
Optimal replacement policies for non-uniform cache
objects with optional eviction

Omri Bahat Armand M. Makowski
Department of Electrical and Computer Engineering

and the Institute for Systems Research
University of Maryland College Park

College Park, Maryland 20742
Email: Obahat@glue.umd.edu armand@isr.umd.edu

Abstract— Replacement policies for general caching applica-
tions and Web caching in particular have been discussed exten-
sively in the literature. Many ad-hoc policies have been proposed
that attempt to take adavantage of the retrieval latency of
documents, their size, the popularity of references and temporal
locality of requested documents. However, the problem of finding
optimal replacement policies under these factors has not been
pursued in any systematic manner. In this paper, we take a
step in that direction: We first show, still under the Independent
Reference Model, that a simple Markov stationary replacement
policy, called the policy C�

0 , minimizes the long-run average
metric induced by non-uniform document costs when document
eviction is optional. We then propose a framework for operating
caching systems with multiple performance metrics. We do so by
solving a constrained caching problem with a single constraint.
The resulting constrained optimal replacement policy is obtained
by simple randomization between two Markov stationary optimal
replacement policies C�

0 but induced by different costs.

I. INTRODUCTION

Web caching aims to reduce network traffic, server load
and user-perceived retrieval latency by replicating “popular”
content on proxy caches that are strategically placed within
the network. Key to the effectiveness of such proxy caches is
the implementation of document replacement algorithms that
can yield high hit ratios. A large number of techniques for file
caching and virtual memory replacement have been developed
[1], [2], [5] but unfortunately they do not necessarily transfer
to Web caching as explained below. Despite the ever decreas-
ing price of storage devices, the optimization or fine tuning of
cache replacement policies is not a moot point for the benefits
of even slight improvements in cache performance can have
an appreciable effect on network traffic, especially when such
gains are compounded through a hierarchy of caches.

In the context of conventional caching the underlying work-
ing assumption is the so-called Independent Reference Model,
whereby document requests are assumed to form an i.i.d.
sequence. It has been known for some time [1], [2], [5] that
the miss rate (equivalently, the hit rate) is minimized (equiva-
lently, maximized) by the so-called policy A0 according to
which a document is evicted from the cache if it has the
smallest probability of occurence (equivalently, is the least
popular) among the documents in the cache. More precisely,
let doc(1), . . . , doc(N) denote the set of documents to be
requested and let p(j) denote the probability of reference

of doc(j) (j = 1, . . . , N). When the cache is full and the
requested document is not in the cache, A0 prescribes

Evict doc(i)
if i = arg min (p(j) : doc(j) in cache) . (1)

In practice, the popularity vector p = (p(1), . . . , p(N)) is not
available and needs to be estimated on-line from incoming
requests. This naturally gives rise to the LFU (Least Frequently
Used) policy which mimics A0 through the Certainty Equiva-
lence Principle: When the cache is full and the kth requested
document is not in the cache, LFU prescribes

Evict doc(i)
if i = arg min (p̂k(j) : doc(j) in cache) (2)

where p̂k(j) is the frequency estimate of p(j) based on the
trace measurements up to the kth request. The focus on miss
and hit rates as performance criteria is reflective of the fact
that historically, pages in memory systems were of equal size,
and transfer times of pages from the primary storage to the
cache were nearly constant over time and independent of the
document transferred.

Interestingly enough, even in this restricted context, the
popularity information as derived from the relative access
frequencies of objects requested through the cache, is seldom
maintained and is rarely used directly in the design of cache
replacement policies. This is so because of the difficulty to
capture this information in an on-line fashion in contrast
with other attributes of the request stream, said attributes
being thought indicative of the future popularity of requested
objects. Typical examples include temporal locality via the
recency of access and object size which lead very naturally to
the Least-Recently-Used (LRU) and Largest-File-First (LFF)
replacement policies, respectively.

At this point it is worth stressing the three primary differ-
ences between Web caching and conventional caching:

(1): Web objects or documents are of variable size whereas
conventional caching handles fixed-size documents or pages.
Neither the policy A0 nor the LRU policy (nor many other
policies proposed in the literature on conventional caching)
account for the variable size of documents;

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

(2): The miss penalty or retrieval cost of missed documents
from the server to the proxy can vary significantly over time
and per document. In fact, the cost value may not be known
in advance and must sometimes be estimated on-line before a
decision is taken. For instance, the download time of a Web
page depends on the size of the document to be retrieved,
on the available bandwidth from the server to the cache, and
on the route used. These factors may vary over time due
to changing network conditions (e.g., link failure or network
overload);

(3) Access streams seen by the proxy cache are the union of
Web access streams from tens to thousands of users, instead
of coming from a few programmed sources as is the case in
virtual memory paging, so the Independent Reference Model
is not likely to provide a good fit to Web traces. In fact, Web
traffic patterns were found to exhibit temporal locality (i.e.,
temporal correlations) in that recently accessed objects are
more likely to be accessed in the near future. To complicate
matters, the popularity of Web objects was found to be highly
variable (i.e., bursty) over short time scales but much smoother
over long time scales.

These differences, namely variable size, variable cost and
the more complex statistics of request patterns, preclude an
easy transfer of caching techniques developed earlier for com-
puter system memory. A large number of studies have focused
on the design of efficient replacement policies, e.g., see [8]
[9] [10] [11] and references therein for a sample literature.
Proposed policies typically exploit either access recency (e.g.,
the LRU policy) or access frequency (e.g., the LFU policy)
or a combination thereof (e.g., the hybrid LRFU policy). The
numerous policies which have been proposed are often ad-
hoc attempts to take advantage of the statistical information
contained in the stream of requests, and to address the factors
(1)-(3) above. Their performance is typically evaluated via
trace-driven simulations, and compared to that of other well-
established policies.

As should be clear from the discussion above, the classical
set-up used in [1], [2] and [5] is too restrictive to capture
the salient features present in Web caching. Indeed, the
Independent Reference Model fails to simultaneously cap-
ture both popularity (i.e., long-term frequencies of requested
documents) and temporal locality (i.e., correlations among
document requests). It also does not account for documents
with variable sizes. Moreover, this literature implicitly assumes
that document replacement is mandatory upon a cache miss,
i.e., a requested document not found in cache must be put
in the cache. While this requirement is understandable when
managing computer memory, it is not as crucial when consid-
ering Web caches,1 especially if this approach results in simple
document replacement policies with good performance.

With these difficulties in mind, it seems natural to seek to
extend provably optimal caching policies in several directions:
(i) The documents have non-uniform costs as we assimilate

1In Web caching timescales are slower than in conventional caching due to
variable network latencies.

size and variable retrieval latency to cost, with c(j) denot-
ing the cost of retrieving doc(j) (j = 1, . . . , N), (ii) there
exist correlations in the request streams, and (iii) document
(re)placement is optional upon a cache miss.

In this paper, we take an initial step in the directions (i) and
(iii): While still retaining the Independent Reference Model,
we consider the problem of finding an optimal replacement
policy with non-uniform retrieval cost (c(1), . . . , c(N)) under
the option that a requested document not in cache is not
necessarily put in cache after being retrieved from the server.
Interestingly enough, this simple change in operational con-
straints allows us to determine completely the structure of the
replacement policy that minimizes the average cost criterion
(over both finite and infinite horizons). Making use of standard
ideas from the theory of Markov Decision Processes (MDPs)
[6], [13], we show [Theorem 1] that the optimal policy is the
(non-randomized) Markov stationary policy C�

0 that prescribes

Evict doc(i) if (3)

i = arg min(p(j)c(j) : doc(j) in cache or request).

The simplicity of this optimal replacement policy should be
contrasted with the state of affairs in the traditional formula-
tion when replacement is mandatory. Indeed, except for the
optimality of A0 for uniform cache objects, i.e., c(1) = . . . =
c(N), there are no known results concerning the structure of
the optimal policy for an arbitrary cost structure (to the best
of the authors’ knowledge). It is tempting, yet erroneous, to
conclude that the simple stationary Markov replacement policy
C0 that prescribes

Evict doc(i) if (4)

i = arg min (p(j)c(j) : doc(j) in cache)

is optimal; this policy is “myopically” optimal but usually not
optimal as simple examples show. Curiously, the policy (4) is
reminiscent of, and similar to, the policy C�

0 given in (3).
The ability to find provably optimal policies under an

arbitrary cost structure can be put to advantage as follows: As
in most complex engineering systems, multiple performance
metrics need to be considered when operating caches, some-
times leading to conflicting objectives. For instance, managing
the cache to achieve as small a miss rate as possible does
not necessarily ensure that the average latency of retrieved
documents is as small as could be since the latter performance
metric typically depends on the size of retrieved documents
while the former does not. One possible approach to capture
multi-criteria aspects is to introduce constraints. In the second
part of the paper, still under optional eviction, we formulate
the problem of finding a replacement policy that minimizes an
average cost under a single constraint in terms of another long-
run average metric. We identify the structure of the constrained
optimal policy as a randomized Markov stationary policy
obtained by randomizing two simple policies of the type (3).
The analysis relies on a simplified version of a methodology
developed in the context of MDPs with a constraint in [3].

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

The paper is organized as follows: The search for optimal
replacement policies with optional eviction is formulated as an
MDP in Section II. Its solution is discussed in Section III and
relationships between C0 and C�

0 are explored in Section IV.
Section V is devoted to the constrained problem. The proof of
the key Theorem 1 is given in Appendix A.

II. FINDING GOOD REPLACEMENT POLICIES

One approach for designing good replacement policies is
to couch the problem as one of sequential decision making
under uncertainty. The analysis that establishes the optimality
of the policy A0 under the Independent Reference Model with
mandatory eviction and uniform costs, is based on Dynamic
Programming arguments as developed for MDPs [6] [13].
Here, we modify the MDP framework used in [1], [2], [5]
in order to incorporate the possibility of optional eviction.

A. An MDP framework for caching under optional eviction

The system comprises a server where a copy of each of
its N documents is available, and a cache of size M with
1 ≤ M < N . Documents are first requested at the cache: If
the requested document has a copy already in cache (i.e., a
hit), this copy is downloaded by the user at some cost (e.g.,
latency). If the requested document is not in cache (i.e., a
miss), a copy is requested from the server to be put in the
cache. If the cache is already full, then a decision needs to
be taken as to whether a document already in cache will
be evicted (to make place for the copy of document just
requested) and if so, which one. This decision is taken on
the basis of earlier decisions and past requests in order to
minimize a cost function associated with the operation of the
cache over an infinite horizon.

Decision epochs are defined as the instants at which requests
for documents are presented at the cache, and are indexed by
t = 0, 1, At time t, let St denote the state of the cache,
thus St is a subset of {1, . . . , N} with size |St| ≤ M 2. We
introduce the {1, . . . , N}-valued random variable (rv) Rt to
encode the identity of the document requested at time t.

When the request Rt is made, the state of the cache is St
and let Ut denote the action prompted by the request Rt. If
the request Rt is already in cache, then we use the convention
Ut = 0 to denote the fact that no replacement decision needs
to be taken. On the other hand, if the request Rt is not in
the cache, then Ut takes value in St + Rt and identifies the
document to be removed: If Ut is selected in St, then an
eviction takes place with the document Ut removed from the
cache and replaced by Rt. On the other hand if Ut = Rt, then
no document is replaced. Thus, the resulting cache state St+1

2Here and in what follows, |St| denotes the cardinality of St.

(just before the next request Rt+1 is made) is given by 3

St+1 = T (St, Rt, Ut)

=

St if Rt ∈ St
St + Rt if Rt �∈ St, |St| < M
St + Rt − Ut if Rt �∈ St, |St| = M .

(5)

In this formulation, eviction is not mandatory, i.e., a document
is not necessarily evicted from the cache if the requested
document is not in cache and the cache is full. This is reflected
by the possible selection Ut = Rt in (5) when Rt is not St
and |St| = M .

The state variable at time t = 0, 1, . . . being the pair
(St, Rt), we identify the state space of the MDP to be the
set X given by X := SM × {1, . . . , N} where SM denotes
the collection of all subsets of {1, . . . , N} of size less or
equal to M . However, under the assumed rules of operation,
the cache will eventually become full at some time and will
remain so from that time onward, i.e., given any initial cache
S0, there exists τ = τ(S0) finite such that |Sτ+t| = M for all
t = 0, 1, As we are concerned primarily with the average
cost criterion, there is no loss of generality (as we do from
now on) in assuming the space state to be X � (instead of the
original X) with

X � := {(S, r) ∈ X : |S| = M}.

The information available to make a decision Ut when the
document Rt (t = 0, 1, . . .) is requested, is encapsulated in
the rv Ht defined recursively by

Ht+1 = (Ht, Ut, St+1, Rt+1), t = 0, 1, . . .

with H0 = (S0, R0). Thus, the range Ht of Ht can be defined
recursively by

Ht+1 = Ht × {0, . . . , N} × X �, t = 0, 1, . . .

with H0 = X �. The decision Ut implemented in response to
request Rt is then given by

Ut = πt(Ht)

for some mapping πt : Ht → {0, 1, . . . , N} such that

πt(Ht) = 0, Rt ∈ St (6)

and
πt(Ht) ∈ St + Rt, Rt �∈ St (7)

for all t = 0, 1, Such a collection π = (πt, t = 0, 1, . . .)
defines the replacement (or evicition) policy π.

We shall find it useful to consider randomized policies
which are now defined: A randomized replacement policy
π is a collection (πt, t = 0, 1, . . .) of mappings πt :
{0, 1, . . . , N} × Ht → [0, 1] such that for all t = 0, 1, . . .,
we have

N∑

u=0

πt(u;Ht) = 1 (8)

3Throughout, for any subset S of {1, . . . , N} and any elements x and u in
{1, . . . , N}, we write S+x−u to denote the subset of {1, . . . , N} obtained
from S by adding x to it and removing u from the resulting set, in that order.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

with
πt(u;Ht) = δ(u; 0), Rt ∈ St (9)

and
πt(u;Ht) = 0, Rt �∈ St and u �∈ St + Rt (10)

for all u = 0, 1, . . . , N . The class of all (possibly randomized)
replacement policies is denoted by P . Obviously, (6) and (7)
are compatible with (9) and (10), respectively.

If the non-randomized replacement policy π has the prop-
erty that

Ut = ft(St, Rt), t = 0, 1, . . .

for mappings ft : X � → {0, 1, . . . , N}. we say that π is a
Markov policy. If in addition, ft = f for all t = 0, 1, . . .
the policy is said to be a (non-randomized Markov) stationary
policy, in which case the policy is identified with the mapping
f itself. Similar definitions can be given for randomized
Markov stationary policies [6].

Under the Independent Reference Model, the sequence
of requests is a sequence {Rt, t = 0, 1, . . .} of i.i.d.
{1, . . . , N}-valued rv distributed according to some pmf p =
(p(1), . . . , p(N)) on {1, . . . , N} with p(i) > 0 for all i =
1, . . . , N . Let P denote the probability measure under the pmf
p, with corresponding expectation operator E.

The definition of the underlying MDP is completed by
associating with each admissible policy π in P , a probability
measure Pπ defined through the following requirements4: For
each t = 0, 1, . . ., we have

Pπ [Ut = u|Ht] = πt(u;Ht), 5 u = 0, . . . , N (11)

and

Pπ [St+1 = S′, Rt+1 = y|Ht, Ut]
= p(y)Pπ [St+1 = S′|Ht, Ut]
= p(y)1 [T (St, Rt, Ut) = S′] (12)

for every state (S′, y) in X �. Let Eπ denote the expectation
operator associated with the probability measure Pπ .

B. The cost functionals

With any one-step cost function c : {1, . . . , N} → IR+, we
associate several cost functions: Fix a replacement policy π
in P . For each T = 0, 1, . . ., define the total cost over the
horizon [0, T] under the policy π by

Jc(π;T) = Eπ

[
T∑

t=0

1 [Rt �∈ St] c(Rt)

]
.

The average cost (over the entire horizon) under the policy π
is then defined by

Jc(π) = lim sup
T→∞

1
T + 1

Jc(π;T) (13)

= lim sup
T→∞

1
T + 1

Eπ

[
T∑

t=0

1 [Rt �∈ St] c(Rt)

]
.

4This measure Pπ is defined on the product space (X �×{0, 1, . . . , N})∞
equipped with its natural Borel σ-field.

5This relation holds for randomized policies. For a non-randomized policy
π, it takes the form Pπ [Ut = u|Ht] = δ(u, πt(Ht)) for all u = 0, . . . , N .

We use the limsup operation in the definition above since under
an arbitrary policy π the limit in (13) may not exist; this is
standard practice in the theory of MDPs.

The basic problem we address is that of finding a cache
replacement policy π� in P such that

Jc(π�) ≤ Jc(π), π ∈ P.

We refer to any such policy π� as an optimal replacement
policy (under the long-term average criterion); it is not nec-
essarily unique. However, the state space X � and the action
space {0, 1, . . . , N} being finite, it is well known that the
optimal replacement policy π� can always be selected to be
a non-randomized Markov stationary policy [6][13, Chap. V].
In the process of identifying such an optimal policy π� in the
next section, we will need a notion of optimality for the finite
horizon problems. More specifically, for each T = 0, 1, . . ., a
policy π� in P is said to be an optimal replacement policy on
the horizon [0, T] if

Jc(π�;T) ≤ Jc(π;T), π ∈ P.

Obviously, if the policy π� in P is an optimal replacement
policy on the horizon [0, T] for each T = 0, 1, . . ., then it
is an optimal replacement policy under the long-term average
criterion.

C. Examples

A number of situations can be handled by adequately
specializing the cost-per-step c: Indeed, if c(i) = 1 (i =
1, . . . , N), then Jc(π;T) and Jc(π) are the expected number
of cache misses over the horizon [0, T] and the average miss
rate under policy π, respectively. On the other hand, if c is
taken to be the size function s : {1, . . . , N} → IN, with s(i)
denoting the size (in bytes) of doc(i) (i = 1, . . . , N), then the
byte hit rate under policy π can be defined by

BHR(π) = lim inf
T→∞

Eπ

[∑T
t=0 1 [Rt ∈ St] s(Rt)

]

Eπ

[∑T
t=0 s(Rt)

] (14)

where the liminf operation reflects the fact that this perfor-
mance is maximized. To make use of the MDP framework
used here, we first note that

Eπ

[
T∑

t=0

s(Rt)

]
= (T + 1)E [s(R)]

for some {1, . . . , N}-valued rv R with pmf p. Next, we see
that

BHR(π)

= 1 − lim sup
T→∞

Eπ

[∑T
t=0 1 [Rt �∈ St] s(Rt)

]

Eπ

[∑T
t=0 s(Rt)

]

= 1 − Js(π)
E [s(R)]

.

Hence, maximizing the byte hit rate is equivalent to minimiz-
ing the average cost associated with s.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

III. NON-UNIFORM COST OPTIMAL REPLACEMENT POLICY

WITHOUT MANDATORY EVICTION

In this section we discuss the optimal cache replacement
policy for non uniform costs under the Independent Reference
Model when eviction is not mandatory. A useful characteriza-
tion of this optimal policy is provided through the Dynamic
Programming Equation (DPE) for the corresponding MDP [6],
[13].

A. The optimal replacement policy

For each T = 0, 1, . . ., we define the cost-to-go associated
with the policy π in P starting in the initial state (S, r) in X �

to be

Jπ
c ((S, r);T)

:= Eπ

[
T∑

t=0

1 [Rt �∈ St] c(Rt)|S0 = S,R0 = r

]
.

Next, the value function over the horizon [0, T] is defined by

VT (S, r) := inf
π∈P

Jπ
c ((S, r);T), (S, r) ∈ X �.

For the MDP at hand, the DPE takes the form

VT+1(S, r)
= 1 [r ∈ S] E [VT (S,R∗)] (15)

+ 1 [r �∈ S]
(
c(r) + min

u∈S+r
E [VT (S + r − u,R∗)]

)

for every state (S, r) in X � with R� denoting an {1, . . . , N}-
valued rv with pmf p. The possibility of non-eviction is
reflected in the choice u = r (obviously in S + r). Moreover,
as well known [13], the optimal action to be taken in state
(S, r) at time t = 0 when minimizing the cost criterion over
the horizon [0, T] is simply given by

g�T (S, r) := arg min
u∈S+r

(E [VT (S + r − u,R∗)]) ,

with a lexicographic tie-braker for sake of concreteness. We
set g�T (S, r) = 0 whenever r is in S. The next result presents
a complete characterization of g�T : X � → {0, 1, . . . , N}.

Theorem 1: For each T = 0, 1, . . ., we have the identifica-
tion

g�T (S, r) = g�(S, r) (16)

for any state (S, r) in X � whenever r is not in S, with

g�(S, r) := arg min
u∈S+r

(p(u)c(u)) . (17)

The proof of Theorem 1 is given in Appendix A. Note
that g�T does not depend on T , and that the non-randomized
Markov stationary policy associated with g� is the policy C�

0
introduced earlier. It is now plain from Theorem 1 that the
Markov stationary policy C�

0 is optimal for both the finite and
infinite horizon cost problems.

B. Evaluation of the optimal cost

In order to calculate the average cost, byte hit rate, and other
interesting properties of the replacement policy of Theorem 1,
we find it useful to introduce the permutation σ of {1, . . . , N}
which orders the values p(i)c(i) (i = 1, . . . , N) in decreasing
order, namely

p(σ(1))c(σ(1)) ≥ p(σ(2))c(σ(2)) ≥ . . . (18)

The key observation is that the long term usage of the optimal
replacement policy C�

0 results in a set of M fixed documents in
the cache, namely {σ(1), . . . , σ(M)}, so that every document
in the set {σ(1), . . . , σ(M)} is never evicted from the cache
once requested. If we write

S := {σ(1), . . . , σ(M)} (19)

for this steady-state stack, then formally

lim
t→∞

PC�
0

[σ(i) ∈ St] = 0, i = M + 1, . . . , N

and

Jd(C�
0) =

∑

i �∈S

p(i)d(i) =
N∑

i=M+1

p(σ(i))d(σ(i)) (20)

for any cost d : {1, . . . , N} → IR+ (and in particular the cost
c : {1, . . . , N} → IR+ which induces the policy C�

0). Thus,
the byte hit rate associated with the policy C�

0 is simply given
by

BHR(C�
0) =

∑M
j=1 p(σ(j))s(σ(j))

E [s(R)]
. (21)

Another interesting observation is the relation of the optimal
replacement policy C�

0 to the well-established Greedy Dual*
and Greedy Dual-Size replacement policies described in [8]
and [9]. Let cGD : {1, . . . , N} → IR+ be an arbitrary cost
used by the Greedy Dual policies. Under optional eviction,
the Greedy Dual policies in case of a cache miss prescribe

Evict doc(i) (22)

if i = arg min
j∈S+r

(
L +

(
p(j)cGD(j)

s(j)

) 1
β

)

where L is a contribution of the temporal locality of reference
to the replacement policy and β > 0 is a weight factor that
modulates the contribution of the probability of reference,
document size and document cost to the eviction decision.
Under the Independent Reference Model, we can take L = 0,
in which case the Greedy Dual policies simplify to

Evict doc(i) if i = arg min
j∈S+r

(
p(j)cGD(j)

s(j)
).

This is a special case of the optimal replacement policy C�
0

associated with cost function c : {1, . . . , N} → IR+ given by

c(i) :=
cGD(i)
s(i)

, i = 1, . . . , N.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

C. Implementing the optimal policy

A natural implementation of the optimal replacement policy
C�

0 is achieved by invoking the Certainty Equivalence Princi-
ple. In addition to the online estimation of the probability of
references (as was the case for (2)), this approach now requires
the estimation of additional parameters which enter the defini-
tion of the overall document cost (c(j), j = 1, . . . , N), e.g.,
in the case of document latency, the document size might be
fully known but the available bandwidth to the server needs to
be measured online at request time. Let (ĉk(j), j = 1, . . . , N)
denote estimates of the document costs which are available at
the cache at the time instance of the kth request: If |St| <
M , document placement always takes place; otherwise the
replacement action is dictated by

Evict doc(i) if i = arg min
j∈St+Rt

(p̂k(j)ĉk(j)).

IV. (NON)-OPTIMALITY OF C0

Mandatory eviction can be incorporated into the MDP
framework of Section II by strengthening (7) and (10) to read

πt(Ht) ∈ St, Rt �∈ St (23)

for non-randomized policies, and

π(u;Ht) = 0, Rt �∈ St and u �∈ St (24)

for randomized policies for all t = 0, 1, . . ., respectively.
Let PMand denote the class of all (possibly randomized)
replacement policies in P which enforce mandatory eviction.
The set of policies PMand being a subset of P , it is plain that

inf
π∈P

Jc(π) ≤ inf
π∈PMand

Jc(π). (25)

It is well known [1], [2], [5] that for any cost function
c : {1, . . . , N} → IR+, the cost associated with the policy C0
induced by c (via (4)) is given by

Jc(C0) =
N∑

i=M

p(σ(i))c(σ(i))

−
∑N

i=M p(σ(i))2c(σ(i))
∑N

i=M p(σ(i))
(26)

under the convention (18). Using (20) (with d = c), we see
that

Jc(C0) − Jc(C�
0)

= p(σ(M))c(σ(M)) −
∑N

i=M p(σ(i))2c(σ(i))
∑N

i=M p(σ(i))

=
∑N

i=M p(σ(i)) (p(σ(M))c(σ(M)) − p(σ(i))c(σ(i)))
∑N

i=M p(σ(i))

so that Jc(C�
0) ≤ Jc(C0) in agreement with (25). Moreover,

Jc(C�
0) = Jc(C0) if and only if

p(σ(i))c(σ(i)) = p(σ(M))c(σ(M)), i = M,M + 1, . . . , N

as would be expected, in which case the policy C0 is indeed
optimal amongst all replacement policies enforcing mandatory
eviction when the cache is full.

However, though very tempting in view of the structure of
the policy A0 (which is optimal in the uniform cost case), the
policy C0 will not be optimal in general as can be seen on
simple examples.6 Under non-uniform costs, the deterministic
version of the page replacement problem is known to be NP-
complete [7] (in contrast with the uniform case where Belady’s
algorithm is optimal). Policy C0 was incorrectly claimed to
be optimal in [14] where it was used to produce efficient
randomized replacement policies.

V. OPTIMAL CACHING UNDER A CONSTRAINT

One possible approach to capture the multi-criteria aspect
of running caching systems is to introduce constraints. Here,
we revisit the caching problem studied in Section III under a
single constraint.

A. Problem Formulation

Formulating the caching problem under a single constraint
requires two cost functions, say c, d : {1, . . . , N} → IR+. As
before, c(Rt) and d(Rt) represent different costs of retrieving
the requested document Rt if not in the cache St at time t.
For instance, we could take

c(i) = 1 and d(i) = s(i), i = 1, . . . , N (27)

to reflect interest in miss rate and document retrieval latency,
respectively.

The problem of interest can now be formulated as follows:
Given some α > 0, we say that the policy π in P satisfies the
constraint at level α if

Jd(π) ≤ α. (28)

Let P(d;α) denote the class of all cache replacement policies
in P that satisfy the constraint (28).

The problem is to find a cache replacement policy π� in
P(d;α) such that

Jc(π�) ≤ Jc(π), π ∈ P(d;α).

We refer to any such policy π� as a constrained optimal policy
(at level α). With the choice (27) this formulation would focus
on minimizing the miss rate with a bound on average latency of
document retrieval (under the assumption that retrieval latency
is proportional to the size of the document to be retrieved).

One natural approach to solving this problem is to consider
the corresponding Lagrangian functional defined by

J̃λ(π) = Jc(π) + λJd(π), π ∈ P, λ ≥ 0. (29)

The basic idea is then to find for each λ ≥ 0, a cache
replacement policy π�(λ) in P such that

J̃λ(π�(λ)) ≤ J̃λ(π), π ∈ P. (30)

Now, if for some λ� ≥ 0, the policy π�(λ�) happens to
saturate the constraint at level α, i.e., Jd(π�(λ�)) = α, then
the policy π�(λ�) belongs to P(d;α) and its optimality implies

J̃λ�(π�(λ�)) ≤ J̃λ�(π), π ∈ P.
6Take N = 3, M = 2, p = (.009, .001, .99) and costs (20, 5, 1).

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

In particular, for any policy π in P(d;α), this last inequality
readily leads to

Jc(π�(λ�)) ≤ Jc(π), π ∈ P(d;α),

and the policy π�(λ�) solves the constrained optimization
problem.

The only glitch in this approach resides in the use of the
limsup operation in the definition (13), so that J̃λ(π) is not
necessarily the long-run average cost under policy π for some
appropriate one-step cost. Thus, finding the optimal cache
replacement policy π�(λ) specified by (30) cannot be achieved
in a straightforward manner.

B. A Lagrangian approach

Following the treatment in [3], we now introduce an alter-
nate Lagrangian formulation which circumvents this technical
difficulty and allows us eventually to carry out the program
outlined above: For each λ ≥ 0, we define the one-step cost
function bλ : {1, . . . , N} → IR+ by

bλ(i) := c(i) + λd(i), i = 1, . . . , N

and consider the corresponding long-run average functional
(13), i.e., for any policy π in P , we set

Jλ(π) := Jbλ
(π) (31)

= lim sup
T→∞

1
T + 1

Eπ

[
T∑

t=0

1 [Rt �∈ St] bλ(Rt)

]
.

With these definitions we get

Jbλ
(π) ≤ J̃λ(π), π ∈ P

by standard properties of the limsup, with equality

Jbλ
(π) = J̃λ(π)

whenever π is a Markov stationary policy.
For each λ ≥ 0, the (unconstrained) caching problem

associated with the cost bλ is an MDP with finite state and
action spaces. Thus, there exists a non-randomized Markov
stationary policy, denoted gλ, which is optimal [6], i.e.,

Jλ(gλ) ≤ Jλ(π), π ∈ P

and earlier remarks yield

J̃λ(gλ) ≤ J̃λ(π), π ∈ P.

In other words, the Markov stationary policy gλ also mini-
mizes the Lagrangian functional (29), and the relation

Jλ(gλ) = inf
π∈P

Jλ(π) = inf
π∈P

J̃λ(π) (32)

holds. Consequently, as argued in Section V-A, if for some
λ� ≥ 0, the policy gλ� saturates the constraint at level α, then
the policy gλ� will solve the constrained optimization problem.

The difficulty of course is that a priori we may have
Jλ(gλ) �= α for all λ ≥ 0. However, the arguments given
above still show that the search for the constrained optimal

policy can be recast as the problem of finding γ ≥ 0 and a
(possibly randomized) Markov stationary policy g� such that

Jd(g�) = α (33)

and
Jγ(g�) ≤ Jγ(π), π ∈ P. (34)

C. On the way to solving the constrained MDP

The appropriate multiplier γ and the policy g� appearing in
(33) and (34) will be identified in Section V-D. To help us in
this process we need some technical facts and notation which
we now develop.

Theorem 2: The optimal cost function λ → Jλ(gλ) is a non-
decreasing concave function which is piecewise linear on IR+.

Some observations are in order before giving a proof of
Theorem 2: Fix λ ≥ 0. In view of Theorem 1 we can select
gλ as the policy C�

0 induced by bλ, i.e.,

Evict doc(i) iff i = arg min
j∈S+r

(c(j) + λd(j)) . (35)

Let σλ denote the permutation of {1, . . . , N} which orders the
values p(i)bλ(i) (i = 1, . . . , N) in decreasing order, namely

p(σλ(1))bλ(σλ(1)) ≥ p(σλ(2))bλ(σλ(2)) ≥ . . . (36)

with a lexicographic tie-breaker. Let S(λ) denote the steady-
state stack induced by the policy gλ, namely the collection of
documents in the cache that results from long-term usage of
the policy gλ. Obviously, we have 7

S(λ) = {σλ(1), . . . , σλ(M)} (37)

so that
Jλ(gλ) = Jbλ

(gλ) =
∑

i �∈S(λ)

p(i)bλ(i) (38)

upon rephrasing comments made earlier in Section III.
Given the affine nature (in the variable λ) of the cost, there

must exist a finite and strictly increasing sequence of non-zero
scalar values λ1, . . . , λL in IR+ with 0 < λ1 < . . . < λL such
that for each) = 0, . . . , L, it holds that

S(λ) = S(λ�), λ ∈ I� := [λ�, λ�+1)

with the convention λ0 = 0 and λL+1 = ∞, but with

S(λ�) �= S(λ�+1),) = 0, . . . , L− 1.

In view of (38) it is plain that

Jλ(gλ) =
∑

i �∈S(λ�)

p(i)bλ(i) (39)

whenever λ belongs to I� for some) = 0, . . . , L.

Proof. For each policy π in P , the quantities Jc(π) and
Jd(π) are non-negative as the one-step cost functions c and
d are assumed non-negative. Thus, the mapping λ → J̃λ(π)

7The steady-state stack S given by (19) corresponds to the case λ = 0
with σ0 = σ.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

is non-decreasing and affine, and we conclude from (32)
that the mapping λ → Jλ(gλ) is indeed non-decreasing and
concave. Its piecewise-linear character is a straightforward
consequence of (39).

In order to proceed we now make the following simplifying
assumption.

(A) If for some λ ≥ 0, it holds that

p(i)bλ(i) = p(j)bλ(j)

for some distinct i, j = 1, . . . , N , then there does not
exist any k �= i, j with k = 1, . . . , N such that

p(i)bλ(i) = p(j)bλ(j) = p(k)bλ(k).

Assumption (A) can be removed at the cost of a more
delicate analysis without affecting the essence of the optimality
result to be derived shortly.

For each) = 0, 1, . . . , L, the relative position of the
quantities p(i)bλ(i) (i = 1, . . . , N) remains unchanged as λ
sweeps through the interval (λ�, λ�+1). Under (A), when going
through λ = λ�+1, a single reversal occurs in the relative
position with

S(λ�) = {σλ�
(1), . . . , σλ�

(M − 1), σλ�
(M)}

and

S(λ�+1) = {σλ�
(1), . . . , σλ�

(M − 1), σλ�
(M + 1)}.

By continuity we must have

p(σλ�
(M))bλ�+1(σλ�

(M))
= p(σλ�

(M + 1))bλ�+1(σλ�
(M + 1)). (40)

Theorem 3: Under Assumption (A), the mapping
λ → Jd(gλ) is a non-increasing piecewise constant function
on IR+.

Proof. The analog of (39) holds in the form

Jd(gλ) =
∑

i �∈S(λ�)

p(i)d(i) (41)

whenever λ belongs to I� for some) = 0, . . . , L. Hence, the
mapping λ → Jd(gλ) is piecewise constant.

Now pick) = 0, 1, . . . , L− 1 and consider λ and µ in the
open intervals (λ�, λ�+1) and (λ�+1, λ�+2), respectively. The
desired monotonicty will be established if we can show that
Jd(gµ) − Jd(gλ) ≤ 0. First, from (41), we note

Jd(gµ) − Jd(gλ) (42)

=
∑

i∈S(λ)

p(i)d(i) −
∑

i∈S(µ)

p(i)d(i)

= p(σλ�
(M))d(σλ�

(M))
−p(σλ�

(M + 1))d(σλ�
(M + 1))

by comments made earlier as we recall that S(λ) = S(λ�)
and S(µ) = S(λ�+1).

Next, pick ε > 0 such that λ + ε and µ + ε are in the
open intervals (λ�, λ�+1) and (λ�+1, λ�+2), respectively. By
(39) we get S(λ + ε) = S(λ) and

Jλ+ε(gλ+ε) − Jλ(gλ)

=
∑

i �∈S(λ+ε)

p(i)bλ+ε(i) −
∑

i �∈S(λ)

p(i)bλ(i)

=
∑

i �∈S(λ)

p(i)bλ+ε(i) −
∑

i �∈S(λ)

p(i)bλ(i)

= ε
∑

i �∈S(λ)

p(i)d(i) (43)

Similarly,

Jµ+ε(gµ+ε) − Jµ(gµ) = ε
∑

i �∈S(µ)

p(i)d(i). (44)

By Theorem 2, the mapping λ → Jλ(gλ) is concave, hence

Jµ+ε(gµ+ε) − Jµ(gµ) ≤ Jλ+ε(gλ+ε) − Jλ(gλ).

Making use of (43) and (44) in this last inequality, we readily
conclude that

∑

i∈S(λ)

p(i)d(i) ≤
∑

i∈S(µ)

p(i)d(i). (45)

But S(λ) = S(λ�) and S(µ) = S(λ�+1), whence (45) is
equivalent to

p(σλ�
(M))d(σλ�

(M)) ≤ p(σλ�
(M + 1))d(σλ�

(M + 1)).

The desired conclusion Jd(gµ)−Jd(gλ) ≤ 0 is now immediate
from (42).

D. The constrained optimal replacement policy

We are now ready to discuss the form of the optimal replace-
ment policy for the constrained caching problem. Throughout
we assume Assumption (A) to hold. Several cases need to be
considered:

Case 1 – The unconstrained optimal replacement policy g0
satisfies the constraint, i.e., Jd(g0) ≤ α, in which case g�

is simply the optimal replacement policy C�
0 for the uncon-

strained caching problem. This case is trivial and requires no
proof since by Theorem 1 the average cost is minimized and
the constraint satisfied.

Case 2 – The unconstrained optimal replacement policy
does not satisfy the constraint, i.e., Jd(g0) > α, but there
exists λ > 0 such that Jd(gλ) ≤ α. Two subcases of interest
emerge and are presented in Theorems 4 and 5 below.

Case 2a – The situation when the policy gλ above saturates
the constraint at level α was covered earlier in the discussion;
its proof is therefore omitted.

Theorem 4: If there exists λ > 0 such that Jd(gλ) = α, then
the policy gλ can be taken as the optimal replacement policy
g� for the constrained caching problem (and the constraint is
saturated).

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Case 2b – The case of greatest interest arises when the
conditions of Theorem 4 are not met, i.e., Jd(g0) > α,
Jd(gµ) �= α for all µ ≥ 0 but there exists λ > 0 such that
Jd(gλ) < α. In that case, by the monotonicity result of
Theorem 3, the quantity

γ := inf {λ ≥ 0 : Jd(gλ) ≤ α}

is a well defined scalar in (0,∞). In fact, we have the
identification

γ = λ�+1 (46)

for some) = 0, 1, . . . , L− 1, and it holds that

Jd(gλ�+1) < α < Jd(gλ�
). (47)

For each p in the interval [0, 1], define the Markov stationary
policy fp obtained by randomizing the policies gλ�

and gλ�+1

with bias p. Thus, the randomized policy fp prescribes

Evict doc(i) if

i =

arg minj∈S+r(p(i)bλ�
(i)) w.p. p

arg minj∈S+r(p(i)bλ�+1(i)) w.p. 1 − p.
(48)

Theorem 5: The optimal cache replacement policy g� for the
constrained caching problem is any randomized policy fp of the
form (48) with p determined through the saturation equation

Jd(fp) = α. (49)

Proof. For the most part we follow the arguments of [3]: Let
) = 0, 1, . . . , L− 1 be the interger appearing in the identifica-
tion (46). Pick λ and µ in the open intervals (λ�, λ�+1) and
(λ�+1, λ�+2), respectively, in which case

gλ = gλ�
and gµ = gλ�+1

with
Jd(gµ) < α < Jd(gλ). (50)

Thus, as in the proof of Theorem 4.4 in [3], let λ and µ go
to λ�+1 monotonically under their respective constraints. The
resulting limiting policies g and ḡ (in the notation of [3]), are
simply given here by

g = gλ�+1 and ḡ = gλ�

with 8

Jγ(fp) = Jγ(gλ�+1) = Jγ(gλ�
) (51)

for every p in the interval [0, 1], and optimality

Jγ(fp) ≤ Jγ(π), π ∈ P

follows. Moreover, the mapping p → Jd(fp) being continuous
[12], with Jd(fp)p=0 = Jd(gλ�+1) and Jd(fp)p=1 = Jd(gλ�

),
there exists at least one value p in (0, 1) such that (49)
holds. The proof of optimality is now complete in view of

8See details in the proof of Theorem 4.4 in [3].

comments made at the beginning of Section V-C.

It is possible to give a somewhat explicit expression for
Jd(fp) using p in [0, 1]: Indeed, set

S� := S(λ�) ∩ S(λ�+1)
= {σλ�

(1), . . . , σλ�
(M − 1)}.

Then, we have

Jd(fp) = E [d(R)]

− lim
T→∞

1
T + 1

Efp

[
T∑

t=0

1 [Rt ∈ St] d(Rt)

]

with

lim
T→∞

1
T + 1

Efp

[
T∑

t=0

1 [Rt ∈ St] d(Rt)

]

=
∑

i∈S�

p(i)d(i) + r(p)p(σλ�
(M))d(σλ�

(M))

+(1 − r(p))p(σλ�
(M + 1))d(σλ�

(M + 1))

where r(p) represents the asymptotic fraction of time that the
cache contains the document σλ�

(M). It is a simple matter to
check that

r(p) :=
p · p(σλ�

(M))
p · p(σλ�

(M)) + (1 − p) · p(σλ�
(M + 1))

.

Case 3 – Finally, assume that Jd(gλ) > α for all λ ≥ 0.
This situation is of limited interest as we now argue: Fix λ >
0. For each policy π in P , we can use the optimality of gλ to
write

α < λ−1Jc(gλ) + Jd(gλ) ≤ λ−1Jc(π) + Jd(π).

Thus, letting λ go to infinity, we conclude to

α ≤ Jd(π), π ∈ P.

The constrained caching problem has no feasible solution un-
less there exists a policy that saturates the constraint. Typically,
the inequality above will be strict.

REFERENCES

[1] A. Aho, P. Denning and D. Ullman, “Principles of optimal page
replacement,” Journal of the ACM 18 (1971), pp. 80-93.

[2] O.I. Aven and E.G. Coffman and Y.A. Kogan, Stochastic Analysis of
Computer Storage. D. Reidel Publishing Company, Dordrecht (Holland),
1987.

[3] F. Beutler and K. Ross, “Optimal Policies for controlled Markov chains
with a constraint,” J. Math. Analysis and Applications 112 (1985), pp.
236-252.

[4] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” In
Proceedings of the 1997 USENIX Symposium on Internet Technology
and Systems, Monterey (CA), December 197, pp. 193-206.

[5] E. Coffman and P. Denning, Operating Systems Theory, Prentice-Hall,
NJ (1973).

[6] D. Heyman and M. Sobel, Stochastic Models in Operations Research,
Volume II: Stochastic Optimization, McGraw-Hill, New York (NY),
(1984).

[7] S. Hosseini-Khayat, “On optimal replacement of nonuniform cache
objects,” IEEE Transactions on Computers COMP-49 (2000), pp. 769-
778.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

[8] S. Jin and A. Bestavros, “GreedyDual* Web caching algorithm: Exploit-
ing the two sources of temporal locality in Web request streams,” In
Proceedings of the 5th International Web Caching and Content Delivery
Workshop, Lisbon (Portugal), May 2000.

[9] S. Jin and A. Bestavros, “Popularity-aware GreedyDual-Size Web proxy
caching algorithms,” In Proceedings of ICDCS’2000: The IEEE Interna-
tional Conference on Distributed Computing Systems, Taipei (Taiwan),
May 2000.

[10] S. Jin and A. Bestavros, “Sources and characteristics of Web temporal
locality,” In Proceedings of MASCOTS’2000: The IEEE/ACM Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, San Fransisco (CA), August 2000.

[11] S. Jin and A. Bestavros, “Temporal locality in Web request streams:
Sources, characteristics, and caching implications” (Extended Abstract)
In Proceedings of SIGMETRICS’2000: The ACM International Confer-
ence on Measurement and Modeling of Computer Systems, Santa Clara
(CA), June 2000.

[12] D.-J. Ma, A.M. Makowski and A. Shwartz, “Stochastic approximations
for finite–state Markov chains,” Stochastic Processes and Their Appli-
cations 35 (1990), pp. 27-45.

[13] S.M. Ross, Introduction to Stochastic Dynamic Programming, Academic
Press, New York (NY), (1984).

[14] D. Starobinski and D. Tse, “Probabilistic methods for Web caching,”
Performance Evaluation 46 (2001), pp. 125-137.

[15] N.E. Young, “On-line caching as cache size varies,” In Proceedings of
SODA’1991: The ACM-SIAM Symposium on Discrete Algorithms, San
Francisco (CA), January 1991.

A. A PROOF OF THEOREM 1

Theorem 1 is a direct consequence of the following fact:
Proposition 1: For each T = 0, 1, . . ., it holds that

arg min {u ∈ S + r : E [VT (S + r − u,R∗)]}
= arg min {u ∈ S + r : p(u)c(u)} (52)

for any state (S, r) in X � with r not in S.
Equality (52) is understood to mean that

E [VT (S + r − v,R∗)] = min
u∈S+r

E [VT (S + r − u,R∗)] .

holds with v given by

v = arg min {j ∈ S + r : p(j)c(j)} . (53)

This statement is weaker than the monotonicity statement
p(u)c(u) ≥ p(w)c(w) if

E [VT (S + r − u,R∗)]
≥ E [VT (S + r − w,R∗)] , u, w ∈ S + r.

which is used in the optimality proof of A0 [1], [5].
The proof proceeds by induction on T = 0, 1,
The basis step – Fix (S, r) in X � and note that

V0(S, r) = 1 [r �∈ S] c(r).

Thus, for u in S + r distinct from v (also in S + r by virtue
of its definition (53)), we have

E [V0(S + r − u,R�)]
= E [1 [R� �∈ S + r − u] c(R�)]
= E [1 [R� �∈ S + r] c(R�)] + E [1 [R� = u] c(R�)]

with a similar expression for E [V0(S + r − v,R�)]. Hence,

E [V0(S + r − u,R�)] − E [V0(S + r − v,R�)]
= p(u)c(u) − p(v)c(v)

and (52) does hold for T = 0.
The induction step – Assume (52) to hold for some T =

0, 1, Fix (S, r) in X � with r not in S. We need to show
that for u in S + r, we have

E [VT+1(S + r − u,R�) − VT+1(S + r − v,R�)] ≥ 0 (54)

with v given by (53).
Fix u in S+ r and let R�� denote an rv distributed like R�

and independent of it. Using the DPE (15) we can write

E [VT+1(S + r − u,R�)] (55)

= P [R� ∈ S + r − u] E [VT (S + r − u,R��)]
+ E [1 [R� �∈ S + r − u] c(R�)]

+ E
[
1 [R� �∈ S + r − u] ṼT (S + r − u,R�)

]

with

ṼT (S, x) := min
u′∈S+x

E [VT (S + x− u′, R��)]

for every set S with |S| = M and x not in S.
Note that

P [R� ∈ S + r − u] E [VT (S + r − u,R��)]
= P [R� ∈ S + r − (u, v)] E [VT (S + r − u,R��)]

+ p(v)E [VT (S + r − u,R��)] (56)

and that

E [1 [R� �∈ S + r − u] c(R�)]
= E [1 [R� �∈ S + r] c(R�)] + p(u)c(u) (57)

with v defined by (53). Finally,

E
[
1 [R� �∈ S + r − u] ṼT (S + r − u,R�)

]

= E
[
1 [R� �∈ S + r] ṼT (S + r − u,R�)

]

+ p(u)ṼT (S + r − u, u). (58)

Reporting (56), (57) and (58) into (55), we conclude that

E [VT+1(S + r − u,R�)]
= P [R� ∈ S + r − (u, v)] E [VT (S + r − u,R��)]

+ E [1 [R� �∈ S + r] c(R�)] + p(u)c(u)
+ p(u)ṼT (S + r − u, u)
+ p(v)E [VT (S + r − u,R��)]

+ E
[
1 [R� �∈ S + r] ṼT (S + r − u,R�)

]
. (59)

We can now write the corresponding expression (59) with
u replaced by v, and the difference in (54) takes the form

E [VT+1(S + r − u,R�) − VT+1(S + r − v,R�)]
= (p(u)c(u) − p(v)c(v))

+ P [R� ∈ S + r − (u, v)] ∆1

+ p(u)∆2 + p(v)∆3 + ∆4 (60)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

with

∆1 := E [VT (S + r − u,R��)]
− E [VT (S + r − v,R��)]

∆2 := ṼT (S + r − u, u) − E [VT (S + r − v,R��)]

∆3 := E [VT (S + r − u,R��)] − ṼT (S + r − v, v)

and

∆4 := E
[
1 [R� �∈ S + r] ṼT (S + r − u,R�)

]

− E
[
1 [R� �∈ S + r] ṼT (S + r − v,R�)

]
.

Observe that p(u)c(u)−p(v)c(v) ≥ 0 by the definition of v
and that the condition ∆1 ≥ 0, being equivalent to (52), holds
true under the induction hypothesis. Next, we note that

ṼT (S + r − u, u)
= min

u′∈S+r
E [VT (S + r − u′, R��)]

= E [VT (S + r − v,R��)]

by the induction hypothesis and the definition of v, so that
∆2 = 0. Similarly,

ṼT (S + r − v, v) = min
v′∈S+r

E [VT (S + r − v′, R��)]

whence ∆3 ≥ 0 again by the induction hypothesis and the
definition of v. Consequently, it is already the case that

E [VT+1(S + r − u,R�) − VT+1(S + r − v,R�)] ≥ ∆4

and (54)-(53) will hold if we can show that ∆4 ≥ 0.
Inspection of ∆4 reveals that ∆4 ≥ 0 provided

ṼT (S + r − u, x) − ṼT (S + r − v, x) ≥ 0 (61)

whenever x is not in S + r.
To establish (61) we find it useful to order the set of

documents {1, . . . ,M} according to their expected cost: For
u and v in {1, . . . ,M} we write u < v (resp. u ≤ v)
if p(u)c(u) < p(v)c(v) (resp. p(u)c(u) ≤ p(v)c(v)), with
equality u = v if p(u)c(u) = p(v)c(v). With this terminology
we can now interpret v as the smallest element in S + r
according to this order. Two cases emerge depending on
whether v < x or x ≤ v:

Case 1 – Assume x ≤ v with x is not in S + r. Then, for
u in S + r with u �= v, we have

ṼT (S + r − u, x) (62)

= min
u′∈S+r−u+x

E [VT (S + r − u + x− u′, R��)] .

Note that x is not in S + r − u and that x is smallest in
S+r+x (thus in S+x−u which contains it). By the induction
hypothesis applied in state (S + r − u, x), the minimization in
(62) is achieved at u′ = x, so that

ṼT (S + r − u, x) = E [VT (S + r − u,R��)] . (63)

The same argument shows that

ṼT (S + r − v, x)
= min

v′∈S+r−v+x
E [VT (S + r − v + x− v′, R��)]

= E [VT (S + r − v,R��)] (64)

by applying the induction hypothesis in state (S + r − v, x).
Combining these facts, we get

ṼT (S + r − u, x) − ṼT (S + r − v, x) (65)

= E [VT (S + r − u,R��)] − E [VT (S + r − v,R��)]

and (61) follows by invoking the induction hypothesis once
more, this time in state (S, r).

Case 2 – Assume v < x with x is not in S+r. Then, going
back to the expression (62) for u �= v in S + r, we note that
now v is the smallest element of S+r−u+x, hence achieves
the minimum in (62) by virtue of the induction hypothesis
applied in state (S + r − u, x). Therefore,

ṼT (S + r − u, x)
= E [VT (S + r − u + x− v,R��)]
= E [VT (S + r − v + x− u,R��)] . (66)

On the other hand, by the induction hypothesis applied to the
state (S + r − v, x). we find that

ṼT (S + r − v, x)
= min

v′∈S+r−v+x
E [VT (S + r − v + x− v′, R��)]

= E [VT (S + r − v + x− v�, R��)] (67)

where v� is the smallest element in S + r− v+ x. Collecting
these expressisons, we find

ṼT (S + r − u, x) − ṼT (S + r − v, x)
= E [VT (S + r − v + x− u,R��)]

− E [VT (S + r − v + x− v�, R��)] (68)

and (61) now follows by invoking the induction hypothesis
once more, this time in state (S + r − v, x), as we note
that any element u in S + r with u �= v is necessarily in
S + r − v, hence in S + r − v + x. This completes the proof
of Proposition 1.

ACKNOWLEDGMENT

This material is based upon work supported by the Space
and Naval Warfare Systems Center – San Diego under Contract
No. N66001-00-C-8063. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
Space and Naval Warfare Systems Center – San Diego.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

