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Abstract— In this paper, we show that significant simplicities
can arise in the analysis of a network when link capacities are
large enough to carry many flows. In particular, we prove that,
when an upstream queue serves a large number of regulated
traffic sources, the queue-length of the downstream queue con-
verges almost surely to the queue-length of a simplified queueing
system (single queue) obtained by removing the upstream queue.
We provide similar results (convergence of the queue-length in
distribution) for general (including non-regulated) traffic arrivals.
In both cases, the convergence of the overflow probability is
uniform and at least exponentially fast. Through an extensive
numerical investigation, we demonstrate several aspects and
implications of our results in simplifying network analysis.

I. INTRODUCTION

THE internet has already undergone a tremendous increase
both in network capacity and in the number of end-users,

and this trend is expected to continue for the next several
years. Further, these end-users are becoming increasingly
sophisticated and demand high-bandwidth, low-delay network
services at affordable prices. The conflicting requirements of
maintaining a high level of network utilization (for affordable
prices or high revenue), while at the same time keeping
network congestion under check (for ensuring a good level
of quality of service), make it imperative to understand at a
fundamental level how to design and control next generation
networks.

The issues outlined above appear to be daunting within
the confines of traditional stochastic and queueing techniques.
However, we will show that the fact that a large number of
traffic flows will be supported on the network can actually be
exploited to help obtain results for predicting performance and
allocating network resources.

The analysis of a queueing network is a well-known difficult
problem except in special cases, such as Markovian queueing
networks, for which product-form solutions are available [1],
[2]. The difficulty in analysis is primarily because the traffic
processes lose their original statistical characteristics as they
traverse through the network. Given a myriad of sophisticated
techniques developed for analyzing a single queue, there has
been some recent work to introduce the notion of decomposi-
tion or decoupling in a network to make it possible to analyze
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a network using those techniques [3], [4], [5]. However, due to
the large deviations framework used in these works, the queue
dynamics in the network are described only through the rate
functions of traffic flows.

In this paper we present results that, from a queueing
analysis perspective, allow us to virtually “ignore” a node
that is capable of serving a large number of traffic flows.
This property enables us to develop a simple decomposition
method to simplify the analysis of a network with multiple
queues. We first consider the case when the input traffic
to the network is regulated (e.g., with a leaky-bucket, etc.),
i.e., there exists a maximal arrival pattern in the worst case.
Under this assumption, we prove that, as the number of
flows (or the capacity) at the upstream queue increases, the
queue-length at the downstream queue converges almost surely
to the queue-length of a single queue that is obtained by
removing the upstream queue from (or decomposing) the
original system. For general (including non-regulated) traffic,
we provide a result that shows that the overflow probability
at the downstream queue converges uniformly to that of a
single queue by removing the upstream queue. However, for
this case, the proofs are quite technical and long, hence we
do not provide them here. In both cases, the convergence of
the overflow probability of the original downstream queue
to that of the decomposed system happens uniformly and at
least exponentially fast. Hence, if internal nodes in a network
are capable of serving many flows, we can remove these
nodes from consideration and the queueing behavior of other
network nodes remains largely the same. In this way, we can,
in many cases, simplify the analysis of a queueing network into
that of a single queue, for which many analytical techniques
are available in the literature. We also provide a number of
numerical simulations that apply our decomposition method
for different network configurations using different traffic
models and actual input traces. Our numerical results confirm
that removing nodes with large capacity will not change the
performance of the network, e.g., the overflow probability at
the downstream node or the end-to-end delay distribution for
a particular traffic flow.

The rest of the paper is structured as follows. In Section II,
we present some background material and formulate our
problem. In Section III-A, we prove almost sure convergence,
and also provide a result on the speed of convergence. In
Section III-B, we discuss several different aspect of our
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theoretical results, and then briefly explore how to calculate
the error, or the rate of convergence in Section III-C. Similar,
but weaker convergence results for general (including non-
regulated traffic) arrivals are presented in Section III-D. Next,
in Section IV, we show numerical results to verify our sim-
plifying methods under different network conditions. Finally
in Section V, we conclude.

II. PRELIMINARY RESULTS AND PROBLEM DESCRIPTION

In this section, we present some preliminary results. We will
first summarize the many-sources-asymptotic results from the
literature, particularly an upper bound, which will serve as a
starting point toward the development of our main results later
in this paper. We then present our model and formulate our
problem in detail.

A. Many-sources-asymptotic upper bound

Consider the queue shown in Figure 1. In this figure, for
flow i, Ai(s, t) and DN

i (s, t) represent the amount of traffic
arrival and departure, respectively, during a time interval [s, t)
(s, t ∈ Z). The server capacity of the queue is NC and qN (t)
denotes the queue-length at time t ∈ Z.

....

.

A 1(s,t)

A N (s,t)

A (s,t)2 Nq  (t)

(s,t)D 
N

D (s,t)NC
N

..

.

(s,t)D 
N

     2

N

1

Fig. 1. Example of a queue fed by many sources

Throughout the paper, for simplicity of exposition, we assume
that Ai(s, t), i = 1, 2, . . . , N , are i.i.d. with stationary
increments, unless otherwise noted. However, our results can
easily be extended for non-i.i.d. arrivals [6]. For stability, we
require that E{Ai(−t, 0)}/t := λ < C. Then, assuming that
the system starts at −∞, the steady-state queue-length at time
t can be expressed as

qN (t) := sup
s≤t

[ N∑

i=1

Ai(s, t) − CN(t− s)
]
. (1)

Note that from the stationary increments property of Ai(s, t),
the distribution of qN (t) does not depend on t. We define

Jt(b) := sup
θ

[
θ(Ct+ b) − log E{eθA1(0,t)}

]
. (2)

In this setup, we state the following many-sources-asymptotic
upper bound from the work in [7].

Proposition 1: [many-sources-asymptotic upper bound]
Suppose that

lim inf
t→∞

Jt(0)/ log t > 0. (3)

Then, we have, for any t,

lim sup
N→∞

1
N

log P
{
qN (t) > Nb

}
≤ −I(b), b ≥ 0, (4)

where I(b) is given by

I(b) := inf
t>0

sup
θ

[
θ(Ct+ b) − log E{eθA1(0,t)}

]
. (5)

✷

The assumption (3) is shown to be more general than the
one used in [8] in that (3) holds even for on-off sources with
heavy-tailed on-time distributions (see [7]). For the classical
treatment of the many-sources-asymptotic results, we refer to
the papers [8], [9].

B. Problem description and model assumptions

We consider a two-stage queueing system shown in Fig-
ure 2. In this figure, the upstream queue (with queue-length
qN (t)) represents a node that is capable of serving a large
number of traffic flows in a network, while the downstream
queue (with queue-length QN

I (t)) could be a node with only a
small capacity (for example, an output port of an edge router).

< Scenario I >

A (s,t)2

A 1(s,t)

....

.

R(s,t)

(s,t)D 
N
i

Γi

A N (s,t)

Q (t)
I

N
dC

q (t)
N NC

Fig. 2. Queueing network: Scenario I

< Scenario II >

iA (s,t)
Γi

R(s,t)

CdQ  (t)
II

Fig. 3. Scenario II: a simplified version of Scenario I

In Scenario I shown in Figure 2, among the N flows, a fixed
subset∗(not dependent on N ) of the flows i (i ∈ Γ) after being
served at the first (upstream) queue arrives to the downstream
queue with interfering traffic R(s, t), while the rest of flows
depart the queueing system. We can thus write the steady-state
queue-length at the downstream node as

QN
I (0) := sup

t≥0

[ ∑

i∈Γ

DN
i (−t, 0) +R(−t, 0) − Cdt

]
.

We are then interested in estimating the steady-state overflow
probability P{QN

I (0) > x} for a given buffer level x. In order
to do that, we consider a simple single-stage queueing system
shown in Figure 3, a simplified version of the original two-
stage queueing system in Figure 2. In Scenario II, the queue
has the same interfering traffic R(s, t) and the same service
capacity Cd as that of Scenario I, except that the traffic arrival

∗In general, Γ does not have to be a fixed subset for the results to hold.
However, the results are more meaningful in the case when Γ constitutes a
fixed set of flows (see Remark 1 in Section III-A).
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of interest to the queue is now Ai(s, t) instead of DN
i (s, t).

Specifically, we write the steady-state queue-length in Scenario
II as

QII(0) := sup
t≥0

[ ∑

i∈Γ

Ai(−t, 0) +R(−t, 0) − Cdt
]
.

Thus, we obtain Scenario II if we remove the upstream queue
in Scenario I (the queue with large capacity or bandwidth).
Note that QII(0) does not depend on N , while QN

I (0) does.
In the next section, we will relate aspects of the queue-length
(QII(0)) in the simplified system to that of the downstream
queue in the original system (QN

I (0)), when N is large.

III. MAIN RESULTS

A. Regulated traffic

We first assume that the input traffic arrivals Ai(s, t) and
the interfering traffic R(s, t) are regulated; i.e., there exists
a function A∗(t) and R∗(t) such that Ai(s, s + t) ≤ A∗(t)
and R(s, s+ t) ≤ R∗(t) for all s, t > 0. In this case, we can
assume that, without loss of generality, the functions A∗(t) and
R∗(t) are non-decreasing and subadditive [10]. Thus, A∗(t)/t
converges to its minimum value, and so does R∗(t)/t (see
Lemma 6.1.11 in [11]). Let a∗ be this minimum value, i.e.,
we define

a∗ := lim
t→∞

A∗(t)
t

= inf
t>0

A∗(t)
t
. (6)

We also define
r∗ := lim

t→∞

R∗(t)
t

= inf
t>0

R∗(t)
t
.

We will need the following assumption:

(A1): Let a∗ and r∗ be defined as above, and |Γ| be the
cardinality of the set Γ. Then, a∗ < C and a∗|Γ| + r∗ < Cd.

The inequality conditions in (A1) were posed in order to
exclude trivial cases. To see this, if a∗ ≥ C and the traffic
arrives according to the worst case A∗(t), then we have from
(6) that Ai(−t, 0) ≥ Ct for all t, and thus qN (0) in (1)
grows without bound for any fixed N . The most common
example of the bounding function A∗(t) in the literature is
the dual leaky-bucket type of regulator (see [12], [13]) with
A∗(t) = min{Pt, γt+ σ}, where γ < C.

We are now ready to provide our main result.

Theorem 1: Under assumption (A1), we have

lim
N→∞

QN
I (0) = QII(0), almost surely. (7)

Furthermore, the speed of convergence of P{QN
I (0) > x} to

P{QII(0) > x} is uniformly at least exponentially fast in the
sense that

lim sup
N→∞

1
N

log
(

sup
x≥0

∣∣∣P{QN
I (0) > x} − P{QII(0) > x}

∣∣∣
)

≤ −I(0), (8)

where x is the buffer level and I(0) is from (5). ✷

Proof: We first observe from assumption (A1) that there
exists a t1 > 0 such that, for all i,

Ai(s, s+ t) < Ct for all s and t ≥ t1. (9)

Similarly, there exists a t2 such that
∑

i∈ΓAi(−t, 0) +
R(−t, 0) < Cdt for t ≥ t2, since

∑
i∈ΓAi(−t, 0) +

R(−t, 0) ≤ |Γ|A∗(t) +R∗(t). Thus, we have

QII(0) = sup
t≥0

[ ∑

i∈Γ

Ai(−t, 0) +R(−t, 0) − Cdt
]

= sup
0≤t≤t∗

[ ∑

i∈Γ

Ai(−t, 0) +R(−t, 0) − Cdt
]

(10)

for any t∗ ≥ t2, since the inside of the bracket becomes
negative for t > t2.

We let qNi (t) denote the workload in qN (t) due to flow i.
Then, the following claim is straightforward to show from the
regularity assumption.

Claim: qNi (−t) ≤ A∗(t1) for all i and t, where t1 is given
by the relation (9).

Proof of Claim: We note that the maximum busy period of
the queue qN (t) is bounded by t1. To see this, suppose that
there exists a busy period longer than t1. Then, at the end
of this busy period, the total amount of traffic arrival should
be larger than the capacity NCt1, otherwise, the busy period
ends earlier. So we have

∑N
i=1Ai(s, s+t1) ≥ NCt1 for some

s, but this contradicts (9). Now, note that the workload due
to the flow i ∈ Γ at time −t should be bounded by the case
that all the traffic from flow i has been accumulated during the
maximum busy period t1. Hence, we have qNi (−t) ≤ Ai(−t−
t1,−t) and from the definition of A∗(t), Ai(−t − t1,−t) ≤
A∗(t1). Thus, the claim follows. ✷

Note that from the above claim, for all t, we have

DN
i (−t, 0) = Ai(−t, 0) + qNi (−t) − qNi (0)

≤ A∗(t) +A∗(t1).

This implies that the departure traffic DN
i (−t, 0) is also

bounded by some function D∗(t) = A∗(t) + A∗(t1) and
limt→∞D

∗(t)/t = a∗. Hence, as in (10), there exists a t3 > 0
such that

QN
I (0) = sup

t≥0

[ ∑

i∈Γ

Di(−t, 0) +R(−t, 0) − Cdt
]

= sup
0≤t≤t∗

[ ∑

i∈Γ

Di(−t, 0) +R(−t, 0) − Cdt
]

(11)

for any t∗ ≥ t3.

Now choose t0 = max{t2, t3}. Then, from (10) and (11),
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we have, for any N > 0,
∣∣∣QN

I (0) −QII(0)
∣∣∣

=
∣∣∣ sup

t≥0

[ ∑

i∈Γ

DN
i (−t, 0) +R(−t, 0) − Cdt

]

− sup
t≥0

[∑

i∈Γ

Ai(−t, 0) +R(−t, 0) − Cdt
]∣∣∣

=
∣∣∣ sup
0≤t≤t0

[∑

i∈Γ

DN
i (−t, 0) +R(−t, 0) − Cdt

]

− sup
0≤t≤t0

[ ∑

i∈Γ

Ai(−t, 0) +R(−t, 0) − Cdt
]∣∣∣

≤ sup
0≤t≤t0

∣∣∣
∑

i∈Γ

DN
i (−t, 0) −

∑

i∈Γ

Ai(−t, 0)
∣∣∣

= sup
0≤t≤t0

∣∣∣
∑

i∈Γ

qNi (−t) −
∑

i∈Γ

qNi (0)
∣∣∣

≤ sup
0≤t≤t0

∑

i∈Γ

qNi (−t)

≤ sup
0≤t≤t0

qN (−t). (12)

Since the distribution of qN (t) is independent of t, we have

P
{∣∣QN

I (0) −QII(0)
∣∣ > 0

}
≤ P

{
sup

0≤t≤t0

qN (−t) > 0
}

≤
t0∑

t=0

P{qN (−t) > 0} = (t0 + 1)P{qN (0) > 0}. (13)

Since assumption (A1) clearly satisfies (3), taking log, dividing
by N , and then taking the lim sup on both sides of (13) yields

lim sup
N→∞

1
N

log P
{∣∣QN

I (0) −QII(0)
∣∣ > 0

}

≤ lim sup
N→∞

1
N

log(t0 + 1)P{qN (0) > 0}

= lim sup
N→∞

1
N

log P{qN (0) > 0}

≤ −I(0), (14)

where the last inequality comes from (4).
Finally, for t ∈ Z+, it has been shown that [8], [9]

I(0) := inf
t>0

sup
θ

[
θCt− log E{eθA1(0,t)}

]

= sup
θ

[
θC − log E{eθA1(0,1)}

]
. (15)

From the stability condition, i.e., C > E{A1(0, 1)} = λ, and
the convexity of the function log E{eθA(0,1)} in θ, I(0) in (15)
is always positive. Thus, from (14), we can write

∞∑

N=1

P
{∣∣QN

I (0) −QII(0)
∣∣ > 0

}

≤
∞∑

N=1

exp(−NI(0) + o(N)) <∞.

Hence, (7) follows from the Borel-Cantelli lemma, and (8)
follows by noting that, for any x > 0,

∣∣∣P{QN
I (0) > x} − P{QII(0) > x}

∣∣∣

≤ P{
∣∣QN

I (0) −QII(0)
∣∣ > 0}.

This completes the proof of Theorem 1.

Remark 1: In Theorem 1, our primary emphasis is on the
case that Γ is fixed, for which P{QN

I (0) > x} does not go to
zero as N increases. However, our results remain unchanged
if |Γ|, the number of flows feeding the downstream queue,
also increases as N increases provided that the capacity of
the downstream queue Cd is also scaled to ensure stability.
For example, if the interfering traffic R(s, t) = 0 and Γ =
{1, 2, . . . , N}, we note that

P{QN
I (0) > 0} ≤ P{QII(0) > 0}
+

∣∣P{QN
I (0) > 0} − P{QII(0) > 0}

∣∣. (16)

The first term of the RHS of (16) decreases to zero exponen-
tially fast with rate I(0) > 0, and so does the second term
from (8). Following the same approach as in the proof of
Theorem 1, we see that the queue-length at the downstream
queue also decreases to zero almost surely. However, this case
is less interesting because both QN

I (0) and QII(0) go to zero
almost surely.

In the proof of Theorem 1, the fact that I(0) is positive
plays a crucial role in establishing the convergence of QN

I (t)
to QII(t). If we set b = 0 in (4), we see that qN (t), where the
aggregation takes place, also decreases to zero almost surely
by the Borel-Cantelli lemma. Hence, the departure traffic
flows are more likely to be identical to arrival traffic flows,
as the system size increases. An interesting interpretation of
these observations is the following: If congestion occurs in a
network, the node under congestion will either be unstable or
carry a small number of traffic flows at high utilization.

Although the convergence of P{qN (0) > 0} to zero is
necessary to prove Theorem 1, we will show in Section IV
that removing nodes and thus simplifying network analysis
still remains in effect even if the actual value of P{qN (0) > 0}
is not very small.

B. Simplifying network analysis

Note that relation (8) in Theorem 1 allows us to write

sup
x≥0

∣∣∣P{QN
I (0) > x} − P{QII(0) > x}

∣∣∣

≤ exp(−NI(0) + o(N)).

Thus, for any target QoS (P{QN
I (0) > x}) in the original two-

stage queueing system, we can replace it by a simpler system
in which the first node has been removed and the maximum
error is less than exp(−NI + o(N)), which decreases expo-
nentially fast. If we extend this idea to an entire network,
we can say that it is safe to remove nodes that have the
capacity to carry a large number of flows from consideration.
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This simplification greatly reduces the burden of analyzing a
queueing network, and helps simplify the difficult end-to-end
QoS estimation problem into potentially a simpler single-stage
queueing problem.

From a measurement point of view this type of decompo-
sition could also be useful. At one extreme, if one is able to
access any point inside a network to obtain a sample path
of a traffic flow, we can then simply measure the traffic
and compute the QoS at the node in hand (for example, we
could employ the “measurement-analytic” approach in [14]).
However, measurements in the interior of a network could be
costly or even practically infeasible. To avoid this problem,
we could use the decomposition idea (via Theorem 1) and
measure the traffic only at the network periphery to make QoS
predictions within the network.

Another feature of our simplifying approach is that we do
not have to maintain any per-flow information at the interior
nodes with large capacity, even if each flow requires stringent
end-to-end QoS. Once we remove these nodes to simplify
network analysis, they become invisible to us. In other words,
inside a network, we do not really care where traffic flows are
coming from and heading to, as long as all the nodes are kept
stable. In Section IV, we will verify via simulations that our
simplifying method works well under a variety of different
network configurations and different traffic types.

C. Estimating the constant I(0)
In this section, we briefly examine how we can estimate

the error e−NI(0), and how small it can be. As we see in
(15), the constant I(0) depends on the distribution of the
traffic flow. Consequently, it is not obvious how one would
be able to estimate the constant I(0). Recall that this error
term is an upper bound on the maximum difference in the
overflow probability between two scenarios. Thus, the actual
error for a specific buffer level could be significantly smaller
than the maximum error. Nevertheless, it turns out that we
are able to find a lower bound on the constant I(0) (hence,
an upper bound on the error term e−NI(0) as a first-order
approximation) in terms of the mean and the peak rate of the
traffic that are relatively easy to estimate.

Let P be the peak rate of a traffic flow Ai(s, t). Observe
that

I(0) := inf
t>0

sup
θ

[
θCt− log E{eθA1(0,t)}

]

= inf
t>0

sup
θ

[
θC − log E{eθ

A1(0,t)
t }

]
.

Since 0 ≤ A1(0,t)
t ≤ Pt with E{A1(0,t)

t } = λ, using Corollary
2.4.5 in [11], we have

E{eθ
A1(0,t)

t } ≤ λ

P
eθP + (1 − λ

P
). (17)

Thus, we get

sup
θ

[
θC − log E{eθ

A1(0,t)
t }

]

≥ sup
θ

[
θC − log(

λ

P
eθP + (1 − λ

P
))

]
= sup

θ
h(θ),

where
h(θ) := θC − log(

λ

P
eθP + (1 − λ

P
)).

It is easy to see that h(·) is a concave function and h′(0) =
C − λ > 0. Thus, by direct calculation, we have

I(0) ≥ C

P
log(

C

λ
) + (1 − C

P
) log(

P − C
P − λ

), (18)

where λ < C < P .
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Fig. 4. RHS of (18) as a function of P/λ for two different utilizations

Figure 4 shows the right hand side of (18) as a function of
the ratio between the peak rate and the mean rate (P/λ) for
two different utilizations. For example, if P = 5λ and ρ =
λ/C = (Nλ)/(NC) = 0.5, then Figure 4 shows that I ≥ 0.1.
Hence, if there are 200 such sources being multiplexed, then

exp(−NI+o(N)) ≤ exp(−200 × 0.1+o(200)) ≈ 2×10−9.

Thus, the maximum error on the overflow probability at the
downstream queue incurred by traversing the queue with 200
such flows is at most 2 × 10−9 approximately. Note that the
equality in (17) corresponds to the special case that the traffic
rate is either the peak rate with probability λ/P or zero with
probability 1 − λ/P . If we have more information on the
marginal distribution of the traffic, e.g., the variance, we can
then find a sharper bound on the constant I(0).

D. General (non-regulated) traffic

So far, we have assumed that the traffic flows of interest are
regulated. For non-regulated traffic arrivals, i.e., there is no
bounding function A∗(t), things are more complicated. In this
case, the difference between QN

I (0) and QII(0) now depends
on the entire past history of qN (t), i.e., supt≥0 q

N (−t), rather
than sup0≤t≤t0 q

N (−t) as we see in (12) for regulated traffic
arrivals. However, we are still able to show that the distribution
of QN

I (t) converges uniformly to that of QII(t), and that the
convergence happens at least exponentially fast. Moreover, this
holds also for non-i.i.d. traffic arrivals. However, the proofs
of these results are quite technical and beyond the scope of
this paper. Hence, we simply state the results here and provide
a reference for the proofs.
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Theorem 2: [General traffic arrival case from [6]] Under
appropriate (yet very general) assumptions†, we have

lim
N→∞

∣∣P{QN
I (0) > x} − P{QII(0) > x}

∣∣ = 0,

uniformly in x > 0. In addition, there exists a positive constant
J∗ (0 < J∗ < I(0)) such that

lim sup
N→∞

1
N

log
(

sup
x≥0

∣∣∣P{QN
I (0) > x} − P{QII(0) > x}

∣∣∣
)

≤ −J∗.

✷

Note that, since Theorem 2 also holds for non-regulated
traffic arrivals, we are unable to prove the almost sure conver-
gence as in (7) of Theorem 1. However, we have convergence
in distribution and show that the speed of convergence is still
exponential, albeit with a rate little slower than I(0). We
note that in this case, our simplifying approach still remains
intact. The overflow probability at a downstream queue can be
replaced with that of a single queue, in a manner similar to
the regulated traffic arrivals. For more details on the required
assumptions and proofs, see [6].

IV. NUMERICAL RESULTS

In this section, we conduct an extensive set of simulations to
numerically test the performance of our simplifying approach
for different network scenarios. To represent a realistic system
as closely as possible, our simulator is a packet-based (versus
fluid), event-driven one, and consists of a number of queues
with arbitrary input traffic arrivals we designate. We are able
to monitor every packet anywhere in the network, each of
which is associated with its packet size and time stamp. The
QoS metrics we consider are the overflow probability at a
particular node we are monitoring, and the end-to-end delay
for a particular traffic flow. To be specific, we record queue
sizes of a node just before each packet enters the node, and
then take average (over the number of packets) to estimate
the overflow probability at that node. Similarly, we measure
the end-to-end delay per packet for the traffic flow we are
monitoring, and then take the average. For calculating the end-
to-end delay of each packet, we only consider the queueing
delay at each node and ignore the propagation delay, since the
propagation delay is a constant value.

A. Two-stage queueing network

1) Voice traffic sources: We first apply our simplifying
approach to a simple two-stage queueing network, as shown
in Figure 2. The arrival traffic to the first queue consists of N
multiplexed voice traffic sources. For a single voice traffic, we
use an on-off Markov Modulated Deterministic (MMD) model.
This is a continuous-time two-state Markov chain, which
generates traffic at a constant rate (64 Kbps) while in the “on”
state, and no traffic while in the “off” state. The sojourn time

†e.g., the usual many-sources asymptotic assumptions and the finite moment
of a queue with single input. See [6] for details.

in the “on” and “off” states are exponentially distributed with
mean 352 msec and 650 msec, respectively [15]. To simulate
the constant rate during the on state using our simulator, we
generate a series of packets with constant interarrival time
where each packet has a fixed size of 53 bytes‡.

We fix the number of voice traffic flows feeding the down-
stream queue as 10, i.e., |Γ| = 10. However, we vary the
number of voice traffic flows at the upstream queue (N ) while
keeping the utilization there the same, and then, we vary the
utilization at the upstream queue while keeping N the same.
These experiments allow us to investigate the effect of different
levels of aggregation and utilization at the upstream queue
on the behavior of the downstream queue. For interfering
traffic at the downstream queue, R(s, t), we generate fractional
Gaussian noise sequence with Hurst parameter H = 0.8, such
that its mean is chosen to be equal to that of 10 multiplexed
voice traffic flows. We choose the capacity of the downstream
queue such that its utilization is 0.8.
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Fig. 5. Buffer overflow probability at the downstream queue for different N
at the upstream queue. ρ is fixed to 0.8.

Figure 5 shows the different overflow probabilities at the
downstream queue for different values of N at the upstream
queue. The utilization, ρ, at the upstream queue remains
ρ = NC/Nλ = 0.8, where λ = 22.48Kbps is the mean traffic
rate of a single voice traffic flow. We ran many independent
experiments, and here report their average with 95% confi-
dence interval for each point in the figure. As N , the number
of aggregated traffic flows, increases, we see that the buffer
overflow probability at the downstream queue approaches to
that of a single queue obtained by removing the upstream
queue (simplified scenario). In particular, when N is equal to
80, the curve is nearly indistinguishable from the simplified
scenario case.

We now fix the number of multiplexed voice traffic flows
N at N = 60, and then vary the utilization (i.e., the capacity)
at the upstream queue. As Figure 6 clearly shows, we observe
that removing the upstream nodes hardly affects the queueing
performance at the downstream node, even at high utilizations.

‡The packet size has been chosen arbitrarily and any other packet size
would suffice.
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Fig. 6. Buffer overflow probability at the downstream queue for different
utilization ρ at the upstream queue. N is fixed to 60.

From the proof of Theorem 1, we have seen that as N
increases, the queue-length at the upstream queue decreases
exponentially fast. Figure 7 shows different overflow proba-
bility curves at the upstream node for (a) different N and (b)
different utilizations ρ. Clearly, as N increases, the overflow
probability decreases over all buffer levels. However, if we
carefully compare Figure 7 to Figure 5 or Figure 6 for the
same buffer levels, it turns out that the overflow probability at
the upstream queue is not so small, and sometimes even larger
than that of the downstream queue. Thus, although we used the
fact that qN (t) decreases to zero in order to prove our theorem,
it does not appear to be necessary for the decomposition to
work well.

2) Ethernet (LAN) traffic trace: In this section, we repeat
the same set of simulations as in Section IV-A.1, except that
we now use an actual Ethernet (LAN) trace§ instead of a
traffic model. The Ethernet trace consists of a sequence of
arrival times and packet sizes. To obtain each multiplexed
Ethernet traffic, we generate different traffic traces from the
original one with random offset (random starting points), and
then superpose these traces. Since Ethernet traffic is known
to be much burstier than the voice traffic [16], the question
is whether we can still remove the upstream node in this
case¶. Figures 8 and 9 show the overflow probability at the
downstream queue under different scenarios. As N increases
and/or ρ decreases, the curve becomes closer to the case of
the simplified scenario, but the “convergence” happens slower
than in the voice traffic case, due to the high level of burstiness
of the Ethernet traffic.

Figure 10 presents the overflow probability at the upstream
queue with N multiplexed Ethernet traffic arrivals. As in the
voice traffic case, the overflow probability decreases as N
increases. However, in contrast to Figure 7 (a), the probability
that the buffer is non-empty stays around a fixed point as N

§trace file can be obtained at “ftp://ita.ee.lbl.gov/traces/BC-Oct89Ext.TL.Z”
¶Although Ethernet trace was in fact obtained from a closed-loop network,

it is simply used as one of ‘bursty’ traffic sources for simulating open-loop
queueing networks in this section.
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Fig. 7. Buffer overflow probability at the upstream queue

varies, while for the voice traffic case it also decreases as N
increases (see Figure 7 (a)). Remember that P{qN (t) > 0}
decreases to zero if I(0) > 0. Also, the inequality in (18)
tells us that I(0) > 0 whenever there exists a peak rate (even
for continuous time traffic models). Since there is a peak rate
(“on” state rate) for a single voice traffic, Figure 7 (a) is to be
expected. However, for the Ethernet traffic trace, there is no
pre-determined peak rate and thus P{qN (t) > 0} does not go
to zero in the range of N shown in Figure 10. Nonetheless,
we point out that removing the upstream node still works well
for most cases as shown in Figures 8 and 9. We also observed
similar results for other traffic arrivals, e.g, MPEG encoded
video trace, Auto-Regressive models, etc, which we do not
present here for space considerations.

We next investigate how different utilizations and levels
of aggregation quantitatively affect the actual error of the
overflow probability between two scenarios. For a given two-
stage queueing network, we test if the following relation

∣∣P{QN
I (0) > x} − P{QII(0) > x}

∣∣ ≤ KP{QII(0) > x}
(19)

holds for all buffer level x. Here, the constant K corresponds
to some error margin around the target QoS. If (19) holds for
K = 0.1, it means that the error between the two scenarios
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Fig. 8. Buffer overflow probability at the downstream queue for different
N . Utilization at the upstream queue is fixed to ρ = 0.7
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Fig. 9. Buffer overflow probability at the downstream queue for different
utilization ρ. N is fixed to 60.

differs by only a 10% margin. For each traffic arrival and each
N , we gradually decrease the utilization ρ, i.e., increases the
capacity at the upstream queue, until (19) holds for all buffer
levels used in the simulation. We record the largest utilization
value that satisfies (19) for all x. Figure 11 depicts the results
of these tests for voice and Ethernet traffic. As the aggregation
level (N ) increases, the maximum possible utilization for (19)
to hold also increases. For example, in Figure 11, for the
Ethernet traffic case when N = 60 (recall that only 10 flows
feed the downstream queue), we see that about 70% (or less)
utilization at the upstream queue guarantees that the error is
less than 5% of the overflow probability of the simplified
scenario, regardless of the buffer level x.

B. Multi-stage queueing network

In this section, we apply our simplifying techniques to a
multi-stage queueing network. Consider the queueing network
shown in Figure 12. In this figure, we assume that each node
represents a queue with a certain capacity, where the numbers
in parentheses stand for the capacity or the bandwidth of each
node in Mbps. Nodes 5, 6, and 7 correspond to high-speed
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Fig. 10. Buffer overflow probability at the upstream queue for different N
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Fig. 11. Relation between N and ρ for given error constraint (19) for voice
and Ethernet traffic

links (e.g., core routers), while the other nodes correspond to
lower capacity links (e.g., edge routers) serving only a small
fraction of flows. Traffic types and their routes are summarized
in Table I.

TABLE I

DESCRIPTION OF TRAFFIC FLOWS IN FIGURE 12

aggregate flow traffic type routes

S1 10 Ethernet 1 - 5 - 7 - 4 - 8
S2 100 voice or 5 - 7

6 MPEG video traffic
S3 10 fGn 1 - 5 - 6 - 2
S4 5 MMPP 6 - 7 - 4 - 9

The number of multiplexed traffic flows is chosen such
that the mean rates of the traffic flows S1, S3, and S4 are
approximately the same, while the mean rate of S2 is about
20 times larger than the others. The resulting utilization of
each node varies between 0.7 and 0.9 for each case reported
here. We then remove node 5 from the original scenario shown
in Figure 12 and record the overflow probability at node 7.
Figure 13 shows the resulting simplified scenario. Contrary
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Fig. 13. Simplified version of Figure 12 after removing node 5. We are
interested in the overflow probability at node 7

to the previous two-stage queueing network, in which the
capacity of the downstream queue is much smaller than the
upstream queue, note here that the capacity of node 7 is also
large and comparable to that of node 5. Figure 14 shows
the overflow probability at node 7 for the original scenario
and the simplified scenario 1, while the interfering traffic S2
constitutes 100 multiplexed voice traffic flows for Figure 14(a)
and 6 multiplexed MPEG video traffic flows for Figure 14(b).
Since the capacity of node 5 is large, the figures show that
removing node 5 does not affect the overflow probability at
the downstream node in either case.

Figures 14(a)-(b) also have several points worth mentioning.
Since most traffic flows at node 5 arrive to node 7, we expect
from Theorem 1 (or Theorem 2) that the overflow probability
at node 7 itself goes to zero, as the number of multiplexed
flows increases at the previous node. Therefore, when S2
constitutes 100 multiplexed voice traffic flows, the overflow
probability at node 7 is very small. In this regard, Figure 14(a)
implies that removing the upstream queue with large capacity
works well even for estimating small overflow probability at
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(b) S2 is MPEG video traffic

Fig. 14. Buffer overflow probability at node 7 for different scenarios

the downstream queue. Now, when S2 corresponds to 6 mul-
tiplexed MPEG video traffic flows, the overflow probability
at node 7 is quite large, as we see in Figure 14(b), due to
the burstiness of the video traffic. In this case, even though
the capacity at node 5 is large, the number of multiplexed
flows at the node is small, and the load at node 5 is quite high
(approximately 0.76, from the simulation), we can still remove
node 5 to estimate the overflow probability at the downstream
node without incurring much error.

We will next remove multiple nodes from the original
network and then monitor the queueing behavior at node 8 and
the end-to-end delay for flow S1 (Ethernet traffic). Figure 15
shows two different simplified scenarios we now consider.
First, we remove nodes 5, 6 and 7, which have much larger
capacity than the others, to obtain the simplified scenario 2.
We further remove every node except the last one for flow
S1 to obtain the simplified scenario 3. (Note that nodes 1 and
4 have just twice the capacity as the node 8.) Since we are
interested in flow S1, flow S2 acts as a multitude of interfering
traffic flows inside the network.

Figures 16 and 17 show the overflow probability at node
8 and the end-to-end delay distribution for flow S1 when the
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Fig. 16. Buffer overflow probability at node 8 for different scenarios. S2 is
100 multiplexed voice traffic.

crossing traffic S2 corresponds to 100 multiplexed voice traffic
flows. In both figures, the curves for simplified scenario 2
are almost identical to the original scenario cases. In other
words, removing nodes with large capacity has no effect on
the performance of the queue at node 8 and the end-to-end
delay for flow S1. This is because flow S1 comprises only a
very small portion (about 5%) of total traffic flows feeding
nodes 5 and 7. Further, we note that flow S2 (voice traffic),
which dominates the traffic at nodes 5 and 7, is much smoother
than flow S1. Hence, flow S1 virtually is not altered at all
as it goes across nodes 5 and 7. If we also remove nodes
1 and 4 (edge nodes) and thus only node 8 remains, the
queueing behavior at node 8 is a little different from (but
still a reasonable approximation to) the original scenario, as
can be seen in Figure 16. Obviously, the capacity of nodes
1 or 4 is comparable to that of node 8, and thus removing
these nodes clearly affects the traffic flow S1. However, the
end-to-end delay does not change greatly even if we remove
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Fig. 17. End-to-end delay distribution of flow S1 for different scenarios. S2
is 100 multiplexed voice traffic.
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Fig. 18. Buffer overflow probability at node 8 for different scenarios. S2 is
6 multiplexed MPEG video traffic.

all the nodes except node 8 (as shown in Figure 17). This
implies that, in the original scenario, most of the end-to-end
delay for flow S1 is due to the delay at node 8. Note that at
nodes 1 and 4, flow S1 is multiplexed with other traffic flows
that are somewhat less burstier than flow S1, while there is
only flow S1 itself, which is quite bursty, at node 8. Since the
capacity of node 8 is smaller than any other nodes, it appears
that packets from flow S1 suffer the largest delay at node 8.

Figures 18 and 19 show similar curves to Figures 16 and
17, except that the interfering traffic S2 is now 6 multiplexed
MPEG video traffic. Observe that removing nodes 5, 6, and
7 changes the overflow probability at node 8 a little, while
the end-to-end delay still remains unchanged. Since MPEG
video traffic is significantly burstier than the voice traffic,
removing nodes 5–7 contributes to some extent to a small
change (compared to Figure 16) in the overflow probability
curve. However, note that the capacity of nodes 5 and 7 is at
least ten times larger than that of nodes 1, 4 or 8, and that
the delay is inversely proportional to the capacity for the same
queue length. As a result, this large capacity absorbs that small
difference in the overflow probabilities and makes the delay
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Fig. 19. End-to-end delay distribution of flow S1 for different scenarios. S2
is 6 multiplexed MPEG video traffic.

distributions almost the same. Now note that the simplified
scenario 3 results in a somewhat larger (but still tolerable)
error in estimating the overflow probability curve at node 8
(see Figure 18). However, the end-to-end delay distribution
remains largely unaffected, as shown in Figure 19.

Through these and other simulations, we have observed the
following: (1) For those nodes with capacity large enough to
serve a large number of flows (without a few flows domi-
nating), decomposing the network by removing these nodes
will not affect the overflow probability at other nodes in the
network (nor the end-to-end delay distribution) regardless of
the traffic characteristics. (2) Now consider the case when we
decompose the network by removing nodes that can multiplex
only a small number of flows (e.g., less than 50 flows) and/or
have very high utilization. In this case, other factors, such
as burstiness of the traffic flows and the interfering traffic
characteristics, come into play in determining the size of the
error caused by the decomposition. (3) When even a small
to moderate number of flows are multiplexed at a node, the
streams routed to the different downstream nodes are not
significantly altered, as long as each routed stream does not
constitute a large fraction of the multiplexed flows. This idea
enables us to analyze the performance of any particular queue
in the network by decomposing the entire network into a single
queue, as was done for node 8 in the simplified scenario 3.

V. CONCLUSION

In this paper we have shown how to simplify a queueing
network for large bandwidth systems. We proved that, under
the regularity assumption of traffic arrivals, the queue-length
at the downstream queue converges almost surely to that of a

single queue obtained by removing the upstream queue (as
the capacity and the number of flows at the upstream queue
are made large). For general (including non-regulated) input
traffic, we provide a similar result, but with convergence
of the queue-length in distribution instead of almost sure
convergence. In both cases, the convergence of the overflow
probability is uniform and at least exponentially fast. These
results help us to simplify network analysis by mapping the
original network into a simplified network in which all the
nodes with large capacity have been eliminated. Through
an extensive numerical investigation, we demonstrate several
aspects and implications of our results in simplifying network
analysis. We believe our analysis and numerical results shed
insight into the understanding of the queueing behavior in a
network, where a large number of flows are aggregated at
various nodes.
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