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Abstract— We consider pricing as a means to stimulate coop-
eration in ad hoc networks: users can charge other users a price
for relaying their data packets. Assuming that users set prices to
maximize their own net benefit, we propose an iterative price and
rate adaption algorithm. We show that this algorithm converges
to a socially optimal bandwidth allocation. We use a numerical
case study to illustrate our results.

I. INTRODUCTION

An ad hoc network is a collection of wireless nodes (users)
which form a network without relying on any existing network
infrastructure or centralized administration. Ad hoc networks
have been proposed for situations where it is not practical
or affordable to set up fixed network infrastructure. Due to
the infrastructure-less nature of ad hoc networks, all network
functions have to be performed by the participating users.
For example, when a node wants to send data packets to a
destination node which is outside its transmission range, then
other users in the network have to relay the packets to the
destination. However, users with limited bandwidth and battery
resources might be reluctant to forward data packets for other
users, unless there is an additional mechanism in place to give
users an incentive to provide this service. In this paper, we
consider pricing as a means to stimulate cooperation in an ad
hoc network. In particular, we assume that users can charge
other users for forwarding their data packets. The aim of the
paper is to study how users set their prices for forwarding
packets, and how much bandwidth they allocate for relaying
data packets for other users.

When bandwidth and battery resources are scarce in an ad
hoc network, then users might not volunteer to forward packets
for other users as this impacts the ability to transmit their
own traffic. To model this situation, we associate with each
user a cost which consists of the following three components:
bandwidth, battery cost, and interference cost. When a user
has limited transmission resources, then relaying packets for
other users will incur a bandwidth cost as it reduces the
bandwidth available to the user to transmit its own traffic.
Relaying packets for other users will also drain the battery
and incur a battery cost. Finally, interference between users
who transmit at the same time instant can cause bit errors
and packet loss. In the case of loss data packets have to be

retransmitted, thus further draining the batteries and incurring
an additional interference cost. In our analysis, we will focus
on the bandwidth cost; in Section VIII, we briefly indicate
how our model can be extended to incorporate battery and
interference cost.

Providing users an incentive to relay packets is an important
problem in ad hoc networks where users are independent
entities and do not voluntarily relay packets for other users.
However, this problem has not received much attention; to our
knowledge it has only been investigated as part of a research
project on wireless networks formed by “terminodes” (see [1]).
Terminodes are personal devices that provide the functionality
of both a terminal (end host) and a network node (router).
In [2], Buttyán and Hubaux use a virtual currency (called
nuglets) as a means to provide terminodes an incentive to
relay packets for other terminodes: terminodes must need to
have a certain amount of nuglets to send traffic, and nuglets
can only be acquired by forwarding packets for other users.
The assumption that terminodes can only acquire nuglets
by forwarding packets for other nodes introduces a budget
constraint.

The use of pricing as a means for allocating resources
in communication networks has received much attention in
recent years. In particular, the work by Kelly et al. ([3]) for
wired networks spurred a plethora of research interests. In
their work, Kelly et al. propose a scheme where a network
provider charges users as a function of the traffic load on
the individual links in the network, and users accessing the
network decide on their transmission rate as a function of these
network prices. Kelly et al. show that this pricing scheme can
be used to achieve (in equilibrium) a weighted proportional fair
rate allocation. The pricing mechanism for ad hoc networks
that we consider reduces to the pricing scheme in [3] for the
special case where each user in the network either sends only
its own traffic (acts as an end host), or only relays traffic for
other users (acts as a router). We will comment on this in more
details in Section V.

Although the problem considered here is motivated by
the bandwidth allocation problem in ad hoc networks, we
believe that the price-based resource allocation scheme that
we present can be applied to any “peer-to-peer systems” with
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the characteristic that independent peers own a resource which
can either be used by the peers themselves, or shared with
other peers. In the context that we consider here, the users’
resources are given in terms of their transmission capacity;
in peer-to-peer computing systems, the resources would be
given in terms of available CPU cycles at each node (peer);
in peer-to-peer content delivery networks, the resources would
be given in terms of the cache space available at individual
nodes.

The rest of the paper is organized as follows. In Section II,
we define a priced-based bandwidth allocation mechanism.
In Section III, we study an optimal allocation by an in-
dividual user. In Section IV we propose an iterative price
and bandwidth adaptation algorithm. In Section V, we briefly
review the work by Kelly et al.. In Section VI, we analyze
the convergence behavior of the iterative algorithm and show
that it converges to a unique bandwidth allocation which
maximizes the social welfare of the network. Section VII illus-
trates the numerical results in the simulation of the algorithm.
In Section VIII, we briefly outline how our model can be
extended to incorporate battery lifetime constraints and user
interference. Due to space constraints, we state most results
without proofs; detailed derivations can be found in [5].

II. PRICING MODEL

In this section, we describe the pricing model that we con-
sider. For the analysis, we assume a static network topology,
where each user sends traffic to a single destination node along
a single and fixed path.

Consider an ad hoc network which consists of a set N of
users given by N = {1, 2, · · · , N}. We assume that each user
n ∈ N sends traffic along a single, fixed path rn where rn

indicates the set of nodes that relay traffic for user n (excluding
user n). Let G(n) be set of users for which user n relays
traffic (excluding user n), and let H(n) = G(n) ∪ {n}. Note
that H(n) is the set of all users for which user n sends and
relays traffic (including user n). Let A = (Anm, n,m ∈ N )
be the routing matrix given by

Anm =
{

1 if n ∈ H(m),
0 otherwise.

We associate user n the transmission capacity Cn. Let xn ≥
0 be the transmission rate that user n allocates for sending its
own traffic, and let yn ≥ 0 be the rate allocated for relaying
traffic for other users. Naturally, we have the constraint that
xn + yn ≤ Cn. In addition, we assume that each user n ∈ N
charges other users a price µn (per unit flow) for forwarding
their traffic. The aggregated price (cost) λn that user n has to
pay other users along its route for relaying its traffic is then
given by

λn =
∑

m∈rn

µm.

In the following, we model how user n decides on
(a) xn, the transmission rate for sending its own traffic,
(b) yn, the transmission rate allocated to relay traffic of

other users,

0 Cn

U  (x  )n n

xn

Fig. 1. Utility function Un(xn) of user n.

(c) µn, the price user n charges for relaying traffic.

A. User Utility Function

We associate with each user n ∈ N a utility function
Un(xn) which depends on the transmission rate xn that user n
allocates for sending its own traffic [4]. We make the following
assumption (see Figure 1 for an illustration).

Assumption 1: For each user n ∈ N , the utility function
Un : 	+ → 	+ is twice continuously differentiable and has
a bounded derivative U ′

n(xn). Furthermore, Un(xn) is strictly
concave on [0, Cn] and we have

Un(0) = 0

and
Un(xn) = Un(Cn), for xn ≥ Cn.

We note that utility functions with these characteristics are
commonly used in the pricing literature (see for example [3]).
The assumption that Un(xn) = Un(Cn), for xn ≥ Cn

reflects that capacity constraint that xn ≤ Cn. Assumption 1
does not require that all users have the same utility function.
Throughout the paper, we assume that the utility function
Un(xn) is private information known to user n, but not to
other users.

B. User Demand Function

We associate with user n the demand function Dn(λn),
where Dn(λn) is the optimal solution to the following maxi-
mization problem,

Dn(λn) = arg max
0≤xn≤Cn

{Un(xn) − λnxn}, λn ≥ 0.

The value Dn(λn) is equal to the transmission rate xn that
maximizes the net benefit of user n given that user n does not
need to forward traffic for other users, and the cost per unit
flow is equal to λn. Assumption 1 implies that Dn(·) is given
as follows.

Dn(λn) =






Cn λn = 0
U ′

n
−1(λn) 0 < λn < U ′

n(0)
0 λn ≥ U ′

n(0)

Note that Dn(λn) is bounded by Cn. Furthermore, we have
the following lemma.

Lemma 1: The demand function Dn(λn) is continuous and
has a bounded first derivative D′

n(λn). In addition, there exists
a constant Bn > 0 such that

D′
n(λn) ≥ Bn, for 0 ≤ λn ≤ U ′

n(0).
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The above lemma follows immediately from Assumption 1 and
we omit a detailed proof here. Note that Lemma 1 implies
that the demand function Dn(λn) is strictly decreasing on
[0, U ′

n(0)].

C. External Demand Function

We call the amount of traffic to be relayed at user n the
external demand at user n. The external demand depends on
the price µn that node n charges for its relay service, as well
as on the prices at other nodes. For example, when user n
charges a low price µn, but all other nodes charge a high
price for their relay service, then the external demand at node
n might still be low, and vice versa.

Let In(µn, µ−n) denote the external demand at user n,
where µ−n ∈ 	N−1

+ is the vector listing the prices set by all
users other than n. Note that In(µn, µ−n) is upper-bounded
by

∑
m∈G(n) Dm(λm), the total demand under the idealized

situation when only user n relays traffic and no loss occurs in
the network. We have the following result.

Lemma 2: For every price vector µ−n ∈ 	N−1
+ , the exter-

nal demand function In(µn, µ−n) is decreasing and continu-
ous in µn. Furthermore, for every price vector µ−n ∈ 	N−1

+ ,
In(µn, µ−n) is differentiable with respect to µn except at a
finite set of points µn ∈ 	+.

Lemma 2 implies that the right derivative of In(µn, µ−n) with
respect to µn exists.

At a price µn such that In(µn, µ−n) > 0, we define the
elasticity ln(µn, µ−n) of the external demand by

ln(µn, µ−n) =
∣∣∣∣
In(µn, µ−n)
d+

n (µn, µ−n)

∣∣∣∣ ,

where d+
n (µn, µ−n) is the right derivative of In(µn, µ−n) with

respect to µn. We say that the external demand at µn is elastic
when there exists a constant Ln such that ln(µn, µ−n) ≤ Ln

for every µn ∈ 	+ and µ−n ∈ 	N−1
+ such that In(µn, µ−n) >

0. When the external demand is elastic, then a small change in
the price µn can cause a large change in the external demand
with respect to the current demand In(µn, µ−n). Throughout
the paper, we assume that the external demand is elastic. In
particular, we consider the limiting case where Ln → 0.

D. User Optimization Problem

Given a vector µ−n ∈ 	N−1
+ indicating the prices of all

users except user n, we associate with user n the net benefit

Un(xn) − xnλn + ynµn,

where Un(xn) is the utility associated with rate xn, xnλn

is cost for sending its own traffic, and ynµn is the income
from relaying traffic for other users. We then assume that each
user chooses an allocation to maximize its net benefit. This
objective is captured by the maximization problem

USER(Un, µ−n) :

max
xn,yn,µn

Un(xn) − xnλn + ynµn, (1)

subject to xn + yn ≤ Cn,

yn ≤ In(µn, µ−n),
xn, yn, µn ≥ 0,

where λn =
∑

m∈rn
µm. Note that the bandwidth yn that user

n allocates for relaying traffic is always less, or equal, to the
external demand, i.e., we have that yn ≤ In(µn, µ−n).

Note that users are not able to directly compute an opti-
mal solution to maximization problem USER(Un, µ−n), as
this requires the knowledge of the external demand function
In(µn, µ−n); this is an unrealistic assumption for the situation
that we consider here. Alternatively, users could update their
allocations based on past observations of the system, and
iteratively approach an optimal solution. Here, we consider an
iterative algorithm where users choose at each iteration first
choose an optimal bandwidth allocation based on the current
prices, and then update the price they charge for relaying
traffic.

More precisely, we assume that at the beginning of iteration
step k(k ∈ N), each user n has available from the previous
iteration step k − 1 the prices µk−1

n and λk−1
n , as well as

the external demand ik−1
n = In(µk−1

n , µk−1
−n ). Based on these

observations, user n chooses then an allocation (xk
n, y

k
n, µ

k
n)

as follows.
First, user n keeps its price µk−1

n fixed and chooses a
bandwidth allocation (xk

n, y
k
n) such that

max
xn,yn

{
Un(xn) − xnλ

k−1
n + ynµ

k−1
n

}
(2)

subject to

xn + yn ≤ Cn

yn ≤ ik−1
n

xn, yn ≥ 0 .

Note that this maximization problem is similar to (1), however,
now the external demand function In(µn, µ

k−1
−n ) is replaced

by the value ik−1
n = In(µk−1

n , µk−1
−n ) of the observed external

demand in time slot k−1 under the price µk−1
n . The following

result states that there exists a unique optimal allocation
(xk

n, y
k
n) to the above bandwidth allocation problem.

Lemma 3: There exists a unique allocation (xk
n, y

k
n) that

maximizes the optimization problem given by (2).

Once user n has decided on (xk
n, y

k
n), user n updates its

price by setting

µk
n =

[
µk−1

n + αn

(
Dn(µk−1

n + λk−1
n ) + ik−1

n − Cn

)]+
,

where αn > 0 is a small step size parameter and [x]+ =
max{x, 0}, x ∈ 	. We will derive in Section IV this update
rule and show that it indeed increases the net benefit of user
n. For now, we point out that this update rule has roughly
the following interpretation. When price µk−1

n is too low such
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that the total demand exceeds the transmission capacity Cn

(i.e., when Dn(µk−1
n + λk−1

n ) + ik−1
n > Cn)), then user n

increases the price by a little bit to reduce demand. When
price µk−1

n is too high and user n has spare capacity (i.e.,
when Dn(µk−1

n +λk−1
n ) + ik−1

n < Cn), then user n decreases
the price by a little bit to stimulate demand.

E. Results

In the following, we analyze the iterative allocation algo-
rithm described above. In our main result, we show that under
this algorithm each user converges to an allocation which
maximizes its own net benefit. Furthermore, the bandwidth
allocation in equilibrium is unique and maximizes the sum of
the utilities of all users.

This result implies that it is indeed in the users’ interest
to adopt this algorithm as it leads to an allocation which
maximizes their individual net benefit. In addition, the result
suggests that using pricing to stimulate cooperation will lead
to good network performance, as in equilibrium the network
bandwidth is shared such that the sum of the utilities of all
users is maximized.

III. OPTIMAL SOLUTION

In this section, we derive the necessary and sufficient condi-
tions for an optimal solution (x∗

n, y
∗
n, µ

∗
n) to the maximization

problem USER(Un, µ−n) given by (1).
Consider a fixed user n. Furthermore, let µ−n ∈ 	N−1

+ be a
given price vector indicating the prices of all users except user
n, and let λn =

∑
m∈rn

µm be the corresponding aggregated
price that user n has to pay to forward its traffic. Assume
that all users other than user n keep their prices fixed (i.e.,
µ−n and λn are fixed), but adapt their bandwidth allocation
depending on the price µn set by user n. In this case, the
external demand at node n depends only on the price µn, and
we use In(µn), instead of In(µn, µ−n), to denote the external
demand at node n.

For the non-trivial case where In(0) > 0, we obtain
the following results (otherwise the problem reduces to the
optimization problem given in Subsection II-B).

Lemma 4: An allocation (x∗
n, y

∗
n, µ

∗
n) such that x∗

n + y∗
n =

Cn, is an optimal solution of USER(Un, µ−n) if and only if

x∗
n = Dn(µ∗

n + λn)

and
y∗

n = In(µ∗
n).

Note that the equality y∗
n = In(µ∗

n) implies that there is no
traffic loss at user n.

Proof: When x∗
n + y∗

n = Cn, we have that

Rn(x∗
n, y

∗
n, µ

∗
n) = Un(x∗

n) − x∗
nλn + ynµ

∗
n

= Un(x∗
n) − x∗

n(µ∗
n + λn) + Cnµ

∗
n.

The first order condition then implies that x∗
n = Dn(µ∗

n+λn).

Next, suppose that y∗
n < In(µ∗

n). Since In(µ∗
n) is continu-

ous and decreasing, there exists a price µ̂n such that µ̂n > µ∗
n

and y∗
n < In(µ̂n) ≤ In(µ∗

n). Note that

Rn(x∗
n, y

∗
n, µ̂n) −Rn(x∗

n, y
∗
n, µ

∗
n) = y∗

n(µ̂n − µ∗
n) > 0,

which contradicts the fact that (x∗
n, y

∗
n, µ

∗
n) is an optimal

solution, and it follows that y∗
n = In(µ∗

n).

Lemma 5: An allocation (x∗
n, y

∗
n, µ

∗
n), such that x∗

n + y∗
n <

Cn, is an optimal solution of USER(Un, µ−n) if and only if

x∗
n = Dn(λn),
y∗

n = In(µ∗
n),

µ∗
n = arg max

µn≥0

{
µnI(µn)

}
.

Furthermore, when there exists a constant Ln > 0 such that
ln(µn, µ−n) ≤ Ln for all µn ∈ 	+ at which In(µn, µ−n) >
0, then we have that µ∗

n ≤ Ln.

Proof: When x∗
n + y∗

n < Cn, then the net benefit of user
n is equal to

Un(xn) − xnλn + ynµn.

From the first order condition, it follows that x∗
n = Dn(λn).

By the same argument as given for Lemma 4, we have that
y∗

n = In(µ∗
n).

Furthermore, the optimal price µ∗
n satisfies

µ∗
n = arg max

µn∈R+
{µnIn(µn)}.

Differentiating µnIn(µn) with respect to µn, we obtain
(
µnIn(µn)

)′
= D′

n(µn)
(
µn +

In(µn)
I ′
n(µn)

)
.

It follows that when µ∗
n is optimal, then we have that(

µ∗
nIn(µ∗

n)
)′

≤ 0, which implies that µ∗
n ≤ Ln.

Combining Lemma 4 and 5, we obtain for the limiting case
where Ln → 0, that the allocation (x∗

n, y
∗
n, µ

∗
n) is an optimal

allocation if and only if

x∗
n = Dn(µ∗

n + λn)
y∗

n = In(µ∗
n)

µ∗
n = 0, if x∗

n + y∗
n < Cn.

IV. ITERATIVE ALGORITHM

In this section, we outline the derivation the iterative algo-
rithm described in Section II. The derivation of the algorithm
is quite involved and we refer to [5] for a detailed derivation.
Again, we consider the limiting case where Ln → 0, for
n ∈ N .

A. Bandwidth Allocation

We first consider how user n decides on its bandwidth
allocation (xk

n, y
k
n) at time step k. Recall that user n will

choose (xk
n, y

k
n) to maximize the optimization problem given

by (2). To compute the optimal solution to (2), we distinguish
three different cases.
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When
Dn(µk−1

n + λk−1
n ) + ik−1

n ≥ Cn,

then it can be shown that the optimal solution (xk
n, y

k
n) to (2)

has the property that

xk
n + yk

n = Cn.

Using a similar argument as in the proof of Lemma 4, it
follows that in this case the optimal solution (xk

n, y
k
n) to (2)

given by

xk
n = Dn(µk−1

n + λk−1
n )

yk
n = Cn − xk

n.

When we have that

Dn(λk−1
n ) + ik−1

n < Cn,

then it can be shown that the optimal solution (xk
n, y

k
n) to (2)

has the property that

xk
n + yk

n < Cn.

In this case, a similar argument as used in the proof of
Lemma 5 can be used to show that the optimal solution
(xk

n, y
k
n) is given by

xk
n = Dn(λk−1

n )
yk

n = ik−1
n .

Finally, we consider the case when

Dn(µk−1
n + λk−1

n ) + ik−1
n < Cn

and
Dn(λk−1

n ) + ik−1
n ≥ Cn.

In this case, one can show that the optimal solution to the
maximization problem (2) is then given by

xk
n = Cn − ik−1

n

yk
n = ik−1

n .

We refer to [5] for a detailed derivation.
Figure 2 summarizes the bandwidth allocation by user n at

step k.

B. Price Update

Next, we outline the derivation of the price update rule at
step k.

Lemma 4 implies that when

Dn(µk−1
n + λk

n) + In(µk
n, µ

k−1
−n ) = Cn,

then the allocation (xk
n, y

k
n, µ

k−1
n ) is optimal and the price

µk−1
n should not be changed.
Lemma 5 implies that when µk−1

n is equal to 0 and

Dn(µk−1
n + λk

n) + In(µk
n, µ

k−1
−n ) < Cn,

then the allocation (xk
n, y

k
n, µ

k−1
n ) is optimal and the price

µk−1
n should not be changed.

Bandwidth Allocation:
If Dn(µk−1

n + λk−1
n ) + ik−1

n ≥ Cn, then set
xk

n = Dn(µk−1
n + λk−1

n )
yk

n = Cn − xk
n;

else if Dn(λk−1
n ) + ik−1

n < Cn, then set
xk

n = Dn(λk−1
n )

yk
n = ik−1

n ;
else set

xk
n = Cn − ik−1

n

yk
n = ik−1

n ;
Price Update:

µk
n =

[
µk−1

n + αn

(
Dn(µk−1

n + λk−1
n ) + ik−1

n − Cn

)]+
.

Fig. 2. Iterative algorithm at user n.

Furthermore, it can be shown that when

Dn(µk−1
n + λk−1

n ) + In(µk−1
n , µk−1

−n ) > Cn,

then user n should increase the price µk−1
n to increase its net

benefit; similarly, when

Dn(µk−1
n + λk−1

n ) + In(µk−1
n , µk−1

−n ) < Cn,

then user n should decrease the price µk−1
n to increase its net

benefit.
The above result suggests the following update rule for µk

n,

µk
n =

[
µk−1

n + αn

(
Dn(µk−1

n + λk−1
n ) + ik−1

n − Cn

)]+
,

where αn > 0 is a small step size parameter.

V. PRICE-BASED BANDWIDTH ALLOCATION IN WIRED

POINT-TO-POINT NETWORKS

Before we analyze the algorithm presented in the previous
section, we compare in this section the framework presented
above with the one used by Kelly et al. in [3]. In particular, we
show that the above model is identical to the one considered by
Kelly et al. for the special case where (a) the external demands
are very elastic at each user and (b) every user either only
generates traffic (acts as an end host) or relays traffic (acts as
a router/link). In addition, we use the results by Kelly et al.
that we presented in this section for our convergence analysis
in the next section.

A. Model

Kelly et al. consider in [3] the following price-based band-
width allocation mechanism for wired networks (such as the
Internet).

Consider a wired network consisting of a set J of links,
and let Cj is the finite capacity of link j, for j ∈ J . Let
R be the set of users accessing the network. Associate with
each user r a single route r which is a non-empty subset of
J . Set Ajr = 1 if j ∈ r, so that the link j lies on route r,
and set Ajr = 0 otherwise. This defines a 0-1 routing matrix
A = (Ajr, j ∈ J, r ∈ R).

Suppose that if a rate xr is allocated to user r then this has
utility Ur(xr) to the user, where Ur(·) satisfies the following
assumption.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



Assumption 2: Ur(xr) is increasing, strictly concave and
continuously differentiable over the range xr ≥ 0.

For the framework considered in Section II, the above assump-
tion is equivalent to Assumption 1 as the rate xn at each user
n is restricted to the interval [0, Cn].

Let U = (Ur(·), r ∈ R) and C = (Cj , j ∈ J), and suppose
that the network seeks a rate allocation x = (xr, r ∈ R) which
solves the following optimization problem.
SY STEM(U,A,C)

max
∑

r∈R

Ur(xr)

subject to Ax ≤ C

over x ≥ 0.

B. Problem Decomposition

The above maximization problem can not be solved directly
by the network provider as it involves utilities U that are
unknown by the network. Instead, Kelly et al. consider two
simpler problems.

Suppose that user r chooses an amount to pay per unit time
wr, and receives in return a flow xr given by

xr =
wr

λr
,

where λr is a charge per unit flow for user r. Then the utility
maximization problem for user r is as follows.
USER(Ur;λr) :

max Ur(
wr

λr
) − wr

over wr ≥ 0.

Note that the above maximization problem is equivalent to the
user problem that we defined in Subsection II-D for the case
where a user does not relay any traffic, i.e., when the external
demand of a user is equal to zero.

Suppose next that the network tries to maximize the function∑
r∈R wrlogxr. Setting w = (wr, r ∈ R), the network

problem is then as follows.
NETWORK(A,C;w) :

max
∑

r∈R

wrlogxr

subject to Ax ≤ C

over x ≥ 0.

Note that solving the maximization problem
NETWORK(A,C;w) does not require the network
to know the utilities U .

Kelly et al. show that there always exist vectors λ =
(λr, r ∈ R), w = (wr, r ∈ R) and x = (xr, r ∈ R), satisfying
wr = λrxr for r ∈ R, such that wr solves USER(Ur;λr)
for r ∈ R and x solves NETWORK(A,C;w); furthermore,
the vector x is the unique solution to SY STEM(U,A,C).
This result implies that problems NETWORK(A,C;w) and
USER(Ur;λr) for r ∈ R can be used to obtain the unique
solution to SY STEM(U,A,C).

C. Characterizing the Optimal Solution using Lagrange Mul-
tipliers

The Lagrangian ([6]) for NETWORK(A,C;w) is

L(x, µ) =
∑

r∈R

wrlogxr − µT (C −Ax),

where µ = (µj , j ∈ J) is a vector of Lagrange multipliers
(link shadow prices).

Let Dr(λr) be the demand of user r when the price per
unit flow is λr, i.e.,

Dr(λr) = arg max
xr≥0

{Ur(xr) − xrλr}, λr ≥ 0.

Furthermore, let H(j) be the set of users whose routes pass
link j. Kelly et al. then prove the following result for the above
Lagrangian.

Proposition 1: The rate vector x∗ is the optimal solution to
SY STEM(U,A,C) if and only if there exists a Lagrangian
vector µ∗ ≥ 0 such that for every user r ∈ R we have

x∗
r = Dr(λr),

where
λr =

∑

j∈R

µ∗
j ,

and for every link j ∈ J we have
∑

r∈H(j) x
∗
r ≤ Cj

µ∗
j = 0, if

(
Cj −

∑
r∈H(j) Dr(λi)

)
< Cj .

D. Iterative Algorithm

While the problem NETWORK(A,C;w) is tractable, it
would be difficult to implement a solution in any central-
ized manner and Kelly et al. propose instead the use of a
decentralized (dual) algorithm that iteratively computes an
optimal solution. Adapt to the framework considered here, the
algorithm is given as follows.

At iteration step k, each user knows the price

λk−1
r =

∑

j∈r

µk−1
j

that user r was charged in the previous step k − 1 under the
link price vector µk−1 = (µk−1

j , j ∈ J). User r then chooses
the transmission rate xk

r given by

xk
r = Dr(λk−1

r ),

and the network updates its link prices by setting

µk
j =



µk−1
j + αj

( ∑

r∈H(j)

xk
r − Cj

)



+

,

where αj > 0 (j ∈ J) is a small step size parameter.
Note that the above algorithm is identical to the iterative

algorithm given in Section IV for the case where every user
either only generates traffic (i.e., acts as a user r ∈ R) or
relays traffic (i.e., acts a router/link j ∈ J).
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VI. CONVERGENCE ANALYSIS

In this section, we analyze the convergence behavior of
the iterative algorithm of Section IV and characterize the
properties of its limit points. As our main result, we show
that the algorithm converges to a unique bandwidth allocation
x∗ = (x∗

n, n ∈ N ) that maximizes the sum of the users’
utilities.

A. Convergence of the Price Vector µk

We first show that

lim
k→∞

‖µk − µk+1‖ = 0.

Let the Lyapunov function Φ : 	N
+ → 	+ be defined as

Φ(µ) =
∑

n∈N

∫ µn+λn

Dn(ζ)dζ −
∑

n∈N
µnCn,

where
λn =

∑

m∈rn

µm.

We note that the above expression is of the same form as
the Lyapunov function used in [3] to analyze the algorithm of
Subsection V-D. We have the following result.

Lemma 6: There exists a constant L > 0 such that

||∇Φ(µ) − ∇Φ(η)|| ≤ L||µ− η||, µ, η ∈ 	N
+ .

By the same argument as used by Kelly et al. in [3] to prove
convergence for the algorithm of Subsection V-D, we then
obtain the following result.

Proposition 2: When the step size parameters are such that

1 − αnL

2
> 0, n ∈ N ,

then we have that

lim
k→∞

‖µk − µk+1‖ = 0.

Note that the above proposition does not imply that the
sequence of vectors (µk, k ≥ 1) converges to an equilibrium
price vector µ∗.

B. Properties of Limit Points

Let ek
n = (xk

n, y
k
n, µ

k
n) be the allocation by user n at iteration

step k, let ek = (ek
n, n ∈ N ) be the allocation vector at step k,

and let E = (ek, k ≥ 1) be the allocation sequence generated
by the iterative algorithm. In this section, we show that every
limit point e∗ leads to an allocation which maximizes the net
benefit of each user. We first derive a few preliminary lemmas.

The next lemma states that sequence given by E is bounded.
Lemma 7: There exists a constant B > 0 such that

||ek|| < B, k ≥ 1.

Using the above lemma, we obtain the following result
(see [8]).

Lemma 8: Every infinite subset of E has a limit point.

For every user n ∈ N , we define the function fn(e) by

fn(e) =
(
xn −Dn(µn + λn)

)2

+
(
yn − In(µn, µ−n)

)2

+µn(Cn − xn − yn),

where e = (en, n ∈ N ) with en = (xn, yn, µn) ∈ 	3
+.

The next lemma establishes that for every user n ∈ N , the
sequence (fn(ek), k ≥ 1) converges to 0.

Lemma 9: We have

lim
k→∞

fn(ek) = 0.

Proving the above lemma is non-trivial; we refer to [5] for a
derivation. The next proposition characterizes the limit points
of E.

Proposition 3: Let e∗ be a limit point of the sequence E =
{ek, k ≥ 1}. For every user n ∈ N , we then have that

x∗
n = Dn(µ∗

n + λ∗
n)

y∗
n = In(µ∗

n, µ
∗
−n)

µ∗
n = 0, if x∗

n + y∗
n < Cn.

Proof: Note that the function fn(e) is continuous in e
for every user n ∈ N . Combining this fact with Lemma 9, it
then follows immediately that

fn(e∗) = 0, n ∈ N ,

or
(
xn −Dn(µn + λn)

)2
+

(
yn − In(µn, µ−n)

)2
+ ...

+µn(Cn − xn − yn) = 0, n ∈ N .

Proposition 3 then follows immediately from the above equa-
tion.
Combining Proposition 3 with our discussion in Section III, it
follows that at every limit point e∗ the allocation (x∗

n, y
∗
n, µ

∗
n)

maximizes the net benefit of user n.

C. System Properties

In the subsection, we show that the algorithm converges to
a unique bandwidth allocation which maximizes the sum of
the utilities of all users.

Consider the (social welfare) maximization problem

max
∑

n∈N
Un(xn) (3)

subject to Ax ≤ C

over x ≥ 0,

where A is the routing matrix that we defined in Section II
and C = (Cn, n ∈ N ) is the capacity vector.
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Note that this maximization problem is of the same form as
the system problem considered by Kelly et al. (see Section V).
Furthermore, it can be shown that the properties of a limit point
e∗ as given in Proposition 3 are equivalent to the properties of
Proposition 1 for the system problem considered in Section V.
Combining these two observations, we obtain the following
result.

Proposition 4: Let x∗ = (x∗
n, n ∈ N ) be the bandwidth

allocation at a limit point of the sequence E = (ek, k ≥ 1).
Then x∗ is the unique optimal solution to (3).

Proof: We relate revenue optimization problem of
each node in our work with the user optimization problem
USER[Un;λn] in [3]. There is a difference between the two
scenarios. In our work, a node is charged for using transmis-
sion bandwidth of related nodes, while in USER[Un;λn] a
user is charged for using wired network links. We regard the
bandwidth of node as a virtual link connecting any two nodes
as in [3]. Use of such virtual links is charged.

By Proposition 3, we have that for each node n ∈ N , if
(x∗

n, y
∗
n, µ

∗
n) is a limit point of the sequence, (xk

n, y
k
n, µ

k
n) k ∈

N, it has the following properties:

x∗
n = Dn(

m∑

j=1

µrnj
)

∑

m∈H(n)

x∗
m ≤ Cn

µn = 0, if
∑

m∈H(n)

x∗
m < Cn.

These properties show that each node actually pays every
node along its route, including the node itself. This makes
the node revenue optimization problem identical to the user
optimization problem USER[Un;λn] in [3].

Let x∗ = (x∗
1, · · · , x∗

N ) be the limit point of node transmis-
sion rate vector. Due to the constraint Ax ≤ C, we have that
xn ≤ Cn for any node n. Then our assumption of the utility
function in Assumption 1 is the same as Assumption 2. Based
on the above properties of the vector x∗, we apply Proposi-
tion 1 and obtain that x∗ is the unique limit point of node
transmission rate vector x. Furthermore, the limit point x∗

solves the system maximization problem SY STEM [U,A,C],
thus maximizing the network social welfare.

The next corollary then follows immediately from Proposi-
tion 4.

Corollary 1: The sequence (xk, k ≥ 1) converges to
the unique bandwidth allocation x∗ = (x∗

1, · · · , x∗
N ) which

solves (3).

Note that the above analysis only establishes that the algo-
rithm converges to a unique bandwidth allocation; this does
not imply it converges to a unique price vector µ∗. Indeed, it
can be shown the system equilibrium e∗ may not be unique
(see [5] for an example).

VII. NUMERICAL RESULTS

In this section, we illustrate the iterative algorithm of
Section IV and the results of Section VI through a numerical
case study.

We consider a network consisting of 25 users (nodes).
Figure 3 illustrates the network topology in terms of the routes
of individual flows. The bandwidth capacity of every user is
set equal to 10 packets/second. In addition, we assume that
each user has the same utility function given by

U(x) =
{

lg(x+ 1) x ∈ [0, C]
lg(C + 1) x ∈ (C,+∞) .

Setting the step size parameter αn equal to 0.0007 for every
user n ∈ N , we simulated the iterative algorithm of Section IV
for 800 iteration steps.
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Fig. 3. Network Traffic Flows

Figure 4, and Figure 5, indicate the trajectories of the
transmission rates xn, and the price µn, respectively, at
individual user n ∈ N . We note that the system converges to
an equilibrium rate allocation, and an equilibrium price vector,
within 600 iterations. The equilibrium transmission rates and
prices are given in Table I. Note that the equilibrium price µ∗

n

is equal to 0 at users that do not fully use their transmission
capacity, i.e., if x∗

n + y∗
n < 10.
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Fig. 4. Trajectories of the transmission rates xn.

We run the simulation using different sets of initial values
for the transmission rates and prices, and found that the
system always converged to the same equilibrium rate and
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TABLE I

EQUILIBRIUM TRANSMISSION RATES AND PRICES

User x∗
n y∗

n µ∗
n

1 1.0601 7.9827 0
2 0.4223 6.2287 0
3 0.3574 9.6426 0.0342
4 1.7232 6.5354 0
5 1.3095 8.6905 0.1202
6 0.1290 9.8710 0.0262
7 0.1314 9.8686 0.3983
8 0.3553 4.0663 0
9 0.2545 9.7455 0.0015

10 0.3526 6.0685 0
11 1.2062 7.0717 0
12 0.7275 8.9532 0
13 1.0516 6.1872 0
14 1.0516 5.8930 0
15 0.8358 6.0169 0
16 0.2522 9.7478 0.2786
17 0.2116 7.4388 0
18 0.7231 8.9465 0
19 0.2522 4.5585 0
20 0.9286 6.6787 0
21 0.7214 7.8929 0
22 0.3063 7.6517 0
23 0.2146 5.3223 0
24 1.3445 8.6555 0.0268
25 0.4193 9.2796 0

price vector. This result might indicate that large-scale ad
hoc networks typically have a unique system equilibrium
e∗ = (x∗, y∗, µ∗).

VIII. EXTENSIONS

In our discussion so far, we ignored the fact the users in a
wireless ad hoc network may have limited battery resources. In
this section, we outline how this effect can be incorporated into
our model. For this extension, we will assume that each user
transmits at a fixed power level and each packet transmission
attempt drains the battery by the same amount.

A. Battery Cost

When the battery of an individual users is low, then this
user will be reluctant to relay packets for other users as this
might impact the user’s ability to send its own traffic. We
model this effect by associating a battery cost pn with each
user n ∈ N , where pn is higher the lower the battery level
at user n. Roughly, pn captures the potential cost incurred if
user n uses its battery to send data now and this energy is not
available at a future time to send its own data that might have
a high value to user n, or to relay for other users at a high
price µn. We assume that each user n decides on its battery
cost pn as a function of its current battery level. Furthermore,
we assume that the cost pn changes slowly compared with the
time-scale at which users update their bandwidth allocation
(xn, yn) and the price µn; this assumption will allow us to
treat pn as a constant.

Let pn be the battery cost of user n, then we associate the
following maximization problem with user n,

max
xn,yn,µn

{
Un(xn) − xnλn + ynµn − pn(xn + yn)

}
.

subject to xn + yn ≤ Cn

yn ≤ In(µn, µ−n)
xn, yn, µn ≥ 0.

Note that this problem is similar to the maximization problem
USER(Un, µ−n), however the above problem also accounts
for the cost for draining the battery when user n transmits at
rate xn + yn.

In this case, a similar analysis as given in Section IV
leads to the following update algorithm given by Figure 6.
Furthermore, one can show that for this iterative algorithm

Bandwidth Allocation:
If Dn(µk−1

n + λk−1
n + pn) + ik−1

n ≥ Cn, then set
xk

n = Dn(µk−1
n + λk−1

n + pn)
yk

n = Cn − xk
n;

else if Dn(λk−1
n + pn) + ik−1

n < Cn, then set
xk

n = Dn(λk−1
n + pn)

yk
n = ik−1

n ;
else set

xk
n = Cn − ik−1

n

yk
n = ik−1

n ;
Price Update:

µk
n = pn+

[
µk−1

n +αn

(
Dn(µk−1

n +λk−1
n +pn)+ik−1

n −Cn

)]+
.

Fig. 6. Iterative algorithm with battery cost pn.

the system will converge to a bandwidth allocation which
maximizes the following objective function

max
∑

n∈N

(
Ur(xn) − xn

(
pn +

∑

m∈rn

pm

))
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subject to xn +
∑

m∈G(n)

xm ≤ Cn, n ∈ N ,

xn ≥ 0, n ∈ N .

Note that this implies that a user will reduce its transmission
rate if (a) its own battery is low or (b) its route passes through
another user with a low battery.

B. Interference Cost

Interference between users in an ad hoc network can cause
bit errors and packet loss. In the case of loss, data packets
will have to be retransmitted, thus further depleting and
incurring an additional interference cost. Here, we model this
interference cost for a ad hoc network which consists of a
set S of overlapping cells. We identify a cell s ∈ S by
the set of users belonging to s. We assume that each cell
is assigned communication channel (i.e., frequency, spread-
spectrum code) such that there is no interference between data
transmissions in different cells. Let Cs be the capacity of the
communication channel of cell s. Users located within the
same cell s ∈ S communicate with others by broadcasting
packets on this channel. Users which belong to more than one
cell can be used to relay packets between cells and ensure that
each user can reach every other user in the network. When two
or more nodes access the channel in cell s at the same time,
then their packets will collide and are lost. Lost packets are
transmitted at a later time (see contention-based multiaccess
protocols such as slotted Aloha and CSMA/CA [7]).

We use the following notation. Let H(s) be the set of
users whose route passes through cell s ∈ S. Furthermore,
let R(n) be the set of cells to which user n relays packets,
and let sn be the cell in which user n send its own traffic.
Let xn be the transmission rate of user n and let yn,s be
the transmission rate that user n allocates to relay packets to
other nodes in cell s. The total transmission rate that user n
allocates to relay packets is then given by yn =

∑
s∈R(n) yn,s.

We assume users which belong to more than one cell can only
access one channel at each time instant, i.e., we have that the
constraint that xn + yn ≤ Cn, where Cn is the transmission
capacity of user n. Let qn,s be the expected number of times
user n has to transmit a packet in cell s to get it successfully
delivered. Note that qn,s depends on the level of interference
in cell s, i.e., we have qn,s = 1/(1 − Pn,s) where Pn,s is the
probability that a transmission attempt of user n experiences
interference and is lost. When many users share the same
channel, then probability Pn,s will be identical for all users
sharing the channel s and only depends on the aggregated rate
of transmission attempts on this channel. Let Ps(zs) be the
probability that a transmission attempt experiences a collision
and formulated as a function of the transmission rate

zs =
∑

n∈s

(xn + yn,s)

in cell s. We make the following assumption.

Assumption 3: The function Ps(zs), s ∈ S, is continuous
and we have that Ps(0) = 0 and

lim
zs→∞

Ps(zs) = 1.

Let pn be the battery cost for one transmission attempt at user
n. The total battery cost for forwarding a packet at a node
n ∈ s is then equal to

pnqs(zs) = pn
1

1 − Ps(zs)
.

To simplify the analysis, we assume that the battery costs of
all users in the same cell s are identical and equal to ps. The
total battery cost for forwarding a packet at a node n ∈ s is
then equal to psqs(zs).

We then associate with each user n the following maximiza-
tion problem.

max
xn,(yn,s:s∈R(n)),(µn,s:s∈R(n))

{
Un(xn) +

+
∑

s∈R(n)

yn,s

(
µn,s − psqs(zs)

)
−

−xn

(
λn + psn

qsn
(zsn

)
)}

where µn,s is the price that user n charges for forwarding
packets to cell s. Note that in the above maximization problem,
user n is allowed to charge a different price µn,s for relaying
traffic to different cells s ∈ S. This accounts for the fact
that user n wants to charge a higher price for traffic to be
transmitted in a cell s with a high channel access cost psqs(zs).

The same argument as given in Section IV leads to the
following update algorithm given by Figure 7.

Bandwidth Allocation:
If Dn(µk−1

n +λk−1
n + psn

qsn
(zk−1

sn
)) + ik−1

n ≥ Cn, then set
xk

n = Dn(µk−1
n + λk−1

n + psn
qsn

(zk−1
sn

))
yk

n = Cn − xk
n;

else if Dn(λk−1
n + psn

qsn
(zk−1

sn
)) + ik−1

n < Cn, then set
xk

n = Dn(λk−1
n + psn

qsn
(zk−1

sn
))

yk
n = ik−1

n ;
else set

xk
n = Cn − ik−1

n

yk
n = ik−1

n ;
Price Update:

µk
n = psqs(zk−1

s ) +

+
[
µk−1

n + αn

(
Dn(µk−1

n + λk−1
n + psqs(zk−1

s )) +

+ik−1
n − Cn

)]+
, s ∈ R(n).

Fig. 7. Iterative algorithm with interference cost psqs(zs).

Furthermore, the same argument as used in Section IV
can be used to show that the above system converges to
an equilibrium bandwidth allocation which approximates the
solution to the following maximization problem,

max
∑

n∈N
Un(xn).
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subject to xn +
∑

m∈G(n)

xm ≤ Cn, n ∈ N ,

∑

n∈H(s)

xs ≤ Cs, s ∈ S

xn ≥ 0, n ∈ N .

The same argument as given in [3] shows that the approx-
imation will become better as the functions Ps(zs), s ∈ S,
approach the step function

P̂ (z) =
{

0 z < Cs,
1 z ≥ Cs.

IX. CONCLUSIONS

In this paper, we use pricing to give an incentive to network
users for sharing their bandwidth in ad hoc networks. We
define the pricing model and then propose the adaptation
algorithm for users to optimize their net benefit. Moreover,
we show that the algorithm converges to the unique bandwidth
allocation which maximizes the sum of the users’ utility (social
welfare).

For our analysis, we focused on the case where the demand
is very elastic. Characterizing the system equilibrium for the
general case is still an open problem.
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