional probe
messages, m(s, v, hs,u) and m(s, v, hs,v) for monitoring every
link (u, v) ∈ Ps,fs

−Es. Station s can then declare the faulty
link to be the link (u′, v′) closest to it in Ps,fs

−Es for which
Rm(s,v′,hs,u′ ) �= u′ or Rm(s,v′,hs,v′ ) �= v′. With this technique,
s sends O(|V |) additional messages in the worst case. Further,
since the faulty link may be detected by multiple monitoring
stations, the total number of extra messages is O(|S| · |V |).

We now present a centralized approach for identifying the
faulty link at the system NOC, without sending additional
probe messages. In the NOC-based approach, each station
s that detects a failure transmits to the NOC a “FAULT
DETECTED” message containing the identity of link fs.
When the NOC receives the message it calculates the set Cs

of the potentially failed links detected by s as:

Cs = (Ps,fs
− Es)

⋃
{fs}

Note that the NOC may receive a FAULT DETECTED mes-
sage from more than one station, and for these stations Cs

will be non-empty. For the remaining stations, Cs = ∅. Once
the NOC has received the FAULT DETECTED message from
all stations that detected a failure, it computes the identity of

the faulty link by evaluating the following expression:

C =
⋂

Cs 	=∅

Cs −
⋃

Cs=∅

Es (1)

In the above equation, the second term prunes from the
candidate set, links that are monitored by stations which did
not detect failures.

Example 4: Consider the graph in Example 1 where sta-
tion s2 monitors links (s2, a) and (c, d), and s1 monitors
the remaining links. Suppose that link (a, b) fails. Both s1
and s2 detect a failure, and send to the NOC FAULT DE-
TECTED messages containing links (a, b) and (c, d), respec-
tively. The NOC calculates the sets Cs1 = {(a, b)} and Cs2 =
{(a, b), (b, c), (c, d)}, and computes the set C = Cs1 ∩Cs2 =
{(a, b)}, that contains only the failed link. �
We next prove that C indeed contains a single element which
is the failed link.

Lemma 2: In assignment A, let e1, e2 ∈ E be a pair of links
monitored by two different stations s1, s2 ∈ S, respectively.
If e1 ∈ Ps2,e2 , then e2 �∈ Ps1,e1 .
Proof: Suppose that e2 ∈ Ps1,e1 . Without loss of generality,
let s1 have a smaller identifier than s2. Also, for station s and
edge e = (u, v), let cs,e = cs,u+cs,v . Now since e2 is closer to
s1 than e1 in Ts1 , we conclude that cs1,e2 ≤ cs1,e1 . Link e1 is
monitored by s1 and not s2; therefore, cs1,e1 ≤ cs2,e1 . Because
e1 ∈ Ps2,e2 , we get that cs2,e1 ≤ cs2,e2 . Thus, it follows that
cs1,e2 ≤ cs2,e2 , and since s1 has a smaller identifier, e2 must
be monitored by s1, which leads to a contradiction. �

Theorem 6: Set C in Equation 1 contains only the faulty
link f .
Proof: First, we show that f is in C. The set Cs for every
station s ∈ S is either empty or contains the link f (since
f ∈ Ps,fs

). Thus, f ∈
⋂

Cs 	=∅ Cs. Note also that for stations s
such that Cs = ∅, f �∈ Ts, and so f �∈

⋃
Cs=∅ Es. Thus, f ∈ C.

We next show that |C| = 1. Clearly, C does not contains any
link e ∈ Es such that Cs = ∅. Further, for links e ∈ Es such
that Cs �= ∅ and e �= fs, it is the case that e �∈ Cs, and thus
e �∈ C. As a result, it follows that C ⊆ {fs : Cs �= ∅}. Now let
s′ be the monitoring station for the failed link f . Consider a
station s �= s′ such that Cs �= ∅ and fs �= f . Since f ∈ Ps,fs

,
due to Lemma 2, it follows that fs �∈ Ps′,f and thus, fs �∈ Cs′ .
As a result, fs �∈ C and C contains only f . �

VI. ROBUST LINK MONITORING

A system for monitoring links is robust if it continues to
monitor network links even if one or more links in the network
fail. A key challenge in designing such a robust monitoring
system is selecting a set of stations whose RTs always cover
all the active network links. The problem is that when a link
f fails, the new RT Ts,f for a station s may be different
from Ts, the RT prior to the failure. As a result, a station
s that was responsible for monitoring a link e ∈ Ts may be
unable to monitor the link once link f fails. The problem
is further complicated by the fact that the RTs Ts,f for the
various stations may not be known in advance (when stations
are selected).
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As an example, consider the graph in Example 1 with RTs
Ts1 and Ts2 as shown in Figures 5-(b) and 5-(c), respectively.
The failure of link f = (a, b) causes the RTs of s1 and s2 to
be modified as shown in Figure 5-(d). Clearly, link (c, d) ∈
Ts2 can no longer be monitored after f fails since (c, d) �∈
Ts2,f . Thus, the monitoring system (with stations s1 and s2)
in Figure 5-(a) is not robust.

In the following subsection, we consider the problem of
efficient placement of monitoring stations that guarantee delay
and fault monitoring of all active links in the presence of at
most K − 1 failures. We refer to this problem as the K-
Fault Resilient Monitoring (K-FRM) problem, and develop
a solution with an approximation ratio of ln(|E|) for it. Once
the set S of stations is computed, the probe assignment is
computed as described in previous sections. For simplicity,
we only consider link failures; however, our general approach
can be easily enhanced to support nodes failures as well.

A. The K-Fault Resilient Monitoring Problem

A set S of stations is resilient to one fault if and only if it
satisfies the following fault resilience property: For every link
f ∈ E, for every other link e �= f , e ∈ Ts,f for some station
s ∈ S. The fault resilience property ensures that when an
arbitrary link f fails, every other active link is contained in the
new RT of some station in S. However, finding a set of stations
that satisfies the property may be difficult since the trees Ts,f

may not be known in advance. Further, the property becomes
extremely complex when we consider K-fault resilience, since
any combination of K − 1 links can potentially fail.

Due to the above-mentioned reasons, we instead require S
to satisfy a stronger but simpler condition that implies the
above fault resilience property. The condition does not rely on
the knowledge of Ts,f , but exploits the fact that Ts and Ts,f

are identical with respect to paths that do not contain the failed
link f . Let Fe(Ts) be the parent link of link e in Ts. Then
the stronger condition is based on the key observation that S
is resilient to a single link failure if one of the following two
conditions holds for every link e ∈ E:

1) One of e’s endpoints is in S.
2) Link e is in the RTs of at least two monitoring stations

s1, s2 ∈ S, and Fe(Ts1) �= Fe(Ts2).
The following lemma presents a more general sufficient con-
dition for any K-fault resilient monitoring system.

Lemma 3: A set S of monitoring stations is K-fault re-
silient if for every link e = (u, v) ∈ E, at least one of the
following conditions is satisfied.
(1) One of nodes u or v is in S, or
(2) There are K nodes in S, denoted by Se =
{s1, s2, · · · , sK}, whose RTs Tsi

contain link e, and for every
pair of distinct nodes si, sj ∈ Se, it is the case that Fe(Tsi

) �=
Fe(Tsj

).
Proof: Clearly, if one of the endpoints of link e = (u, v) is
in S, then this endpoint can monitor e as long as it is active.
On the other hand, if neither u nor v are in S, then there
must exist a subset Se ⊆ S as described above. We show
that the paths Psi,e for every si ∈ Se define K disjoint paths

(excluding link e). Thus, even if K − 1 links fail, for some
si ∈ Se, Psi,e contains none of the failed links, and therefore
si will be able to monitor link e. Suppose that the K paths
are not disjoint, that is, for a pair of stations si, sj ∈ Se,
paths Psi,e and Psj ,e have a common node w which is not an
endpoint of e. Since e belongs to both trees Tsi

and Tsj
, and

messages are forwarded according to their destination address
(the IP forwarding technique), we can conclude the following:
(1) Link e is included in the tree Tw, and (2) Every message
from si or sj to nodes u or v passes through node w and is
subsequently forwarded along the same path Pw,e. However,
these facts contradict the assumption that Fe(Tsi

) �= Fe(Tsj
).

�
Thus, we can define the K-Fault Resilient Monitoring (K-

FRM) problem as follows.
Definition 2 (The K-FRM Problem): Given are a constant

K, a graph G(V,E) and a RT Tv for every node v ∈ V . Find
the smallest subset S ⊆ V such that for every link e ∈ E, at
least one of the following two conditions is satisfied.
(1) One of nodes u or v is in S, or
(2) There are K nodes in S, denoted by Se =
{s1, s2, · · · , sK}, whose RTs Tsi

contain link e, and for every
pair of distinct nodes si, sj ∈ Se, it is the case that Fe(Tsi

) �=
Fe(Tsj

). �
The K-FRM problem is a generalization of the LM problem

defined in Section IV, and any instance of the LM problem
can be represented as an instance of the K-FRM problem with
K = 1. Thus, Theorems 1 and 2 imply the following result.

Theorem 7: The K-FRM problem is NP-hard. Further, the
lower bound of any approximation algorithm for the problem
is O(ln(|V |)).

B. The Partial Multi-Set Cover Problem

In order to solve the K-FRM problem, we map it to an
extended version of the set cover (SC) problem, which we
refer to as the Partial Multi-Set Cover (PMSC) problem.

Definition 3 (The PMSC Problem): Given are a constant
K, a universe of elements Z, and the following two col-
lections of subsets of Z: Y = {Y1, Y2, · · · , Ym} and Q =
{Q1, Q2, · · · , Qn}. Each Yj ∈ Y contains at least K elements,
and is disjoint from other members of Y . Find the smallest
collection S ⊆ Q such that for every Yj ∈ Y , |

⋃
(S)∩Yj | ≥

K. �
Above,

⋃
(S) =

⋃
Q∈S Q is the union of the collection S. It

is easy to see that the PMSC problem is more general than the
SC problem. Every instance I(Z,Q) of the SC problem can be
reduced to an instance of the PMSC problem by selecting K =
1 and defining the collection Y = {{z}|∀z ∈ Z} in which
every subset Yi contains a single element of Z. Thus, the
optimal solution of the calculated PMSC instance is also the
optimal solution of the given SC instance, I(Z,Q). Therefore,
PMSC is NP-hard, and it has a lower bound of at least ln(|Z|).

We now describe a greedy algorithm for solving the PMSC
problem (see Figure 6 for pseudocode). Our proposed algo-
rithm uses ideas similar to those employed by the greedy SC
algorithm; specifically, in each iteration, our greedy PMSC
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S ← ∅
utotal ← mK
While utotal > 0 do

For every Yj ∈ Y do
uj ← K − min{K, |

⋃
(S) ∩ Yj |}

For every Qi ∈ Q − S do
ni =

∑m
j=1 min{uj , |Qi ∩ (Yi −

⋃
(S))|}

Q∗
i ← arg maxQi∈Q−S ni

S ← S
⋃

{Q∗
i }

utotal ← utotal − n∗
i

End While
Return S

Fig. 6. A Formal Description of the Greedy PMSC Algorithm.

algorithm selects the most cost-effective set Q∗
i ∈ Q until all

the sets in Y are covered, as explained below. In the algorithm,
S ⊆ Q is the collection of subsets that have been selected so
far. We say that set Yj is covered by S if

⋃
(S) contains at least

K elements from Yj , i.e., |
⋃

(S) ∩ Yj | ≥ K. With each set
Yj ∈ Y , we associate a variable uj that specifies the number of
uncovered elements in Yj −

⋃
(S) that still need to be selected

to cover Yj . Thus, uj = 0 if Yj is already covered, otherwise
uj = K−|

⋃
(S)∩Yj |. We use utotal =

∑m
j=1 uj to represent

the total number of uncovered elements that should be selected
for covering all the sets Yj ∈ Y . Note that when utotal = 0,
the calculated selection S is a feasible solution. With every set
Qi ∈ Q, Qi �∈ S, we associate a value ni that is the total over
all uncovered sets Yj , of the number of uncovered elements
in Yj that are also contained in Qi, and can be selected to
cover Yj . Thus, ni =

∑m
j=1 min{uj , |Qi ∩ (Yi −

⋃
(S))|}.

Note that adding Qi to S causes utotal to decrease by amount
ni. Therefore, in each iteration, the greedy algorithm (see
Figure 6) adds to S, the most cost-effective set Qi ∈ Q − S
that maximizes the ratio ni.

We now calculate the approximation ratio of the greedy
PMSC algorithm using a technique similar to the one used for
proving the approximation ratio of the greedy SC algorithm
in [3]. Consider the solution S returned by the greedy PMSC
algorithm. Its cost is Cost(S) = |S|. Let Q∗

r be the set added
to S in the rth iteration, and n∗

r be the amount utotal is reduced
due to the addition of Q∗

r to S. Since initially utotal = mK,
it follows that

∑|S|
r=1 n

∗
r = mK. Let OPT be the optimal

solution and let Cost(OPT ) = |OPT | denote its cost.
Lemma 4: In the rth iteration of the greedy algorithm, n∗

r ≥∑ |S|
l=r n∗

l

Cost(OPT ) .
Proof: At the beginning of each iteration, utotal is the number
of uncovered elements that need to be selected for covering
all the sets Yj ∈ Y . In any iteration, the unselected sets of
OPT can cover the remaining uncovered sets from Y with cost
at most Cost(OPT ). Therefore, among these sets of OPT
there must be a set Qi such that the number ni of uncovered
elements in Y that are covered by Qi is at least utotal

Cost(OPT ) .
The algorithm selects the set Qi that maximizes ni. Thus, in
the rth iteration, it must be the case that for the selected set
Q∗

r , n∗
r ≥ utotal

Cost(OPT ) . Further, since at the beginning of the

rth iteration, utotal =
∑|S|

l=r n
∗
l , the lemma follows. �

From Lemma 4, it follows that Cost(S) = |S| ≤
Cost(OPT ) ·

∑|S|
r=1

n∗
r∑ |S|

l=r n∗
l

. Since
∑|S|

r=1 n
∗
r = mK, a series

of algebraic manipulations lead to the following result.
Theorem 8: The approximation ratio of the greedy PMSC

algorithm is ln(K) + ln(m) + 1, where m = |Y|.

C. K-FRM Problem Solution

We solve the K-FRM problem by first reducing it to
the PMSC problem, and then applying the greedy PMSC
algorithm shown in Figure 6. In order to map a K-FRM
instance involving the graph G(V,E) to a PMSC instance,
we need to define the collections Y and Q. The collection Y
contains m = |E| disjoint sets, where each set Ye ∈ Y results
from a link e ∈ E and contains at least K elements. The
collection Q contains n = |V | sets, where each set Qv ∈ Q
is derived from the RT Tv of node v.

Let S ⊆ V be any subset of nodes and let S ⊆ Q be the
corresponding collection of sets such that S = {Qv|v ∈ S}.
Our reduction guarantees that S is a feasible solution for the
K-FRM problem if and only if S is a feasible solution for
the corresponding PMSC instance. Here, a feasible solution S
for the K-FRM problem is one for which every link e ∈ E
satisfies one of the two conditions of Definition 2, while S is
a feasible solution for a PMSC instance if for every Yj ∈ Y ,
|
⋃

(S) ∩ Yj | ≥ K.
In order to achieve the above-mentioned goal, we include

in Z two types of elements, where each type is used to ensure
that one of the conditions in Definition 2 is captured. Let Av

and Ae denote the set of links in E that are incident on node
v and endpoints of edge e, respectively. For capturing the first
condition, we define for every node v ∈ V and every one of its
outgoing links e ∈ Av , K different elements that are included
in both sets Ye and Qv . Each element is represented by a triple
< e, v, k >, for every 1 ≤ k ≤ K. Thus, selecting a set Qv

ensures that all the sets Ye, e ∈ Av are covered. The second
condition is reflected in a more straightforward manner. For
every link e = (u, v) ∈ E and each one of its adjacent links
e′ ∈ Ae we define an element < e, e′ > that is included in
the set Ye. The element < e, e′ > is also included in the set
Qv of every node v such that link e′ is the parent of link e in
the tree Tv , i.e., e′ = Fe(Tv). Thus, selecting one of the sets
Qv ensures that a single uncovered element in Ye is covered.

In summary, for every e = (u, v) ∈ E, the set Ye ∈ Y is
defined as,

Ye = {< e, v, k >,< e, u, k > |1 ≤ k ≤ K}
⋃

{< e, e′ > |e′ ∈ Ae}

and for every node v ∈ V , the set Qv is defined as,

Qv = {< e, v, k > |e ∈ Av, 1 ≤ k ≤ K}
⋃

{< e, Fe(Tv) > |e ∈ Tv ∧ e �∈ Av}

Suppose the greedy PMSC algorithm returns collection S
as the solution to the above PMSC instance. Then, the solution
to the original K-FRM problem is computed as S = {v|Qv ∈
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S}. Clearly, since S covers every set Ye ∈ Y , every link e ∈ E
either has an endpoint in S, or it appears in at least K RTs
of nodes in S, with distinct parent links. Thus, S is a feasible
solution to the K-FRM problem. Further, since the mapping
between S and S does not alter the cost of the solutions, due
to Theorem 8, it follows that the cost of solution S is within
a ln(K) + ln(|E|) + 1 factor of the optimal solution to the
K-FRM problem.

Note that the greedy algorithm takes O(|V |3) steps to solve
the PMSC instance corresponding to the K-FRM problem
since |Qv| = O(|V |) and |Q| = |V |.

D. Probe Assignment in the Presence of Failures

Once we have selected a set S of K-fault resilient monitor-
ing stations, initially each link e = (u, v) is monitored by the
station s ∈ S such that e ∈ Ts and cs,u + cs,v is minimum.
The NOC keeps track of failed network links in the variable
X . When the NOC detects the failure of a network link f , it
adds the link to X . Further, for each link e currently being
monitored by a station s such that Ps,e contains the failed link
f , the NOC computes a new station s′ for monitoring e. The
new station s′ for e, in addition to satisfying the conditions
e ∈ Ts′ and cs′,u + cs′,v is minimum, also needs to satisfy
the condition that Ps′,e ∩X = ∅. This ensures that the routing
path from s′ to e does not contain any of the failed links.
Note that since S is K-fault resilient, there are at least K
disjoint routing paths from stations in S to each link e not
adjacent to a station in S. Thus, each active network link can
be continuously monitored by some station in S as long as
the number of failures |X| < K. To monitor both the fault
and delay of a link e = (u, v), the station s monitoring e
sends the probes m(s, v, hs,u) and m(s, v, hs,v), as described
in Section V.

VII. SUMMARY

In this paper, we proposed a two-phased approach to
monitoring that ensures complete coverage of the network in
the presence of link failures, and minimizes the monitoring
overhead on the underlying production network. In the first
phase of our approach, we computed the locations of a
minimal set of monitoring stations such that all network links
are covered, even if some links in the network were to fail.
Subsequently, in the second phase, we computed the minimal
set of probe messages to be sent by each station such that
the latency of every network link can be measured, and faulty
network links can be isolated. Unfortunately, both the station
selection and the probe assignment problems are NP-hard.
However, our proposed polynomial-time greedy approximation
algorithms achieve close to the best possible approximations to
both the station selection and the probe assignment problems.

REFERENCES

[1] M. Adler, T. Bu, R. Sitaraman and D. Towsley, ”Tree Layout for Internal
Network Characterizations in Multicast Networks”, In Proceedings of
NGC’01, London, UK, November 2001.

[2] T. Bu, N. Duffield, F. Lo Presti and D. Towsley, ”Network Tomography
on General Topologies”, In Proceedings of the ACM SIGMETRICS,
2002.

[3] V. Chavatal, ”A Greedy Heuristic for the Set-Covering Problem”, Math.
of Operation Research, Vol. 4, No. 3, pp 233-235, 1979.

[4] M. Dilman and D. Raz, ”Efficient Reactive Monitoring”, In Proceedings
of the IEEE INFOCOM’2001, Alaska, April 2001.

[5] William Stallings, ”SNMP, SNMPv2, SNMPv3, and RMON 1 and 2”,
Addison-Wesley Longman Inc., 1999, (Third Edition).

[6] ”NetFlow Services and Applications”, Cisco Systems, 1999.
[7] Y. Breitbart, C-Y. Chan, M. Garofalakis, R. Rastogi and A. Silberschatz,

”Efficiently Monitoring Bandwidth and Latency in IP Networks”, In
Proceedings of the IEEE INFOCOM’2000, Tel-Aviv, Israel, March 2000,

[8] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gryniewicz, and
Y. Jin, ”An Architecture for a Global Internet Host Distance Estimation
Service”, In Proceedings of IEEE INFOCOM’99, New York City, New
York, March 1999.

[9] S. Jamin, C. Jin, Y. Jin, Y. Raz, Y. Shavitt, and L. Zhang, ”On
the Placement of Internet Instrumentation”, In Proceedings of IEEE
INFOCOM’2000, Tel Aviv, Israel, March 2000.

[10] Y. Shavitt, X. Sun, A. Wool and B. Yener, ”Computing the Unmeasured:
An Algebraic Approach to Internet Mapping”, In Proceedings of IEEE
INFOCOM’2001, Alaska, April 2001.

[11] S. W. Richard, ”TCP/IP illustrated”, Addison-Wesley Publishing
Company, 1994.

[12] Cooperative Association for Internet Data Analysis (CAIDA),
http://www.caida.org/.

[13] V. Jacobsen, ”Pathchar – A Tool to Infer Characteristics of Internet
Paths”, April 1997. ftp://ftp.ee.lbl.gov/pathchar.

[14] R. L. Carter and M. E. Crovella, ”Server Selection Using Dynamic
Path Characterization in Wide-Area Networks”, In Proceedings of IEEE
INFOCOM’99, Kobe, Japan, April 1997.

[15] K. Lai and M. Baker, ”Measuring Bandwidth”, In Proceedings of IEEE
INFOCOM’99, New York City, New York, March 1999.

[16] C. Dovrolis, P. Ramanathan and D. Moore, ”What Do Packet Dispersion
Techniques Measure?”, In Proceedings of IEEE INFOCOM’2001,
Alaska, April 2001.

[17] Y. Bejerano and R. Rastogi, ”Efficient Monitoring Schemes for IP
Networks”, Research Report, Bell Labs, 2001.

[18] A. Reddy, R. Govindan and D. Estrin, ”Fault Isolation in Multicast
Trees”, In Proceedings of the ACM SIGCOMM, 2000.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003


	INFOCOM 2003
	Return to Main Menu


