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Abstract— We investigate the problem of computing the types
of the relationships between Internet Autonomous Systems. We
refer to the model introduced in [1], [2] that bases the discovery of
such relationships on the analysis of the AS paths extracted from
the BGP routing tables. We characterize the time complexity of
the above problem, showing both NP-completeness results and
efficient algorithms for solving specific cases. Motivated by the
hardness of the general problem, we propose heuristics based on
a novel paradigm and show their effectiveness against publicly
available data sets. The experiments put in evidence that our
heuristics performs significantly better than state of the art
heuristics.

I. INTRODUCTION

An Autonomous System (AS) is a portion of Internet under
a single administrative authority. Currently, there are more
than 10, 000 ASes and their number is rapidly growing.
They interact to coordinate the IP traffic delivery, exchanging
routing information with a protocol called Border Gateway
Protocol (BGP) [3].

Several authors (see, e.g. [4], [5]) have pointed out that
the relationships between ASes can be roughly classified into
categories that have both a commercial and a technical flavor.
A pair of ASes such that one sells/offers Internet connectivity
to the other is said to have a provider-customer relationship. If
two ASes simply provide connectivity between their respective
customers are said to have a peer-to-peer relationship. Finally,
if two ASes offer each other Internet connectivity are said
to be siblings. Of course, this classification does not capture
all the shades of the possible commercial agreements and
technical details that govern the traffic exchanges between
ASes but should be considered as an important attempt toward
understanding the Internet structure.

Since many applications would benefit from the knowledge
about the Internet structure, the research on the subject has
recently produced many contributions. More specifically, there
is a wide research area focusing on the discovery of the
topology underlying the Internet structure, either at the AS
and at the router level (see, for example, [6], [7], [8]).

Other researchers concentrate more directly on the above
mentioned relationships and on the hierarchy that they induce

Work partially supported by European Commission - Fet Open project
COSIN - COevolution and Self-organisation In dynamical Networks - IST-
2001-33555, by “Progetto ALINWEB: Algoritmica per Internet e per il Web”,
MIUR Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale, and
by “The Multichannel Adaptive Information Systems (MAIS) Project”, MIUR
Fondo per gli Investimenti della Ricerca di Base.

on the set of ASes. Govindan and Reddy [6] study the interplay
between the degree of the ASes and their rank in the hierarchy,
where the degree of an AS is the number of ASes that have
some kind of relationship with it. Gao [1] studies, for the first
time, the following problem. ASes are the vertices of a graph
(AS graph) where two ASes are adjacent if they exchange
routing information; the edges of such a graph should be
labeled in order to reflect the type of relationship they have.
In order to infer the relationships between ASes, Gao uses
the information on the degree of ASes together with the AS
paths extracted from the BGP routing tables. An AS path is
the sequence of the ASes traversed by a connectivity offer
(BGP announcement). In [1] a heuristic is presented together
with experimental results. An analysis on the properties of the
labeled graphs obtained with such heuristics is provided in [9].

Subramanian et al. [2] formally define, as a minimization
problem, a slightly simplified version of the problem addressed
in [1] and conjecture its NP-completeness. They also propose a
heuristic based on the observation of the Internet from multiple
vantage points, which does not rely on the degree of the ASes.
Further, they validate the results obtained by the heuristic
against a rich collection of data sets.

This paper contributes to the line of research opened in [1],
[2]. Namely, its main results are the following.

• We solve a problem explicitly stated in [2]. Namely, we
characterize the complexity of determining the relation-
ships between ASes while minimizing the number of
“anomalies”. In particular:

– We show that such a problem is NP-complete in the
general case;

– We produce a linear time algorithm for determining
the AS relationships in the case in which the problem
admits a solution without anomalies; and

– We use such a linear time algorithm to show that
for large portions of the Internet (e.g., data obtained
from single points of view) it is often possible to
determine the relationships between ASes with no
anomalies.

• We introduce heuristics, based on a novel approach, for
determining the relationships between ASes with a small
number of anomalies.

• We experimentally show that the proposed approach leads
to heuristics that performs significantly better than the
cutting edge heuristics of [2].
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The paper is structured as follows. Section II describes the
addressed problem. Sections III and IV show an algorithm for
testing if the problem admits a solution with no anomalies,
and show how to find a solution if it exists. In Section V we
prove the NP-completeness of the problem in the general case.
Section VI shows new heuristics and compare the results with
the state of the art. Finally, Section VII contains conclusions
and open problems.

II. PROBLEM DESCRIPTION

A prefix is a block of destination IP addresses. An Internet
Autonomous System (AS) applies local policies to select the
best route for each prefix and to decide whether to export this
route to neighboring ASes.

Several authors have pointed out that ASes typically have
provider-customer or peer-to-peer relationships (see, e.g. [4],
[5], [10], [2]). A customer exports to a provider its routes
and the routes learned from its own customers, but does not
export routes learned from other providers or peers. A provider
exports to a customer its routes, the routes learned from the
other customers, its providers, and its peers. Peers export to
each other their own routes and the routes learned from their
customers but do not export the routes learned from their
providers and other peers.

Consider the AS paths that are associated with the BGP
announcements of the routes. If all the ASes adopted export
policies according to the above model, then the AS paths
would have a peculiar structure [1], [2]. Namely, (1) no AS
path can contain more than one pair of ASes having a peer-
to-peer relationship; and (2) once a provider-customer or a
peer-to-peer pair of ASes is met in the AS path, no customer-
provider can be found in the remaining part of it.

Further, the above mentioned peculiarities of the AS paths
have been formally stated in a theorem of [1], that has been
also re-casted in [2]. A graph-theoretic formulation of the same
theorem will be given in what follows.

A. Type-of-Relationship problem

The relationships between ASes in the Internet may be
represented as a graph G whose edges are either directed or
undirected. Each vertex is an AS, a directed edge from vertex
u to vertex v indicates that u is a customer of v (provider-
customer relationship), and an undirected edge between vertex
w and vertex z indicates that w and z are peers (peer-to-
peer relationship). A BGP AS path corresponds to a path on
G. Suppose path p is composed by the sequence of vertices
v1, . . . , vn, then p is valid if it is of one of the following two
types.

Type 1: p is composed by a (possibly empty) sequence
of forward edges followed by a (possibly empty)
sequence of backward edges; more formally, there
exists a vertex vi of p such that for j ∈ 1, . . . , i − 1
edge (vj , vj+1) is directed from vj to vj+1 and for
j ∈ i, . . . , n − 1 edge (vj , vj+1) is directed from
vj+1 to vj . (See Figure 1.a).

(a)

(b)

v10

1v 2v 3v 4v v5

v6 v7 v8 v9

Fig. 1. An example of Type 1 (a) and of Type 2 (b) path.

Type 2: p is composed by a (possibly empty) sequence of
forward edges, followed by an undirected edge, fol-
lowed by a (possibly empty) sequence of backward
edges; more formally, there exists a vertex vi of p
such that for j ∈ 1, . . . , i − 1 edge (vj , vj+1) is di-
rected from vj to vj+1, edge (vi, vi+1) is undirected,
and for j ∈ i+1, . . . , n−1 edge (vj , vj+1) is directed
from vj+1 to vj . (See Figure 1.b).

See Figure 1 for examples of Type 1 and of Type 2 paths.
An invalid path is a path that is not valid.
At this point the above mentioned theorem [2] can be

restated as follows: if every AS obeys the customer, peer, and
provider export policies, then every advertised path is either
of Type 1 or of Type 2.

However, the Internet is more complex. To give a few
examples: ASes operated by the same company can have a
sibling relationship, where each AS exports all its routes to
the other; two ASes may agree a backup relationship between
them, to overcome possible failures; or ASes may have peering
relationships through intermediate ASes. However, finding out
which is the portion of Internet that obeys the customer, peer,
and provider export policies can be considered as the first step
toward a complete comprehension of the relationships between
ASes. Such motivations have pushed the authors of [2] toward
identifying the following problem.

Type-of-Relationship (ToR) Problem [2]: Given an
undirected graph G and a set of paths P , give an
orientation to some of the edges of G to minimize
the number of invalid paths in P .

Figure 2 shows an instance of the ToR problem for which
an orientation without invalid paths cannot be found. In
particular, each orientation of edge (AS701, AS5056) yields
at least one invalid path. Suppose, in fact, that edge (AS701,
AS5056) was directed from AS701 to AS5056. Path AS5056,
AS701, AS4926, AS6461, AS2914, AS174, AS14318 (drawn
solid in the figure) would be valid only if edge (AS4926,
AS6461) was directed from AS6461 to AS4926. Similarly,
path AS5056, AS701, AS6461, AS4926, AS4270, AS4387
(drawn dotted in the figure) would be valid only if edge
(AS4926, AS6461) was directed from AS4926 to AS6461.
Hence, we have a contradiction, since edge (AS4926, AS6461)
should have opposite orientations. Now, suppose that edge
(AS701, AS5056) was undirected. The same arguments apply,
leading to the same contradiction. Finally, suppose that edge
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AS14318

AS4387

AS7660 AS8151

AS13099

5056 701 6461 4926 4270 4387

5056 701 4926 6461 2914 174 14318

7660 1 5056 701 11334

5056 1 1239 8151

1239 5056 701 11334

5056 1239 1 1755 3216 13099

AS174

AS5056AS3216

AS2914

AS1755

AS4270

AS1 AS1239

AS6461AS4926

AS11334 AS701

Fig. 2. An instance of the ToR problem that does not admit an orientation
without invalid paths. The six paths of the instance are represented with
different line styles.

(AS701, AS5056) was directed from AS5056 to AS701. It is
easy to see that in this case we have a contradiction on the
orientation of edge (AS1, AS1239).

Figure 3 shows an instance of the ToR problem that admits
an orientation without invalid paths. Figures 4 and 5 show a
possible orientation.

AS4197 AS3967

AS7018

AS8709 AS8938

AS3561 AS8843

AS10311AS1740AS3582

AS6893

AS15493

Fig. 3. An instance of the ToR problem that admits an orientation without
invalid paths. The four paths of the instance are represented with different
line styles.

B. Simplifying the problem

The Type-of-Relationship Problem is a minimization prob-
lem. In order to studying it, following a standard tech-
nique [11], we consider its corresponding decision version as
follows.

AS4197 AS3967

AS7018

AS8709 AS8938

AS3561 AS8843

AS10311AS1740AS3582

AS6893

AS15493

Fig. 4. An orientation for the graph of Figure 3. Note that all the paths are
valid.

AS3967

AS7018

AS10311AS1740

AS4197AS3582

AS8843

AS6893

AS15493

AS3561

AS8709

AS8938

Fig. 5. The directed graph of Figure 4 is drawn in such a way to emphasize
the hierarchical relationships induced by the orientation.

ToR-D Problem: Given an undirected graph G, a set
of paths P , and an integer k, test if it is possible to
give an orientation to some of the edges of G so that
the number of invalid paths in P is at most k.

One of the ingredients that make the ToR-D problem
difficult is the presence of both directed and undirected edges.
Fortunately, the problem can be simplified by “ignoring” the
undirected edges, without loosing its generality. Namely, the
ToR-D problem admits a solution if and only if the following
simpler problem admits one.

ToR-D-simple Problem: Given an undirected graph
G, a set of paths P , and an integer k, test if it is
possible to give an orientation to all the edges of G
so that the number of invalid paths in P is at most k.

Notice that the ToR-D-simple problem considers Type 1
paths only.

In fact, consider an orientation of the edges of G that is
a solution for the ToR-D-simple problem. It is clear that the
same orientation is also a solution for the ToR-D problem.
Conversely, consider an orientation of some of the edges of
G that is a solution for the ToR-D problem and let (u, v) be
an edge of G that is undirected. Consider any path p of P
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through (u, v). Two cases are possible: either p is valid or p
is invalid.

If p is valid (see Figure 6), then it is a Type 2 path and all the
edges of p preceding u are forward edges, while all the edges
of p following v are backward edges. If (u, v) is arbitrarily
oriented, then the only effect on p is of transforming it from
Type 2 to Type 1. Hence, the number of invalid paths does not
increase. If p is invalid and (u, v) is arbitrarily oriented either
it becomes valid or it remains invalid. In this case the number
of invalid paths does not increase. The same process can be
repeated on all the undirected edges, until an orientation of G
that is a solution for ToR-D-simple is found.

u v

Fig. 6. An undirected edge (u, v) of a solution of the ToR-D problem. The
two paths traversing (u, v) are represented one with a solid line and the other
with a dot-dashed line. Both paths are valid.

To better understand the relation between the two problems,
observe that the above consideration suggests that for each
partial orientation of G that is a solution of ToR-D with n
undirected edges there exist 2n orientations that are a solution
for ToR-D-simple.

Further, we can pick an orientation that is a solution for
ToR-D-simple and consider it as a solution for ToR-D.
Then, we can refine such a solution looking for edges whose
orientation can be removed without increasing the number of
anomaly paths. A necessary and sufficient condition, that is
also easy to test, for removing the orientation of a single
directed edge (u, v) is the following. Consider all the paths
through (u, v) and all the edges following (u, v) in such paths.
Edge (u, v) can be made undirected if such edges are all
directed toward v.

The above discussion justifies a two steps approach where
in the first step a solution is found for ToR-D-simple and in
the second step peering edges are discovered.

III. TESTING WHETHER AN AS GRAPH ADMITS A

HIERARCHICAL STRUCTURE WITHOUT PATH ANOMALIES

In Section II we have seen that the problem of detecting
the types of relationships between ASes can be tackled by
studying the ToR problem, its decision version ToR-D, and a
simpler problem called ToR-D-simple. The relations among
such problems have also been discussed. In this section we

show that problem ToR-D-simple (and, consequently, ToR-
D) can be solved efficiently when k = 0, that is when we
want to check if G admits an orientation where all the paths
are valid (i.e., there are 0 invalid paths).

A. Path anomalies and boolean formulas

Observe that a path p on G composed by the sequence of
vertices v1, . . . , vn is of Type 1 if and only if it does not exist
a vertex vi (i = 2, . . . , n − 1) of p such that the two edges of
p incident on vi are directed away from vi. Hence, to impose
that p is valid it suffices to rule out such a configuration. Based
on this observation ToR-D-simple can be mapped to a 2SAT
problem [11].

In the 2SAT problem you are given a set X of boolean
variables and a formula in conjunctive normal form. Such a
formula is composed by clauses of two literals, where a literal
is a variable or a negated variable. You are asked to find a
truth assignment for the boolean variables in X so that the
formula is satisfied.

The mapping of ToR-D-simple to 2SAT is a two step
process. First, all the edges of G are arbitrarily (for example
randomly) oriented. Second, a boolean formula is constructed
so to represent the constraints that each path imposes on
the orientation of G in order to be a path of Type 1. The
construction is performed as follows.

• For each directed edge (vi, vj) of G a variable xi,j is
introduced. A true value for xi,j means that, in the final
orientation, (vi, vj) will be directed from vi to vj (that
is, the direction of the initial arbitrary orientation will be
preserved), while a false value means that (vi, vj) will be
directed from vj to vi (that is, the direction of the initial
arbitrary orientation will be reversed).

• Consider a path p ∈ P and three consecutive vertices
vi−1, vi, vi+1 of p. Four cases are possible, according to
the arbitrary orientations that we have given to the edges
between vi−1, vi, and vi+1.

– Both edges are directed toward vi, i.e. such directed
edges are (vi−1, vi) and (vi+1, vi). We introduce
clause xi−1,i ∨ xi+1,i.

– Both edges are directed away from vi, i.e. such
directed edges are (vi, vi−1) and (vi, vi+1). We in-
troduce clause xi,i−1 ∨ xi,i+1.

– One edge is directed toward vi and the other toward
vi+1, i.e. such directed edges are (vi−1, vi) and
(vi, vi+1). We introduce clause xi−1,i ∨ xi,i+1.

– One edge is directed toward vi−1 and the other
toward vi, i.e. such directed edges are (vi, vi−1) and
(vi+1, vi). We introduce clause xi,i−1 ∨ xi+1,i.

In this way we introduce n − 2 clauses for each path of
P with n vertices. We impose that all the constraints are
simultaneously satisfied by considering the boolean “and” of
all the clauses. Since each clause has two literals, we have
mapped the ToR-D problem to a 2SAT formula.

As an example consider a path composed by five vertices
v1, . . . , v5 and suppose that the initial orientation step has
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TABLE I

TELNET LOOKING GLASS SERVERS AND CORRESPONDING AS GRAPHS.

AS # AS Name Apr 18, 2001 Apr 6, 2002
# Vertices # Edges # Paths # Vertices # Edges # Paths

1 Genuity 10,203 13,001 58,156 12,700 15,946 63,744
1740 CERFnet 10,007 13,416 70,830 not available
3549 Globalcrossing 10,288 13,039 60,409 12,533 16,025 76,572
3582 U. of Oregon 10,826 22,440 2,584,230 13,055 27,277 4,600,981
3967 Exodus Comm. 10,387 18,401 254,123 12,616 21,527 339,023
4197 Global Online Japan 10,288 13,004 55,060 12,518 15,628 59,745
5388 Energis Squared 10,411 13,259 58,832 12,659 16,822 117,003
7018 AT&T 9,252 12,117 120,283 11,706 15,429 170,325
8220 COLT Internet 8,376 10,932 46,606 12,660 18,421 154,855
8709 Exodus, Europe 10,333 15,006 114,931 12,555 18,175 126,370

( ) ( )

( )

(a)

( ) ( )

( )

(b)

( ) ( )

( )

(c)

x1,2 x3,2 x3,4 x4,5

1v 2v 3v 4v v5

x1,2 x3,2 x4,5x3,4

x3,2 x3,4

1v 2v 3v 4v v5

1,2 3,2 3,4 4,5x    = falsex    = falsex    = falsex    = true

x1,2 x3,2 = true x4,5x3,4 = true

x3,2 x3,4 = true

2v 3v 4v v51v
4,53,43,21,2 x    = truex    = true x    = false x    = false

x1,2 x3,2 = true x4,5x3,4 = false

x3,2 x3,4 = true

Fig. 7. (a) An initial orientation for a five vertices path and the boolean
variables associated with its edges. The orientation shown in (b), which makes
the path valid, corresponds to the truth assignment x1,2 = true, x3,2 =
false, x3,4 = false, and x4,5 = false, which satisfies formula (x1,2 ∨
x3,2)∧(x3,2∨x3,4)∧(x3,4∨x4,5) associated with the path. Conversely, the
orientation shown in (c), which makes the path invalid, corresponds to the truth
assignment x1,2 = true, x3,2 = false, x3,4 = false, and x4,5 = true,
which does not satisfy the formula.

given to the edges of the path a direction as follows: (v1, v2),
(v3, v2), (v3, v4), and (v4, v5). We have variables x1,2, x3,2,
x3,4, and x4,5 (see Figure 7.a). Applying the above procedure
we obtain the following 2SAT formula: (x1,2 ∨x3,2)∧ (x3,2 ∨
x3,4) ∧ (x3,4 ∨ x4,5). Consider the truth assignment x1,2 =
true, x3,2 = false, x3,4 = false, and x4,5 = false. It is
easy to see that it satisfies the formula and that it corresponds
to an orientation of the edges of the path toward vertex v3 (see

Figure 7.b). On the other hand, consider the truth assignment
x1,2 = true, x3,2 = false, x3,4 = false, and x4,5 = true. It
is easy to see that it does not satisfy the formula and that it
corresponds to an orientation of the edges of the path that is
not consistent with Type 1 (see Figure 7.c).

B. Computational aspects

Problem 2SAT may be efficiently solved by using the well
known result in [12] that maps 2SAT into a problem on a
suitable directed graph G2SAT. Observe that G and G2SAT are
different graphs.

Although this result is clearly illustrated in the literature,
we give here a brief description of it, that will help the reader
to better understand the algorithms described in Sections IV,
and VI.

Graph G2SAT has two nodes for each boolean variable x of
2SAT, corresponding to its two literals x and x. Further, for
each clause of the form l1 ∨ l2, where l1 and l2 are literals,
the two directed edges (l1, l2) and (l2, l1) are introduced.
Intuitively, edge (l1, l2) represents the logical implication l1 →
l2, while edge (l2, l1) represents l2 → l1. Problem 2SAT
admits a solution if and only if for no variable x there is a
directed cycle in G2SAT containing both x and x (i.e. a logical
contradiction).

Testing, for each variable, if there exists a cycle contain-
ing its two literals can be quite time consuming. However,
fortunately, the problem of testing for all the variables in
2SAT whether such a cycle exists in G2SAT can be efficiently
solved by computing [13] the strongly connected components
of G2SAT and by testing for each variable if x and x are in the
same strongly connected component. We recall that a strongly
connected component of a directed graph is a maximal set of
vertices such that for each pair u, v of vertices of the set there
exists a directed path from u to v and vice versa. Computing
the strongly connected components of a directed graph can be
done in time linear in the size of the graph [13].

From a theoretical point of view, it comes out that ToR-D-
simple (and, as a consequence, ToR-D) with k = 0, i.e. the
problem of deciding if a graph G of n vertices and m edges
admits an orientation so that all the paths of a set P are valid,
can be solved in O(n + m + q) time, where q is the sum of
the lengths of the paths of P .

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



More practically, we have implemented the above algorithm
by exploiting a facility from the Leda [14] software library that
efficiently computes the strongly connected component of a
directed graph and that labels each vertex of the graph with
an integer that identifies the component it belongs to. Hence,
testing for a variable x if x and x are in the same strongly
connected component is performed by testing whether they
have the same label.

C. Experiments

This section illustrates the first group of experiments of this
paper. Such experiments have the purpose of understanding if
at least for partial views of the Internet graph the ToR problem
admits a solution without invalid paths. This is important, in
our opinion, at least for the following reason. Even if it is
unlikely that the entire Internet AS graph could be classified
in terms of customer-provider and peer-to-peer relationships
without exceptions (and we will see evidence of this in the
remainder of this paper), it is unclear if this is possible for
what is visible from a specific observation point (“vantage
point” in [2]) of the network.

The test bed consists of BGP data sets obtained as follows.
Each data set is extracted from the BGP routing table of
a Looking Glass server. First, the output of the “show ip
bgp” command is collected. Second, a file of AS paths is
computed by discarding the prefix column and all the BGP
attributes different from the AS path. Duplicate ASes arising
from prepending [3] are removed in each path. Note that
duplicated paths may be present in the set.

There are many Looking Glass servers on the Internet and
it is very difficult to say which are the most representative.
In order to compare our work with previous results, we have
chosen to use the collection of ten BGP data sets obtained from
Telnet Looking Glass servers already adopted as a test bed
in [2]. Such test beds are periodically collected and publicly
distributed by the authors [15].

For each data set we have constructed a different AS graph
(a partial view of the global AS graph) by using only the
adjacencies contained in the AS paths of the specific data set.
Table I shows the main features of the graphs constructed from
the ten data sets. Note that values of Tables I and IV of [2]
and values computed from data available in [15] (and that are
presented in the aforementioned Table I of this paper) appear
to be slightly different.

Table II shows the results of the experiments. Observe that
for all the partial views, but the one of the University of
Oregon server [16], the ToR problem admits a solution without
invalid paths. In fact, the server of the University of Oregon
is not just a Looking Glass that gives a view of Internet from
a specific point of observation, but it offers an integrated
view obtained from 52 peering sessions with routers spread
on 39 different ASes. This clearly indicates that integrating
information from different points of view makes the problem
much more difficult.

Figure 8 shows six rows extracted from the routing table
of the U. of Oregon dated Apr 18, 2001. Observe that the six

TABLE II

TESTING IF THE TOR PROBLEM HAS A SOLUTION WITHOUT INVALID

PATHS FOR SEVERAL BGP ROUTING TABLES.

AS # AS Name Orientable w/o anomalies
Apr 18, 2001 Apr 6, 2002

1 Genuity yes yes
1740 CERFnet yes not available

3549 Globalcrossing yes yes
3582 U. of Oregon no no
3967 Exodus Comm. yes yes
4197 Global Online J. yes yes
5388 Energis Squared yes yes
7018 AT&T yes yes
8220 COLT Internet yes yes
8709 Exodus, Europe yes yes

paths are exactly those used in Figure 2 to give an example
of an instance of the ToR problem that does not admit an
orientation without invalid paths.

It is worth noting that we have conducted all the experiments
on a PC Pentium III with 1 GB of RAM. Each of the above
experiments required a few seconds of computation time.

IV. COMPUTING THE AS RELATIONSHIPS

In Section III we have seen how problem ToR-D can be
solved efficiently when k = 0, that is when we want to check
if G admits an orientation where all the paths are valid (i.e.,
there are 0 invalid paths). We can do that solving a simpler
problem, called ToR-D-simple.

In this section we deal with the problem of determining
the relationships between ASes in the assumption that ToR-D
admits a solution without anomalies. Essentially, this is a two
steps process. In the first step an orientation that solves ToR-D-
simple is computed. In the second step peering relationships
are discovered by examining the solution computed for ToR-
D-simple.

A. Finding an orientation for ToR-D-simple

If a solution for ToR-D-simple exists, computing it is an
easy task. Since we mapped ToR-D-simple to 2SAT, we
can find a solution to ToR-D-simple by computing a truth
assignment for the boolean variables of the corresponding
2SAT instance. A standard method [12] for computing such
assignment is the following. A function f(v) can be computed
for all the vertices of the graph G2SAT associated with 2SAT
(see Section III-B) such that, for any two vertices u and v, if
there exists a directed path from u to v, then f(u) ≤ f(v).
A true value is assigned to variable x if f(x) > f(x), a false
value otherwise. The satisfiability of 2SAT guarantees that
f(x) 	= f(x).

Function f can be efficiently computed by exploiting the
decomposition of the graph into strongly connected compo-
nents and by computing a special ordering, called topological
sorting [14], on the directed acyclic graph of the components.

Of course, an instance of the problem ToR-D-simple may
admit several different solutions. The structure of the problem
constraints some variables to have the same truth values in all
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Network Next Hop Path
200.1.225.0 167.142.3.6 5056 701 6461 4926 4270 4387 i
200.10.112.0/23 167.142.3.6 5056 701 4926 4926 4926 6461 2914 174 174 174 174 14318 i
204.71.2.0 203.181.248.233 7660 1 5056 701 11334 i
213.172.64.0/19 167.142.3.6 5056 1239 1 1755 1755 1755 1755 3216 13099 i
200.33.121.0 167.142.3.6 5056 1 1239 8151 i
204.71.2.0 144.228.241.81 1239 5056 701 11334 i

Fig. 8. Six rows extracted from the BGP routing table of the U. of Oregon dated Apr 18, 2001. Each orientation of the edges of the corresponding graph
yields at least one invalid path.

the solutions, while other variables may assume any true/false
assignment. Coming back to problem ToR-D-simple, this
means that some edges have a constrained customer-provider
orientation, while others may assume different orientations.

Interestingly, the proposed approach permits to “explore”
the solutions space. Namely, if some knowledge is available on
the customer-provider relationships between ASes, it is easy
to force the solution to respect such constraints. For example,
suppose to know in advance that AS vi is a customer of AS
vj and suppose that in the initial arbitrary orientation edge
(vi, vj) is directed from vi to vj . We can impose that the
solution respects the constraint by adding to the 2SAT formula
associated with Problem ToR-D-simple the clause (xi,j∨xi,j).
Of course, adding constraints to the problem decreases the size
of the solution space and may lead to unsatisfiable instances.

B. Discovering the peering relationships

A solution for the ToR-D-simple problem provides an ori-
entation for all the edges of the AS graph (customer-provider
relationships). However, as described in Section II-B, it is
possible to refine the obtained solution reintroducing peering
relationships. In such a section a sufficient condition has been
given for modifying a directed edge into an undirected edge
still having a solution for ToR-D.

Several different criteria can be adopted to measure the
quality of a solution once peerings are reintroduced. For
example, one could say that a solution is especially interesting
if many peering have been discovered. Unfortunately, it can
be shown that, given a solution for a ToR-D-simple instance,
i.e., with no peerings, the problem of producing a solution for
the corresponding ToR-D instance that maximizes the number
of the peering edges is a hard one.

We prove it using a reduction from the INDEPENDENT-
SET problem, in which you are given a graph with nodes
in N and arcs in A and you are asked to find a subset of
the nodes of size k such that no two nodes of the subset are
adjacent. To build the instance of the ToR-D-simple problem
corresponding to the instance of the INDEPENDENT-SET
problem we introduce an edge (vi, vtop) for each node ni ∈ N
and we introduce a path vi, vtop, vj for each arc (ni, nj) ∈
A. The edges of the ToR-D-simple instance can be directed
toward vertex vtop in order to have a solution with no invalid
path. It can be easily shown that the problem of reintroducing
k peering edges without increasing the number of invalid paths
is equivalent to the problem of finding an independent set of
size k. We omit the details of the proof for the sake of brevity.

V. THE DIFFICULTY OF MINIMIZING PATH ANOMALIES

The ToR problem was conjectured to be NP-complete in [2].
In Section III we have shown that finding a solution with zero
invalid path (provided that it exists) is a tractable problem. In
this section we show that the ToR problem is NP-complete in
the general case, that is, when it does not admit an orientation
without invalid paths. In order to prove that the ToR problem
is NP-hard we reduce the NP-complete problem MAX2SAT
to it.

In the remaining part of this section, following a standard
technique when dealing with optimization problems [11], we
refer to their decision versions. For ToR we already defined in
Section II the ToR-D and ToR-D-simple problems (we will
use the latter one). As for MAX2SAT, its decision version
of MAX2SAT-D can be defined as follows. You are given a
set X of boolean variables and a collection C of disjunctive
clauses, each one of 2 literals, where a literal is a variable or a
negated variable. You are asked to find a truth assignment for
the boolean variables in X so that the number of unsatisfied
clauses of C is at most k, where k is a positive integer.

Given an instance of the MAX2SAT-D problem, we will
produce an instance of the ToR-D-simple problem, such that
an orientation with k invalid paths exists iff an assignment
with k unsatisfied clauses of MAX2SAT-D can be found. For
each variable xi ∈ X we introduce two vertices x′

i and x′′
i .

For each clause l1 ∨ l2 we introduce a path of four vertices as
follows. If l1 is the negated literal of variable xi, then the first
two vertices of the path will be x′′

i and x′
i, otherwise they will

be x′
i and x′′

i . Similarly, if l2 is the negated literal of variable
xj , then the last two vertices of the path will be x′

j and x′′
j ,

otherwise they will be x′′
j and x′

j .
Figure 9 shows an example of an instance of the MAX2SAT-

D problem and the corresponding instance of the ToR-D-
simple problem.

Given an orientation for the edges of the graph, if edge
(x′

i, x
′′
i ) is directed from x′

i to x′′
i , then we associate a true

value with the corresponding boolean variable xi, otherwise
we associate a false value. Observe that, given an orientation
for the edges of the graph, if the first edge of the four-vertex
path is directed toward the first vertex of the path, then the
first literal of the corresponding clause is false. Analogously,
if the last edge of the path is directed toward the last vertex
of the path, then the second literal of the clause is false.

If a path is valid, then its first and its last edges are not
simultaneously directed toward the first vertex and the last
vertex, respectively. It follows that, if a path is valid, the
corresponding clause is satisfied. Thus, an orientation for the
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x’1

x’2 x"2

x"1

x’3 x"3

x’4 x"4

Fig. 9. The instance of the ToR-D-simple problem corresponding to the
instance (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x1 ∨ x4) ∧ (x3 ∨ x4) of the
MAX2SAT-D problem.

edges of the graph with k invalid paths corresponds to an
assignment of the boolean variables with k unsatisfied clauses.

Conversely, suppose to have an assignment for the boolean
variables in X that leaves k clauses of the MAX2SAT-D
instance unsatisfied. If variable xi is positive, direct edge
(x′

i, x
′′
i ) toward x′′

i , otherwise direct it toward x′
i. Each sat-

isfied clause corresponds to a four vertex path whose first
and last edge are not simultaneously directed toward its first
and last vertices, respectively, and an orientation for the
intermediate edge of the path can be easily found so that the
path is valid. Thus, an assignment for the boolean variables
that leaves k clauses of the MAX2SAT-D instance unsatisfied
corresponds to an orientation of the ToR-D-simple problem
with k invalid paths.

Since it can be shown that the ToR-D-simple problem
belongs to the class NP (it is easy to count the invalid paths
yielded by a given orientation), it follows that the ToR-D-
simple problem is NP-complete.

Observe that, although we used a reduction of the
MAX2SAT-D problem to show the NP-hardness of the ToR-
D-simple problem, an instance of the ToR-D-simple problem
can not be always mapped to an instance of the MAX2SAT-D
problem (for example, when two paths have one internal edge
in common).

VI. HEURISTICS FOR COMPUTING THE AS
RELATIONSHIPS

In Section V we have seen that the ToR-D problem is
computationally hard and in Section III we have seen that, even
if portions of Internet admit a hierarchical structure without
anomalies, when the data set becomes large, such a “strong”
structure does not exist (see, e.g., the AS 3582 in Table II).

This section aims at giving a method for discovering the AS
relationships in a big chunk of Internet with a small number
of invalid paths. Observe that, even if heuristics are known for
solving the MAX2SAT problem (see, e.g., [17]), they cannot
be straightforwardly applied to ToR-D. In fact, maximizing
the number of satisfied clauses of the 2SAT formula does
not necessarily imply maximizing the number of valid paths.
Another approach would be to reduce ToR-D to a problem
called Maximum Number of Satisfiable Formulas, where a
collection of formulas in conjunctive normal form is given,
and the target is to maximize the number of satisfied formulas.
However, that problem has been shown to be not approximable
in [18] and we were not able to find in the literature effective
and efficient heuristics for that problem.

As a reference data set, with the purpose of comparing
our results with previous contributions, we consider the same
portion of Internet taken into account in [2]. Namely, we
consider the union of all the paths of the Telnet Looking
Glasses of Table I (version of Apr 18, 2001). The total number
of paths of the data set is 3, 423, 460, involving 10, 916 ASes.
The graph of the adjacencies between ASes contains 23, 761
edges. We measure the effectiveness of our heuristics against
such quite large data set.

The target of the proposed heuristics is the computation of
a maximal set of paths (subset of the given set of paths) such
that ToR-D with k = 0 admits a solution. A set of paths is
maximal if no path can be added to the set without introducing
anomalies.

A simple strategy for computing a maximal set of paths is
the following. Starting from the empty set, add all the paths
one-by-one, each time testing if the set admits an orientation
without anomalies. The test can be performed in linear time
by exploiting the algorithm presented in Section III. If the
insertion of a path makes the set not orientable, then it is
discarded, otherwise it is added to the set. At the end of the
process we have a maximal set of paths. However, this simple
strategy is unfeasible. In fact we would have to run the testing
algorithm millions of times. Even if each run takes one second,
we could wait a couple of weeks to have the maximal set.

Motivated by the above discussion, we propose a two steps
approach. First, we compute a very large (albeit not maximal)
set of valid paths with an ad-hoc technique. Second, we check
if the discarded paths can be reinserted with the method
described above.

The computation of the initial very large set of valid paths
is performed as follows. Initialize P with the set of all the
paths.

1) Construct the G2SAT graph considering all the adjacen-
cies of P .

2) Set-up the following data structure: for each undirected
edge (vi, vj) of the AS adjacency graph keep the number
of paths traversing (vi, vj); call it covering of (vi, vj).

3) Compute the strongly connected components of G2SAT

(e.g., with the algorithm in [13]).
4) Identify each variable x such that x and x are in the

same strongly connected component of G2SAT.
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5) Select among those variables the variable xi,j whose
corresponding edge (vi, vj) has the smallest covering
and remove all the paths that cover such an edge from P .

Execute steps (1) through (5) until no strongly connected
component contains both the literals of the same variable.

Observe that at each iteration, since we remove all the
paths traversing a specific edge of the AS graph, the literals
associated with such an edge disappear from G2SAT.

In our data set the starting G2SAT graph contains 47, 522
nodes and 375, 100 edges. It contains one strongly connected
component with 2, 156 literals and 12, 570 edges. The other
components contain just one literal. The set of valid paths
computed during the first step contains 3, 423, 460 paths.
During the second step 222, 764 paths have been re-inserted
without causing anomalies. The final maximal set of paths
contains 3, 399, 389 paths.

After computing a maximal set of paths we have computed
an orientation for the edges of the AS graph obtained from
those paths, using the technique illustrated in Section IV. A
fragment of the computed orientation has been used already
in this paper for the example of Figures 4 and 5. Further,
following the experimental guideline of [2] we have done two
types of checks of the quality of such orientation:

1) We checked how many paths of the original ten data
sets are valid and the percentage of invalid paths.

2) We checked how good is the computed orientation
against four additional data sets that were not input of
the heuristic algorithm. Such extra group of data sets
is, again, available from [15] and contains data from
AS1755, AS2516, AS2548, and AS6893.

TABLE III

COMPARISON BETWEEN THE HEURISTICS PRESENTED IN THIS PAPER AND

THE STATE OF THE ART.

AS # AS Name Anomalies % Anomalies %
([2]) (this paper)

1 Genuity 0.65 0.45
1740 CERFnet n.a. 0.36
3549 Globalcrossing n.a. 0.13
3582 U. of Oregon n.a. 0.57
3967 Exodus Comm. n.a. 0.42
4197 Global Online J. n.a. 0.46
5388 Energis Squared n.a. 0.46
7018 AT&T 0.63 0.21
8220 COLT Internet n.a. 0.22
8709 Exodus, Europe n.a. 0.21

1755 Ebone 2.89 1.52
2516 KDDI 8.97 4.95
2548 MaeWest 1.49 0.19
6893 CW 2.92 0.64

Table III shows that the heuristics described above leaves
a very small percentage of invalid paths. In particular, it
performs significantly better, in terms of invalid paths, than
the cutting edge heuristics of [2]. The invalid paths are about
halved for ASes 1, 1755, and 2516, are about one third for
AS 7018, and are one fourth or less for ASes 2548 and 6893.
These results are, in our opinion, even stronger if we consider

that the percentages of anomalies provided by [2] do not count
as invalid Type 2 paths containing two consecutive undirected
edges instead of one [19]. The basis of such relaxation of the
model is that two ASes may have an “indirect peering”, that
is a peer-to-peer relationship through an intermediate one.

Using the condition discussed in Section II-B we have also
found edges that can be made undirected still preserving the
quality of the solution and have found 3, 936 edges that can
be considered as candidates for being peering edges.

It is worth noting that we have conducted all the experiments
with the same platform described in Section III. The above ex-
periment, involving 3, 423, 460 paths, required a computation
time of about 10 hours.

VII. CONCLUSIONS AND OPEN PROBLEMS

In this paper we introduced a novel approach for computing
the relationships between Autonomous Systems starting from
a set of AS paths, so that the number of invalid paths is kept
small. Also, we proved that the corresponding minimization
problem is NP-complete in the general case (as conjectured
in [2]).

Our approach consists of mapping the problem into a 2SAT
formulation, which can be exploited in several ways. For
example, a solution for the 2SAT formulation can be found in
linear time, if it exists, determining a solution to the original
problem without invalid paths. Also, we take advantage of
the theoretical insight gained with the 2SAT formulation
to conceive new heuristics for the general case which we
experimentally prove to be more effective than previously
presented approaches.

Further details on the experiments, the used source
code, and the data sets are available from the Web-
site http://www.dia.uniroma3.it/∼compunet and
in [20].

The classification of AS relationships in the Internet is a
hot research topic. Its relevance is confirmed by the interest
of other research groups on the same subject. In [21] analogous
and independently discovered results concerning the time
complexity of the general problem and the linearity in the
case of all valid paths are shown. However, while such work
puts more emphasys on the approximability of the problem,
we focus more on the engineering and the experimentation of
an effective heuristic approach.

Several problems remain open. We think it is interesting to
understand why the portion of the Internet seen from a single
observation point is very often orientable without invalid paths.
Is that a matter of size or there is a more subtle property that
can be formally studied? Also, the recognition of AS rela-
tionships can probably take advantage of further information
provided by the BGP routing tables, for example, the size of
the prefixes. Can this lead to a prefix-driven formulation of
the problem instead of the as-path driven formulation adopted
until now? Further, it could be interesting to improve existing
tools for the visualization of the AS graph (see, e.g., [22]) in
order to provide information about the relationships between
ASes.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



ACKNOWLEDGMENTS

We are grateful to the authors of [2] for their help. Also,
we would like to thank Andrea Vitaletti and Debora Donato
for interesting conversations.

REFERENCES

[1] L. Gao, “On inferring autonomous system relationships in the internet,”
IEEE/ACM Transactions on Networking, vol. 9, no. 6, pp. 733–745, Dec
2001.

[2] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz, “Characterizing
the internet hierarchy from multiple vantage points,” in Proc. IEEE
INFOCOM 2002, 2002.

[3] J. W. Stewart, BGP4: Inter-Domain Routing in the Internet. Reading,
MA: Addison-Wesley, 1999.

[4] C. Alaettinoglu, “Scalable router configuration for the internet,” in Proc.
IEEE IC3N, October 1996.

[5] G. Huston, “Interconnection, peering, and settlements,” in Proc. INET,
June 1999.

[6] R. Govindan and A. Reddy, “An analysis of internet inter-domain
topology and route stability,” in Proc. IEEE INFOCOM 1997, April
1997.

[7] R. Govindan and H. Tangmunarunkit, “Heuristics for internet map
discovery,” in Proc. IEEE INFOCOM 2000, March 2000.

[8] W. Theilmann and K. Rothermel, “Dynamic distance maps of the
internet,” in IEEE INFOCOM 2000. Tel-Aviv, Israel: IEEE, March
2000. [Online]. Available: citeseer.nj.nec.com/theilmann00dynamic.html

[9] Z. Ge, D. R. Figueiredo, S. Jaiswal, and L. Gao, “On the hierarchical
structure of the logical internet graph,” in Proc. SPIE ITCom 2001, 2001.

[10] L. Gao, T. G. Griffin, and J. Rexford, “Inherently safe backup routing
with BGP,” in IEEE INFOCOM 2001, Apr 2001, pp. 547–556.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY: W. H. Freeman,
1979.

[12] B. Aspvall, M. F. Plass, and R. E. Tarjan, “A linear-time algorithm for
testing the truth of certain quantified boolean formulas,” Information
Processing Letters, vol. 8, no. 3, pp. 121–123, 1979.

[13] K. Mehlhorn, Data Structures and Algorithms. Springer Publishing
Company, 1984, vol. 1-3.
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