
On Bandwidth Efficiency of the Hose Resource
Management Model in Virtual Private Networks

Alpár Jüttner∗†, István Szabó∗ and Áron Szentesi∗
∗Traffic Analysis and Network Performance Laboratory, Ericsson Research, Budapest, Hungary.

E-mail: {alpar.juttner, istvan.szabo, aron.szentesi}@eth.ericsson.se
†Computer Networks Laboratory, Eötvös University, Budapest,

Pázmány Péter sétány 1/A, H-1117 Hungary, E-mail: alpar@cs.elte.hu

Abstract— The hose resource provisioning model promises to
provide an easy–to–use characterization framework for Virtual
Private Network service offerings. Significant research effort has
recently been spent on proposing new algorithms for provisioning
cost–optimal networks specified according to this new model.
However, a detailed comparison of the bandwidth requirement
for networks designed based on the hose model and networks
designed based on the traditional pipe model has not been
performed. The first contribution of this paper is a detailed
comparison of the bandwidth needs of the two models assuming
a range of network sizes and network topologies. This numerical
evaluation required efficient calculation methods for determining
resource allocation based on the hose model parameters, there-
fore, a linear programming based formulation is also presented
for this purpose. The second contribution is the calculation of a
lower bound for the hose based realization. This lower bound is
very useful in evaluating the two models given that the problem
of provisioning a minimal cost network based on the hose model
specification can only approximately be solved in polynomial
time.

I. INTRODUCTION

Virtual Private Network (VPN) service offerings are playing
an increasing role in the revenue stream of network operators.
Operators need a flexible and bandwidth efficient model to be
able to support a wide variety of customer needs in terms of
capacity, network topology and communication patterns. Tra-
ditionally, resource provisioning for virtual private networks
is done in a way that traffic demand is specified for each
node pair belonging to the VPN and resources are reserved for
point–to–point pipes between these VPN endpoints. Duffield et
al. in [1] propose a different resource provisioning model they
call the “hose model”. In the case of the hose model, there
is no need for a complete traffic matrix, but only the total
amount of traffic which a node injects into the network and
the total amount of traffic which it receives from the network
shall be specified (in fact, the customer’s interface at a network
node — providing access to all other nodes in the network
— is called a hose, and a VPN is constructed of as many
hoses as many nodes it has). In [1] they argued that the hose
model has key advantages compared to the traditional model
(in their terminology, the “pipe model”): ease of specification,
flexibility and multiplexing gain.

Besides the aforementioned undoubtable benefits of the hose
model, there is one cornerstone issue that primarily determines
the feasibility of using this resource provisioning technique in

practice: bandwidth efficiency. Recalling the basic concept of
[1], in case of static resource provisioning, the service provider
has to permanently allocate resources in the backbone network
that can accommodate all the “worst case” traffic patterns the
hose specification allows for. This can give rise to some strong
concerns whether how much overprovisioning does this mean
in reality.

One can argue — as it is done in [1] — that dynamic
reallocation can improve bandwidth efficiency a lot, however,
this is a rather complex and unproven technology. First and
foremost, a new signaling protocol is needed which is capable
of carrying hose–specific state information in order to allow
dynamic resource allocation for the hoses. Not just a widely
accepted standard protocol is missing here, but — to our
best knowledge — there is not even a first research proposal
for such a protocol. Therefore, in the rest of the paper we
concentrate on static provisioning as the only currently viable
alternative.

The main question that immediately comes into the mind
of operators considering to introduce the hose model in their
networks is how does it relate to the traditional “pipe” solution
in terms of bandwidth efficiency. The amount of network
resources required for implementing a hose based VPN is a
result of three main factors:

1) Statistical multiplexing.
2) Resource requirement of dimensioning for the “worst–

case” traffic distribution allowed by the hose parameters.
3) Gain achieved by dynamic capacity reallocation.
In [1] factors 1 and 3 are thoroughly evaluated, although the

analysis of the effect of statistical multiplexing is confined to
the access links. However, up to our best knowledge, factor 2
— although, as we will see, it has a really significant implica-
tion on the resulting bandwidth efficiency — has never been
evaluated in detail, and, especially, it has not been compared
to the pipe approach. Therefore, the main contribution of our
paper is a thorough analysis and comparison of the resource
requirements of VPNs based on the two models, assuming
different network sizes, network topologies, traffic demands,
and different realization alternatives.

The remainder of this paper is organized as follows. Sec-
tion II presents a short survey on the related literature. Sec-
tion III presents our network and traffic model as well as the
realization alternatives we investigate. Section IV presents a

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

linear programming based solution for calculating resource
requirements of arbitrary-topology VPNs based on the hose
model, and also a lower bound for the total resource require-
ment of a hose-based VPN. Section V evaluates the bandwidth
need for realizing a VPN based on the hose and the pipe
model using randomly generated networks and traffic matrices.
Finally, Section VI summarizes the results and lists items for
future work.

II. RELATED WORK

The main concept of the hose model (i. e., the characteri-
zation of user traffic as per-node aggregate ingress and egress
traffic volumes instead of a traffic matrix containing point–
to–point demands for each node pair) has long been present
in the literature under the theory of “nonblocking networks”.
For example, Fingerhut et. al. in an earlier paper [2] present a
network design methodology based on just the same resource
provisioning concept as the hose model. The paper also gives
a short literature survey on the issue.

As we already mentioned in the Section I, Duffield et al.
in [1] were the first to propose this concept for provisioning
IP Virtual Private Networks. In their paper an analysis on the
bandwidth efficiency of the hose model is presented. The eval-
uation is based on trace driven simulations of traffic derived
from a voice network and from a large corporate network.
However, their network–level analysis is limited to a single
topology (a simplified, 12–node approximation of AT&T’s
continental backbone) and they provide numerical results for
network–wide capacity demand for different hose realizations,
but no comparison to the pipe model is presented. Another
problem is that comparison of the bandwidth efficiency of the
traditional pipe and the new hose model — which, in our
opinion, is the main question here — is limited to the access
links, although the real overprovisioning required by the hose
model will be present within the backbone network.

The paper from Duffield et al. [1] inspired research work on
developing algorithms for designing minimum cost networks
based on hose specifications. Kumar et al. in [3] argued that
optimal cost solution for hose realizations shall be based
on tree topology, and they proved that the general problem
with asymmetric hoses (different amount of traffic sent and
received by the hose) and constrained link capacities is NP-
hard. Consequently, they provided a couple of approxima-
tion algorithms with provable performance bounds. Numerical
results presented in the paper concern only the hose case,
no comparison is provided with the pipe model. The latest
important contribution in this field improves the tree–based
hose realization by proposing restoration algorithms [4].

III. NETWORK AND TRAFFIC MODEL

In order to facilitate easy calculations, we defined a simple
network and traffic model that contain only the most important
parameters needed for dimensioning. We represent the network
configuration by a directed graph G = (V,E) (all edges are
bidirectional, they in fact represent two links with two distinct
capacities). Traditionally, subscriber traffic is represented by

a traffic matrix T = {tij}, describing the required bandwidth
between each VPN endpoint pair. In case of the hose model,
we only need to define the maximal ingress traffic (tin) and
the maximal egress traffic (ton) at each site, regardless of the
exact traffic split. From the “traditional” traffic description,
hose model parameters can be calculated as summing up
rows/columns in the traffic matrix (this way, we get the
set of “smallest” necessary hoses that can accommodate the
given traffic matrix). Furthermore, we assume (arbitrary) fixed
routing in the network. Expressed in mathematical terms, for
each pair of nodes u, v we are given a vector ruv ∈ RE

determining the traffic route from u to v that is, for a link
e ∈ E the value ruv(e) shows how much portion of the traffic
from u to v goes through the link e. Restricting ruv(e) to
the integer set of {0, 1} we can model single path routing.
Enabling ruv(e) to take any real value from the interval [0, 1]
makes our notation capable of modeling an arbitrary load
sharing mechanism (e. g. Equal Cost Multipath (ECMP) in
the Open Shortest Path First (OSPF) routing protocol [5]).

A. Dimensioning alternatives

In the following we list the most important dimensioning
approaches (for a more detailed explanation of the different
approaches we refer the interested reader to [1]) and shortly
outline the calculation of the corresponding resource require-
ments. For simplicity, we adopt the naming convention of [1].

1) Customer–pipe model (or, shortly, the pipe model):
This approach models the “traditional” way of provisioning
Virtual Private Networks. Traffic between each (i, j) pair of
customer access points is carried through “customer–pipes”
(i. e., point–to–point connections with a given pre–allocated
capacity). Each customer–pipe is dimensioned according to the
corresponding traffic matrix element tij . Calculating the total
resource allocation is simply to add up the traffic matrix ca-
pacities at each link, of course considering only those origin–
destination site pairs whose route traverses this particular
link (determined by the routing scheme ruv(e)). The routing
pattern can be arbitrary, however, if we consider shortest paths
between each node pair, we can observe that this method
provides optimal1 dimensioning (disregarding the possible
benefits of dynamic re–allocation and statistical multiplexing).
Later on this will enable us to use the total capacity obtained
with the customer–pipe model as a reference to calculate
the relative extra capacity needed by any other dimensioning
approach.

2) Provider–pipe approach: This is probably the simplest
way of dimensioning that can ensure that the resulting ca-
pacities will fulfill the requirements of the hose model based
traffic characterization. Here, we allocate a “provider–pipe”
for the worst–case traffic value between each node pair (i. e.,
the minimum of tik and tol for a node pair (k, l)) along the path
between nodes k and l and simply add up the capacity of these
pipes on each link in order to calculate the total VPN capacity
requirement on the link. Since here we allocate the worst–
case capacity between each node pair independently from

1W. r. t. the total capacity allocated for the VPN in the network.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

other capacity demands, we cannot exploit the interrelation
between the hose constraints. Therefore, as we will see later
at the numerical evaluation, this approach will be the least
bandwidth–effective.

3) Hose–specific state: The basis for improving the bad ca-
pacity utilization of the Provider–pipe approach is that instead
of adding up worst–case pipes on each link, we exploit the
relation of the hose parameters on the hose level. This means
that on links carrying multiple pipes originating from a single
ingress node (or destined to a single egress node) we do not
simply add up the pipe capacities as in the previous case, but
we allocate the minimum of the sum and the respective hose
parameter of the ingress (or egress) node. In this approach,
we look at a whole hose at a time (i. e., traffic originating at
a single site and destined to all other sites and vice versa).

4) VPN–specific state: The third alternative for dimen-
sioning a VPN according to the hose model is to calculate
the worst case traffic of each link by considering all hose
model parameters in the network. The idea is similar to the
calculation of the “Hose–specific state” approach, however,
the calculation of the capacity requirements on the links is
much more complex (there are much more constraints). In
Section IV we present a linear programming formulation for
the calculation of the capacity requirements on the links.

It is obvious that if we assume the same routing pattern,
the following relation holds between the different hose model
variants:

BWprovider−pipe ≥BWhose−specific ≥BWvpn−specific

for the bandwidth of each link and, of course, in total as well.
5) Tree routing: The routing pattern has an important effect

on dimensioning. By letting the traffic take routes other than
the shortest paths, we can obtain solutions with significantly
better resource utilization than in the case of simple shortest
path routing. In [3], the authors consider tree–topology VPNs,
i. e., all the connections are restricted to use a tree subset of
the original topology. It is proven that the optimal tree can be
found by computing the shortest path tree for each nodes, and
choosing the best one from among these trees. For simplicity,
in our investigations we will use arbitrary shortest path trees
(link weights are set to 1) for this purpose. As also explained in
[3], since in any tree each link cuts the VPN into two disjoint
parts, we can very easily calculate the capacity of a link in
this tree, according to the given set of hose parameters. We
simply take the minimum of:

• The total ingress capacity of the sites that are on the
“source side” of the link,

• The total egress capacity of the sites that are on the
“destination side” of the link.

However, since the routing in this case is constrained to use
a tree, the path length can be significantly higher than in case
of the VPN–specific state version, which might give rise to
delay concerns. Also, there will be extra capacity required to
implement the necessary redundancy [4].

IV. LINEAR PROGRAMMING BASED CAPACITY

CALCULATION

In this section we present two linear programming formu-
lations. The first formulation computes the smallest necessary
link capacities considering a given network topology, a set of
hose parameters and a system of routing paths2. The second
formulation provides a lower bound on the total required
capacity for a given network topology and set of hose param-
eters. This bound can be explicitly calculated by our linear
programming formulation in case of smaller–size networks.
The meaning of this lower bound is that it is impossible to
go below this number with any kind of hose model–based
dimensioning, using any link capacity allocation and any kind
of routing (including load sharing).

At the end of this section we also outline possible further
research directions, applying our formulation for network
topology and routing optimization.

A. Calculation of link capacities for the “VPN-specific state”
case

Based on the notations of Section III, the necessary capacity
for link e can be calculated as:

max
∑

u,v∈V

ruv(e)xuv (1a)

subject to

xuv ≥ 0 ∀u, v ∈ V (1b)
∑

v∈V

xuv ≤ tou ∀u ∈ V (1c)

∑

u∈V

xuv ≤ tiv ∀v ∈ V (1d)

(1e)

Here the variable xuv indicates the amount of the traffic that
goes from u to v in a certain traffic situation. Inequalities (1c)
and (1d) force the traffic situation to fulfill the ingress and
egress traffic limits and we find maximum possible traffic on
the link e.

Since the above formulation is a pure linear program with
|V |2 variables and 2|V | constraints, it can be easily solved with
any LP-solver software library (in our numerical evaluations
we used the software package lp solve [6]). Of course we
have to repeat this process for each edge e ∈ E in order to
get the total necessary bandwidth.

In case when the speed of calculation is of great importance,
an alternative method can be used instead of using a general
LP library. Namely, the above linear program can also be
formalized as a maximum cost flow problem. For a certain link
e we define the graph He := ({s, t} ∪ V1 ∪ V2, E1 ∪ E2 ∪ E3)
(see Fig. 1), where V1 and V2 are two disjoint copies of the

2Note that our formulation is able to handle load sharing (such as ECMP)
as well as single path routing.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

2V

V1

t

s

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

E1

2E

E3

Fig. 1. Flow formulation

set V and

E1 := {(s, v) : v ∈ V1} (2a)

E2 := {(u1, v2) : u1 ∈ V1, v2 ∈ V2, ruv(e) > 0} (2b)

E3 := {(v, t) : v ∈ V2}. (2c)

The capacities of the edges (s, v1) ∈ E1 and (v2, t) ∈ E3
are tov and tiv, respectively. The edges in E2 have infinite
capacities. The cost of each edge (u1, v2) ∈ E2 is re

uv . All
other edges have 0 cost.

It can be seen as well, that the optimum value of the above
maximum cost s-t flow problem is just the worst case load of
the link e in the hose model.

B. Lower bound

The cut condition is used in order to get a lower bound to
the original problem.

For a set X ⊆ V , let

δ(X) := {(uv) ∈ E : u ∈ X, v �∈ X},

the set of the edges leaving the node set X .
It is clear that for any set X ⊂ V , all the traffic from

X to V \ X will use at least one edge from δ(X), so, the
sum of the capacities of the edges in δ(X) must be at least
min(

∑
v∈X tov,

∑
v∈V \X tiv). Thus a solution of the following

linear program gives a lower bound of the sum of the necessary
capacities irrespectively of the used routing method:

min
∑

e∈E

xe (3a)

subject to

xe ≥ 0 ∀e ∈ E (3b)
∑

e∈δ(X)

xe ≥ min(
∑

v∈X

tov,
∑

v∈V \X

tiv) ∀X�V,X �=∅ (3c)

Unfortunately, this formulation has a huge number of con-
straints. In fact, since graph G is symmetric (i.e. for each link
e ∈ E there exists another link e′ ∈ T between the same nodes
but in the opposite direction), the variables of the oppositely

directed edges can be merged together, thus the number of
variables and constraints can be halved. In order to give this
formulation, let E be the set of undirected edges corresponding
to the edges in E. For a set X ⊆ V let d(X) denote the set of
undirected edges having exactly one endpoint in X . Finally,
let s ∈ V be an arbitrary fixed node. With these notations
the lower bound calculation transforms to the following linear
program:

min
∑

e∈E

xe (4a)

subject to

xe ≥0 e ∈ E (4b)
∑

e∈d(X)

xe ≥min(
∑

v∈X

tov,
∑

v∈V \X

tiv)+

min(
∑

v∈X

tiv,
∑

v∈V \X

tov)
∀X�V,
s ∈ X

(4c)

To solve this linear program, we use a simple row generation
method. In each iteration we have a linear program that is a
subprogram of the above one. We start with an empty program
only with the non-negativity constraints. Then in each iteration
we find the optimal solution x to the current problem. After
this we check whether x is a feasible solution to (4). If it does
not satisfy all of the constraints (4c), we add some of the failed
inequalities to the stored linear program, and we iterate this
until the found vector x is a feasible solution to (4).

The above simple method makes it possible to compute a
theoretical lower bound of the total link capacities up to 22
nodes on a Sun Ultra-5 workstation.

C. Network optimization

Although in this paper the focus is not on network optimiza-
tion but only the comparison of different resource allocation
methods, we mention that the fast method presented in Sec-
tion IV-A for computing the necessary link capacities of a
certain network topology and routing configuration makes it
possible to develop an efficient algorithm for optimizing the
routing or the network topology.

These algorithms can be based on several kinds of meta-
heuristics such as Simulated Annealing [7], [8], Genetic
Algorithm [9] or Tabu Search [10]. All these are general
optimization methods that require a subroutine to compute
the cost of a given feasible solution and they are able to
find a solution with low cost by starting with one or more
feasible solutions and heuristically varying them in several
iterations. In the terminology of metaheuristics the set of
feasible solutions is called “state space”. Of course, it depends
on the exact optimization task.

For example, if the task is to find a network topology with
minimal total bandwidth (or with minimal cost where the cost
of a link is a function of its bandwidth), and the routing is
along the minimal hop paths, then each element of the state
space consists of a possible set of installed links. Such a set

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

determines the routing, thus the required bandwidths of the
links can be computed using the algorithm of Section IV-A.

As another example, in case of optimization of the routing
in OSPF, the network topology is given, the routing is along
the shortest paths according to the weights on the links and
the optimization task is to find those weights for the links that
minimize the total bandwidth, or the total link overload in the
worst case if the capacities of the links are given. In this case
the elements of the state space are the possible configurations
of the administrative weights.

V. NUMERICAL RESULTS

Probably the most important characteristic that determines
the usability of the hose model is the bandwidth efficiency
— the numerous other advantages (ease of specification,
flexibility) will probably never pay off if the new model
requires significant overprovisioning compared to traditional
resource provisioning algorithms. As we have outlined in the
Introduction, bandwidth efficiency is the result of three main
factors:

1) Statistical multiplexing.
2) Resource requirement of dimensioning for the “worst–

case” traffic distribution allowed by the hose parameters.
3) Gain achieved by dynamic capacity reallocation.
We devote Sections V-B and V-C to the thorough numerical

evaluation of factor 2. In addition, we present further analysis
on factor 1 (statistical multiplexing) in Section V-D in order to
provide further insight to the applicability of the hose model.

A. Methodology and definitions

Evaluation of factor 2 (i. e., the extra capacity needed to
dimension for all the worst case traffic situations allowed by
the hose model) can be done as the calculation of bandwidth
volumes (we want to compare the required bandwidth reserva-
tions), therefore, there is no need to do any detailed network
simulation; it is perfectly enough if we stay at the level of the
graph–theoretical model defined in Section III. On the other
hand, factor 1 will need a more detailed traffic description,
which will be presented in Section V-D.

Our goal when trying to characterize the required bandwidth
reservation of the hose model was to be able to compare
its total network capacity requirement to the customer–pipe
model. Naturally, we wanted to have “comparable” network
examples with “comparable” traffic volumes when doing the
evaluation, which is not trivial if we recall that the main
difference of the hose and the customer–pipe dimensioning
models is in the traffic description. Our solution for this was
the following:

1) We generate a traffic matrix T = {tij} containing
point–to–point bandwidth values required to dimension
according to the customer–pipe model.

2) As a “comparable” hose characterization we calculate
the hose parameters as the respective sums of the rows
and columns of T (tin =

∑N
k=1 tnk, ton =

∑N
k=1 tkn).

As we have already mentioned in Section III, this
way we calculate the smallest possible hose that can

Fig. 2. Typical test topologies: sparse (link/node=2.5)
and dense (link/node=6) — 50 nodes

accommodate traffic matrix T (and, of course, many
others).

After dimensioning the same network according to these
inputs with both models (considering any of the different
realization alternatives of the hose model, see Section III),
we calculate the ratio between the resource requirements of
the hose and the customer–pipe models, which we consider a
good indicator of the required extra capacity. In the following
we call this ratio as the overprovisioning factor. The benefit
of using this measure is twofold:

1) It describes the required extra link capacity in an easy–
to–understand way.

2) It eliminates the dependence on the total traffic volume
(of course, dependence on traffic distribution still re-
mains).

Of course, the overprovisioning factor defined this way
will depend very much on the selection of the traffic matrix
T . We tried to eliminate this dependence using a statistical
approach: calculating a large number (a couple of hundreds) of
randomly generated T ’s for each topology, we took the average
of the resulting overprovisioning factors and used this value
for comparison. The generation of the random T matrices was
simply done by generating each tij element of T separately
as an independent, uniformly distributed random variable. This
way, the resulting hose parameters will be rather asymmetric
(tin and ton can be very different).

Our initial tests have shown that the (average) overprovi-
sioning factor will depend also very much on the network size
and the type of topology. Therefore, we have calculated this
value for a series of networks of different sizes and topology
types. This, however, implies that we had to generate random
topologies. We have used our own Random Graph Generator
described in [11]. We have developed this generator utilizing
some of the results published recently in this area, e. g. [12].

B. Dependence of the overprovisioning factor on the network
size

In our first test the main goal was to capture the dependence
of the overprovisioning factor on the number of nodes in the
network. However, in order not to neglect the effect of the
“density” of the network topology (i.e., the ratio of the number
of links and nodes in the network), in the first series of tests
we have used two topology types. The first (sparse) one with
a link/node ratio of 2.5, and a second (dense) one with a
link/node ratio of 6 (Fig. 2).

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

O
ve

rp
ro

vi
si

on
in

g
fa

ct
or

Number of nodes

Provider-pipe
Hose-specific state
VPN-specific state

Tree routing

Fig. 3. Dependence of the overprovisioning factor on the network size (sparse
topology type)

0

5

10

15

20

25

30

35

40

45

50

10 15 20 25 30 35 40 45 50

O
ve

rp
ro

vi
si

on
in

g
fa

ct
or

Number of nodes

Provider-pipe
Hose-specific state
VPN-specific state

Tree routing

Fig. 4. Dependence of the overprovisioning factor on the network size (dense
topology type)

As it is obvious from the charts Fig. 3 and Fig. 4, the
“provider–pipe” and the “hose–specific state” versions of the
hose model are practically useless, since the overprovisioning
factor increases linearly with the network size3. In the follow-
ing we don’t waste any more words on them.

Instead, we have magnified the results of the “VPN–specific
state” and the “Tree routing” versions in a single chart (Fig. 5).

We can observe that the overprovisioning factor of the
“VPN–specific state” version is in the range of 2.5–6 for
the sparse and 5–9 for the dense topology type. This means
that for example in case of a 30 site network we need 4.5–7
times the capacity of the traditional customer–pipe network to
dimension it with the hose model. We can also note that the
overprovisioning factor stays below 2 in all cases if we restrict
the routing to a tree. Moreover, the average overprovisioning
factor for the “VPN–specific state” version increases with the

3This is no surprise since they implement the same specification as the
“VPN–specific state” version, however, with less efficient resource allocation,
as also pointed out in [1].

1

2

3

4

5

6

7

8

9

5 10 15 20 25 30 35 40 45 50

O
ve

rp
ro

vi
si

on
in

g
fa

ct
or

Number of nodes

VPN-specific state, dense topology
VPN-specific state, sparse topology

Tree routing, dense topology
Tree routing, sparse topology

Fig. 5. Dependence of the overprovisioning factor on the network size (both
topology types)

Fig. 6. Topologies with the least and the most number of links

network size, while it is more or less constant if we use tree
routing.

C. Dependence of the overprovisioning factor on the network
density

We can also note from Fig. 5 that in case of the “VPN–
specific state” version the overprovisioning factor also in-
creases with the density of the topology. We decided to do
some tests also to investigate this issue. We have generated
a series of networks with the same number of nodes but
increasing number of links. We have investigated networks
with 30 nodes. The number and location of the sites were the
same in all test cases, but we have gradually increased the
number of links. The topology with the least number of links
had a link/node ratio of 3, while the topology with the most
number of links had a link/node ratio of 19 (Fig. 6).

Fig. 7 shows how the overprovisioning factor of the “VPN–
specific state” version increases with the topology density.

The overprovisioning factor for the “Tree routing” version
is, however, constant with respect to the number of links4

(Fig. 8).
Our main observation is, therefore, that the average overpro-

visioning factor for the “VPN–specific state” version increases
with the topology density, while it is more or less constant for
the “Tree routing” version.

4Of course, this is not surprising since in this case we use only a tree subset
of the topology, therefore the additional links will not affect the results very
much.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0

2

4

6

8

10

12

14

16

100 200 300 400 500 600

O
ve

rp
ro

vi
si

on
in

g
fa

ct
or

Number of links

VPN-specific state

Fig. 7. Overprovisioning factor of the “VPN–specific state” version as the
function of the number of links

0

0.5

1

1.5

2

2.5

3

100 200 300 400 500 600

O
ve

rp
ro

vi
si

on
in

g
fa

ct
or

Number of links

Tree routing

Fig. 8. Overprovisioning factor of the “Tree routing” version as the function
of the number of links

In our final test we tested the dependence of the overpro-
visioning factor on the number of links in case of a smaller
network. Our goal with this test was twofold:

1) We wanted to calculate our lower bound formula (it only
works on smaller networks).

2) We wanted to analyze the effect of establishing ad-
ditional links in the network (here, instead of having
different networks with increasing topology density, we
added links one–by–one to the same network).

The topology with the least number of links and the one
with the most number of links can be seen in Fig. 9.

Fig. 10 depicts the total resource requirement of the “VPN–
specific state” version, the “Tree routing” version, as well as
the lower bound and the customer–pipe model in a single
chart. Results are similar to what we found earlier in the larger
network.

The overprovisioning factors (Fig. 11) look also similar to
Fig. 7 and Fig. 8.

The most important observation is that (unlike in the case of

Fig. 9. Topology with the least and the with the most number of links (tree
vs. full mesh)

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

20 30 40 50 60 70 80 90 100 110
T

ot
al

 c
ap

ac
ity

 r
eq

ui
re

m
en

t
Number of links

VPN-specific state
Tree routing

Lower bound
Customer pipes

Fig. 10. Dependence of total resource requirement on the number of links
in the network (small example)

the customer–pipe model) in most cases we do not do any good
to the network bandwidth efficiency by introducing new links
in case of the “VPN–specific state” hose version (note that
in case of the “Tree routing” hose version adding new links
has no practical meaning because always only a tree subset is
used). This behavior can be better understood if we recall the
fundamental difference between the traffic description of the
two models:

• In case of the customer–pipe model, if we notice a
significant traffic increase between two particular sites,
it can be reasonable to introduce a direct link between
those two sites in order to eliminate congestion.

• In case of the hose model, however, we do not have
information on the traffic distribution on a site–pair basis.
We can only notice that the total ingress traffic at a site
has increased. This, however, gives us no direct clue
where to put a new link.

The main conclusion of this last test is that in case of the
hose model the addition of new links to the topology should
be done along connectivity, reliability, QoS etc. reasons, but
definitely not for increasing bandwidth efficiency.

D. On the flexibility of the hose model

As we have outlined in the beginning, probably the most
important benefit of the hose model is its flexibility to changes
in the traffic matrix. It means that traffic from a hose endpoint
can arbitrarily be distributed among different destinations
provided that the aggregate traffic demand does not exceed
the hose specification. In case of the pipe model, the network

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0

2

4

6

8

10

20 30 40 50 60 70 80 90 100 110

O
ve

rp
ro

vi
si

on
in

g
fa

ct
or

Number of links

VPN-specific state
Tree routing

Fig. 11. Dependence of the overprovisioning factor on the number of links
in the network (small example)

can only satisfy the quality demands of the offered traffic if
the traffic from a particular endpoint conforms to a predefined
distribution among the destinations. A deviation from the
traffic distribution assumed during the provisioning process
can have different consequences depending on the way traffic
is handled in the network:

1) If the traffic is handled at packet level, an unexpected
increase over a given path results in larger than expected
packet loss and may also result in larger than expected
packet delay due to increased buffer occupancy.

2) If the abstraction of “call” is used in the network, and
there is some sort of call admission control exercised
by the VPN endpoints for the calls destined to other
VPN endpoints, then the result of a deviation from
the originally assumed traffic distribution will be an
unexpectedly high blocking probability.

An important question is if this flexibility can compensate
for the price of the required extra capacity. Generally and
comprehensively investigating the behavior of the network
in the above two cases seem to be a daunting task. There
are many legitimate combination of traffic mixes, network
topologies and traffic source models.

There is a special case, which is relatively easy to charac-
terize, and due to its increasing importance, the results are ed-
ifying. More and more corporations are establishing IP virtual
private networks for carrying voice (telephony) traffic between
their premises at different geographical locations, more and
more operators are offering IP telephony services, and incum-
bent telecommunication service providers are also willing to
carry voice traffic between the IP telephony gateways using
IP VPN technology over a multiservice IP backbone network.
Of course, these telephony VPNs can be provisioned using
either the pipe or the hose model. There is a widely accepted
method for calculating capacity requirement for telephony
traffic, which has been used for many years in Public Switched
Telephony Networks and it can also be used for IP telephony
systems [13]. The offered traffic shall be specified in units of

Erlang, and the expected blocking probability shall also be
given. The Erlang-B formula can then provide the number
of channels required. The bandwidth demand for a given
route can finally be calculated by multiplying the number of
channels with the bandwidth demand of a single voice call.
In case of the the pipe model the offered traffic in Erlang is
given for each pair of nodes in the VPN, which enable the
calculation of the bandwidth demand between each node pair.
In case of the hose model, the total traffic in Erlang injected
into the network by a VPN endpoint is given, and the Erlang
formula is used to calculate the total bandwidth that can be
injected into the network by the endpoints.

In order to quantify the robustness of the two dimensioning
methods, we assume a network carrying voice traffic only
and use the Erlang formula for dimensioning and blocking
probability calculations.

The actions taking place when an end user initiates a new
call can be followed in Figure 12. Note that the message names
appearing in the figure are for illustration purposes only, they
don’t imply the use of any particular call control protocol.

IP Core Network
Access

Network
Access

Network

IPTelephony
Gateway

IPTelephony
GatewayCalling

Party Called
Party

1. Setup

2. CAC decision: YES!!!

4. CAC decision: YES!!!

6. Accept

7. Accept
8. Accept

a.)

3. Setup

5. Setup

1. Setup

2. CAC decision: NO!!!

b.)
3. Reject

Fig. 12. Sequence of actions for successful (a.) and unsuccessful (b.) call
establishment

A call setup message travels through the access network of
the calling party, and arrives at the first IP telephony gateway.
The gateway derives the address of the remote gateway from
the address of the called party received in the call setup
message. It compares the resource requirement of the new call
to the resources available in its egress hose (to the resources
available in its pipe towards the selected remote gateway). If
there is space for the new call, it is accepted, and the call
establishment message is forwarded to the remote gateway
(Step 3 of Figure 12.a). If the resource limit of the hose/pipe
would be exhausted, the new call is rejected (Step 3 of
Figure 12.b). When making the call admission control decision
(Step 4), the second gateway uses its own egress hose/pipe
parameters for making the call admission control decision for
the reverse direction.

The calculation is as follows:

1) We generate a network topology, a traffic matrix and the

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

hose model parameters as we did in the previous section.
2) We dimension the links by the pipe method. Obviously,

the resulting network capacities will be able to carry
the original traffic matrix with the grade of service
guarantees assumed at the dimensioning.

3) Now we randomly generate a new traffic matrix that is
still within the original hose model parameters.

4) Then we try to enter the new traffic matrix to the net-
work. We calculate the blocking probabilities assuming
the pipe capacities are according to the dimensioning in
Step 2.

5) We go back to step 3 until we obtain a good statistical
average on the blocking probability.

6) We repeat the calculation of extra blocking using dif-
ferent factors of pipe overdimensioning compared to the
original resource allocation of Step 2.

This way we can compare the amount of blocking caused
by the changing traffic conditions in the pipe model compared
to the unaltered blocking rate provided by the hose model. It
is very difficult to come up with a reasonable model about the
variation of the traffic matrix. We considered the following
three methods:

• When generating the randomly altered traffic matrix, the
maximum change in the traffic volume to a particular
destination is maximized by a fraction of the original
traffic in this direction. In this case, an overprovisioning
factor of 2 will result in no extra blocking given any
change of the traffic matrix. Since this overprovisioning
factor is around the same level as the overprovisioning
requirement of the best known hose realization, there is
no point in running simulations for finer characterization
of this case.

• When generating the altered traffic matrix, the capacity
requirement in a given direction is maximized by a
fraction of the total load, and it does not depend on the
network size.

• When generating the altered traffic matrix, the capacity
requirement in a given direction is maximized by a
fraction of the total load, and this maximum value is
scaled down as the network size increases.

Calculation results using case 2 and in case 3 are shown in
Fig. 13 and Fig. 14. Note that the hose model as well as the
default (step 2) dimensioning for the pipes has been calculated
for providing blocking probability of 0.001.

In Fig. 13 we maximized the load of a single pipe as 1/3 of
the total load generated by a specific node. Of course, when the
network size increases this leads to more and more unequal
traffic distributions. This results in a significant increase in
blocking probabilities compared to the hose case. Observe
that even an overprovisioning factor of 5.5 can not prevent
a significant increase in blocking probabilities in case of large
networks dimensioned according to the pipe model.

Taking a look at Fig. 14 reveals that assuming less stressing
traffic distributions leads to much nicer behavior. This chart
depicts the case when the load to a specific site is maximized

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 18 26 34 42 50 58 66 74

of nodes

b
lo

ck
in

g
p

ro
b

ab
il

it
y

default

over1.2

over1.7

over2.2

over3.2

hose

over3.5

over4.0

over4.5

over5.5

Fig. 13. Blocking probability due to inaccurate traffic model estimation
assuming different overprovisioning factors (case2)

0

0.1

0.2

0.3

0.4

0.5

0.6

10 18 26 34 42 50 58 66 74

of nodes
b

lo
ck

in
g

p
ro

b
ab

il
it

y

default

over1.2

over1.7

over2.2

over3.2

hose

Fig. 14. Blocking probability due to inaccurate traffic model estimation
assuming different overprovisioning factors (case3)

as: total load · 4/network size. We can see that an over-
provisioning factor of 3.2 which is significantly less than the
overprovisioning requirement of the VPN-specific state based
realization of the hose model renders the blocking performance
comparable to that of the hose model.

We must emphasize that all these tests were based upon
certain assumptions about the distribution of the traffic be-
tween the peer client nodes. Another limitation of these results
is that we assume that the hose parameters can precisely
be determined a priori5. Of course, if the users generate
more traffic the hose model also results in larger blocking
probabilities.

VI. CONCLUSIONS

In this paper we investigated the bandwidth efficiency of
the recently proposed hose virtual private network provision-
ing model. We derived numerical results for comparing the
bandwidth requirement of different realization alternatives of
the hose model with the traditional pipe model, assuming a
wide range of network sizes and topologies.

As far as bandwidth efficiency is concerned we note that
the average overprovisioning factor increases with the network
size even for the VPN–specific state realization, which is
the most sophisticated realization of the hose model using

5This seems to be a realistic assumption. For example, the number of echo
cancellers or the voice coding capacity of the codecs in the IP telephony
gateways can be used for calculating a strict upper bound of the amount of
traffic injected by the node.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

shortest path routing. Furthermore, we observed that the
overprovisioning factor is more or less constant for tree
routing based hose realizations. We further observe that the
average overprovisioning factor for the VPN–specific state
hose realization increases with the topology density, while
it is again basically constant for for tree routing based hose
realizations and that the addition of new links to the topology
does not improve bandwidth efficiency in case of the VPN–
specific state realization.

The experiments with randomly altered traffic matrices
revealed that a significant amount of extra blocking is incurred
by the pipe model if extreme traffic distributions between
the peer nodes are also considered. However, when limiting
somehow the level of uncertainty in the traffic matrix, modest
level of overprovisioning (a factor of 2-3) can eliminate the
extra blocking.

Our main conclusion can be stated as that the hose model in
general is a viable alternative to the traditional pipe model in
all cases when the uncertainty of the traffic distribution is high.
The overprovisioning of the hose model can be well offset by
the benefits it delivers in terms of flexibility, reduced blocking,
decreased traffic loss, ease of specification.

The numerical results provided in this paper makes the
picture about the hose model more complete. Together with
the other recent results available in the literature, an operator
can now decide in each and every case whether to opt for
the pipe model or for the hose model. Interesting theoretical
questions, however, still remain for future work. Such a study
item is to find an upper bound of the overprovisioning factor
or to show that such an upper bound does not exist.

ACKNOWLEDGMENTS

The authors would like to thank Peter Dahlberg, Lars
Westberg and Balázs Szviatovszki for many useful discussions.

REFERENCES

[1] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. V. der Merwe, “A flexible model for resource management
in virtual private networks,” in ACM Sigcomm, San Diego, California,
USA, August 1999.

[2] J. A. Fingerhut, S. Suri, and J. S. Turner, “Designing least-cost non-
blocking broadband networks,” Journal of Algorithms, vol. 24, no. 2,
pp. 287–309, August 1997.

[3] A. Kumar, R. Rastogi, A. Silberschatz, and B. Yener, “Algorithms
for provisioning virtual private networks in the hose model,” in ACM
Sigcomm, Cambridge, Massachusetts, USA, August 2001.

[4] G. Italiano, R. Rastogi, and B. Yener, “Restoration algorithms for virtual
private networks in the hose model,” in IEEE Infocom, New York, New
York, USA, June 2002.

[5] J. Moy, “OSPF version 2,” Internet Engineering Task Force, Request for
Comments (Proposed Standard) 2328, Apr. 1998.

[6] M. Berkelaar and J. Dirks, “lp solve 2.2,”
ftp://ftp.es.ele.tue.nl/pub/lp solve.

[7] B. Hajek, “A tutorial survey of theory and applications of simulated
annealing,” in Proceedings of 24th Conference on Decision and Control,
Ft. Lauderdale, Florida, USA, December 1985.

[8] B. Hajek, “Cooling schedules for optimal annealing,” Mathematics of
Operation Research, vol. 13, no. 2, May 1988.

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, Readings, MA, USA, 1989.

[10] F. Glover and M. Laguna, Tabu Search. Kluwer Academic, 1997.
[11] D. Orincsay and B. Józsa, “Random graph generator (for telecommuni-

cation networks),” Ericsson Technical Report, April 1999.
[12] E. W. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an

internetwork,” in Proceedings of IEEE Infocom ’96, San Francisco, CA.,
USA, March 1996.

[13] http://www.erlang.com.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

