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Abstract— The aim of this paper is to analyze the perfor-
mance of a large number of long lived TCP controlled flows
sharing many routers (or links), from the knowledge of the
network parameters (capacity, buffer size, topology) and of the
characteristics of each TCP flow (RTT, route etc.) when taking
synchronization into account. It is shown that the dynamics of
such a network can be described in terms of iterate of random
piecewise affine maps, or geometrically as a billiards in the
Euclidean space with as many dimensions as the number of
flow classes and as many reflection facets as there are routers.
This class of billiards exhibits both periodic and non-periodic
asymptotic oscillations, the characteristics of which are extremely
sensitive to the parameters of the network. It is also shown that
for large populations and in the presence of synchronization,
aggregated throughputs exhibit fluctuations that are due to the
network as a whole, that follow some complex fractal patterns,
and that come on top of other and more classical flow or
packet level fluctuations. The consequences on TCP’s fairness
are exemplified on a few typical cases of small dimension.

I. INTRODUCTION

The Additive Increase, Multiplicative Decrease (AIMD)
model introduced in [4] describes the joint evolution of the
congestion window size of N long lived (FTP or Peer to Peer
type) flows controlled by TCP and sharing a single router or
link, in terms of products of random matrices. The associated
large population asymptotic model which concerns the case
N → ∞ was studied in [12].

The present paper studies the case when the TCP flows are
heterogeneous, i.e. with different Round Trip Times (RTTs)
or routes, and when each flow goes through a route made
of several tail-drop routers (throughout the paper, we will
consider routers to be the possible bottlenecks; this could be
replaced by links everywhere without altering the conclusions)
in series. The corresponding model, which is introduced in §II,
will be referred to as the multi-AIMD model.

Our aim is to estimate the throughput obtained by each
individual flow under the competition rules imposed by TCP,
and also the fluctuations of this throughput, from the sole
knowledge of the route and the RTT of each flow, and
the characteristics of each router and link (buffer size, link
capacity etc.) in the network.

This is of course related to the classical relationships
that have been obtained between the packet loss probability
and TCP throughput for a given session (see e.g. [17]); in
particular, it was shown in [4] that the single router AIMD
dynamics resulted in a dependency between these quantities
that was compatible with these formulas and was actually

refining them in that it allowed one to assess the influence
of synchronization.

The first models for the several router TCP network case are
those of [13] and [10]. These papers analyzed the bandwidth
sharing of different TCP flows over large networks in terms of
optimization problems, and triggered a large number of further
studies (see e.g. [16], [15]). The prediction of the throughput
in the several AQM router case has also been investigated via
fixed point approximation methods for mean values in [8].
The approach that is proposed in the present paper addresses
the same prediction question in the tail drop router case. The
main difference with these earlier approaches lies in the fact
that we use a pathwise description of the dynamics of the
interaction between flows, which takes into account discrete
event phenomena that are of central importance for tail drop
networks, such as congestion epochs, losses or synchronization
of sources, as well as random phenomena which all have an
impact on throughput fluctuations.

More precisely, the interaction is described by a set of
evolution equations that generalize the random affine map
description of the AIMD (one router) model. The basic multi-
AIMD model can be seen as iterates of random piecewise
affine maps. From this stochastic model, we define a large
population asymptotic model. This asymptotic model can be
seen as iterates of deterministic piecewise affine maps. These
equations are shown to admit a geometrical representation in
terms of a random or deterministic billiards in the Euclidean
space. The dimension of this space is the number of different
flow classes (typically, there is one flow class per route and
RTT). This billiards has as many reflection facets as there are
routers.

This new representation of the interaction between TCP
flows over networks made of several links and routers and
its exploitation are the main contributions of the present
paper. We establish sufficient conditions for the asymptotic
periodicity of the throughput obtained by the interacting flows,
as well as a conservation law that relates the intensities with
which routers experience congestion. Billiards are known to
possibly exhibit non-periodic asymptotic behaviors. We give
numerical evidence that this is possible for the class of billiards
considered here. We also show that the characteristics of this
asymptotic behavior are extremely sensitive w.r.t. network
parameters. The implications on TCP’s fairness and bandwidth
sharing are exemplified on a few cases of small dimension. We
show however that once the periodic regime is known, fairness
can be approached analytically using a mix of linear algebra
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and cycle formulas of Palm calculus [3].
The validation of this billiards representation is not ad-

dressed in the present paper; it is the object of a companion
paper [6], which investigates more generally the use of this
approach as a simulation tool. In addition to comparison with
NS2 simulation, it is shown there that the aggregated traffic
generated by this representation satisfies several empirical or
statistical laws that were observed on real traces. This concerns
the short time scale statistical properties observed in [20], [24],
[1] and the empirical power law describing the sensitivity w.r.t.
RTTs reported in [14].

II. NOTATION AND MODEL DESCRIPTION

A. Notation

The model parameters are the following:

• Network configuration: R is the set of routers; Cr is the
capacity of router r ∈ R; all routers are assumed to be
tail drop.

• Traffic configuration: S is the set of TCP flow classes;
Ns is the number of TCP flows of class s ∈ S; Ps is the
route of class s flows; depending on the circumstances,
any such route will be considered as a sequence of routers
or as a sequence of pairs of routers; RTTs = Rs is the
propagation delay for class s flows, which is also the
minimal RTT for this class; λs denotes the stationary
throughput of class s (one of the key variables to be
determined).

• Network and traffic configuration: Sr is the set of classes
with a route using router r; Mr is the total number of
flows sharing router r: Mr =

∑
s∈Sr

Ns; for s ∈ Sr,
as,r = Ns/Mr, is the proportion of flows of class s
within the set Sr; cr = Cr/Mr is the throughput that one
flow could get if the capacity were ideally and equally
shared.

Assumption A (which will be used for in certain proofs)
supposes that each router has at least one class with a route that
contains this router only. This assumption is not essential for
most properties. However, it ensures that each router reaches
congestion infinitely often, which simplifies the exposition of
the results.

We now give the notation of the different state variables
that we will use. Most of these variables refer to the sequence
{Tn} of all congestion epochs in the network. As in [4], Tn is
the n-th epoch at which a loss (or several simultaneous losses)
occur on at least one router.

• X(s,i)(t) is the throughput of flow i of class s at time t;
• X

(s,i)
n = X(s,i)(Tn+) is the throughput of flow i of class

s just after the n-th congestion time;
• Y

(s,i)
n = X(s,i)(Tn−) is the throughput of flow i of class
s just before the n-th congestion time; by construction,
it will always be true that for all r ∈ R, and all time t,

∑

s∈Sr

∑

i∈s

X(s,i)(t) ≤ Cr . (1)

The congestion epoch Tn will be said of type r ∈ R, if∑
s∈Sr

∑
i∈s Y

(s,i)
n = Cr. Nothing forbids to have Tn of

both type r and r′.
• τr,n+1 is the time between Tn and the next virtual

congestion epoch of router r, which is defined as

τr,n+1 =
Cr −

∑
j,s∈Sr

X
(s,j)
n

∑
s∈Sr

Ns

R2
s

;

this is the time that would elapse between Tn and the
next congestion epoch on router r, should the capacities
of all other routers be infinite;

• γ
(s,i,r)
n is the multiplicative variable of flow i ∈ s on

router r at the n-th congestion epoch: : γ(s,i,r)
n = 1/2

if there is a loss for flow i on router r; γ(s,i,r)
n = 1

otherwise; so, γ(s,i,r)
n ≡ 1 if r /∈ Ps.

Throughout this paper, we will study several types of
assumptions.
The rate-independent (RI) model is that where the se-
quences γ(s,i,r)

n are independent in r; for all fixed r,
independent and identically distributed (i.i.d.) in n; for
all fixed r and s, identically distributed and ergodic in
i ∈ s.
The rate-dependent (RD) case is that where the law of
γ

(s,i,r)
n is a function of s, r and Y (s,i,r)

n (a flow of a given
class that has a large instantaneous throughput has more
chances to experience a loss than another flow of the
same class with a smaller throughput). Some RD cases
will be studied in §III-C.

• p
(s,r)
n = IP(γ(s,i,r)

n = 1/2) is the synchronization rate of
router r for the flows of class s at the n-th congestion
epoch. In the rate-independent case, p(s,r)

n ≡ p(s,r). The
class-independent (CI) model is that where in addition,
p(s,r) = p(r), for all s ∈ Sr.

The synchronization rate should not be confused with the
packet loss rate. Since the synchronization rate represents the
proportion of flows that experience a loss during a congestion
epoch, it is possible to simultaneously have a high synchro-
nization rate and a low packet loss rate (e.g. when rarely all
sources loose at the same time) or the converse.
We show in [6] how this synchronization rate can be estimated
from the network parameters using simple queueing theoretic
arguments that take into account the delay with which sources
react to losses. However, we will not use the specific form
of the function proposed there, and for what follows, other
estimates could be used as well.

B. Dynamics in the Simplest Case

It will be assumed that routers have small buffer capacity
so that it makes sense to assume that the different RTTs are
constant over time and equal to Rs for class s.

Since, due to the Additive Increase (AI) rule, each flow of
class s increases its send rate with slope 1

R2
s

(this is the slope
obtained when assuming that the window size and the RTT are
linked at any time by a Little like formula: W = XR), we get
that the sum of the throughputs of all flows using router/link
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r increases with slope
∑

u∈Sr

Nu

R2
u

. This lasts until the the next
congestion epoch Tn+1, which is the first epoch after Tn when
the sum of the instantaneous throughputs through one of the
routers/links exceeds the capacity of this router/link. Assume
one knows X(s,i)

n for all i and s. Then we get

Y
(s,i)
n+1 = X(s,i)

n +
1
R2

s

min
r∈R

τr,n (2)

= X(s,i)
n +

1
R2

s

min
r∈R

Cr −
∑

j,u∈Sr
X

(u,j)
n

∑
u∈Sr

Nu

R2
u

. (3)

Let rn = argminr∈Rτr,n. Assume that this set has one
element. Then due to the Multiplicative Decrease (MD) rule,

X
(s,i)
n+1 = γ

(s,i,rn+1)
n+1 Y

(s,i)
n+1 . (4)

Should there be several elements in the last set, then one would
apply the multiplicative rule for all routers of the set (the order
in which the multiplicative decrease is made does not affect
the result). So the global dynamical system reads: ∀(i, s),

X
(s,i)
n+1=γ

(s,i,rn+1)
n+1

(
X(s,i)

n +
1
R2

s

min
r∈R

Cr −
∑

j,u∈Sr

X
(u,j)
n

∑
u∈Sr

Nu

R2
u

)
(5)

= γ
(s,i,rn+1)
n+1

(
X(s,i)

n +
1
R2

s

min
r∈R

cr −
∑

u∈Sr

au,r

Nu

∑
j∈u

X
(u,j)
n

∑
u∈Sr

au,r

R2
u

)
.

We see that the vector of throughputs at time Tn+1 is obtained
from that at time Tn via a random map which is piecewise
affine.

C. Extensions

The basic model admits several extensions, which will not
be discussed here. The case with non zero buffer was analyzed
in [4] and [9] for the single link case, and is simulated in [6]
for the general topology case; the case with non persistent
traffic is also considered in [6].

D. Large Population Asymptotics

When the population grows large, this model admits a
deterministic asymptotic model that generalizes that of the
single router case as defined in [12]. All variables of interest
then depend on a parameter N that grows large. We assume
in particular that for all s, Ns[N ] = nsN and that for
all r, Cr[N ] = crMr[N ], so that the proportions as,r =
ns/

∑
u∈Sr

nu are kept for all s and r.

Theorem 1 Suppose the losses are rate-independent. Assume
in addition that for all s, the initial conditions X(s,i)

0 [N ] are
such that for all (deterministic) sequences of subsets σ[N ] of
the set of flows of class s with a cardinal |σ[N ]| that tends
to ∞, the empirical mean 1

|σ[N ]|
∑

i∈σ[N ]X
(s,i)
0 [N ] converges

almost surely (a.s) to a deterministic limit x(s)
0 which does not

depend on the sequence of subsets that is chosen. Then for all
n,

∃ lim
N→∞

1
|σ[N ]|

∑

i∈σ[N ]

X(s,i)
n [N ] = x(s)

n a.s.

with x(s)
n deterministic, and such that the limit does not depend

on the sequence of subsets that is chosen. In addition, the
variables x(s)

n , s ∈ S, satisfy the evolution equation

x
(s)
n+1 = γ

(s,rn+1)
n+1

[
x(s)

n +
1
R2

s

τn+1

]
, (6)

where γs,r
n = IE[γ(s,i,r)

n ], τn = minr∈R τ r,n, rn =
argminr∈Rτ r,n,

τ r,n+1 =
cr −

∑
u∈Sr

au,rx
(u)
n∑

u∈Sr

au,r

R2
u

If in addition, the initial condition is such that for all (s, i), the
a.s. limit limN→∞X

(s,i)
0 [N ] = X

(s,i)
0 [∞] exists, then for all

n, the a.s. limit limN→∞X
(s,i)
n [N ] = X

(s,i)
n [∞] also exists,

and the sequence of random variables X(s,i)
n [∞] satisfies the

stochastic recurrence equation:

X
(s,i)
n+1 [∞] = γ(s,i,rn+1)

n+1

[
X(s,i)

n [∞] +
1
R2

s

τn+1

]
, (7)

with rn+1 and τn+1 the variables defined in the last deter-
ministic equations.

The proof can be found in [5]. Notice that empirical means
correspond to what is often referred to as aggregated traffic,
where the aggregates are here per class.

In this last model, we will denote by y(s)n (resp. x(s)(t)) the
variables defined as x(s)

n but from the random variables Y (s,i)
n

(resp. X(s,i)(t)). We deduce the following inequalities from
(1): for all t and r,

∑
s∈Sr

as,rx
(s)(t) ≤ cr.

In what follows, (5), satisfied by the actual throughput
vector, will be referred to as the stochastic multi-AIMD model
and (6), satisfied by the the vector of empirical means, will
be referred to as the associated large population asymptotic
model.

An important question (that will be discussed numerically in
§III-E) is that of the speed of convergence and of the nature of
the error term when approximating the model with N large but
finite by the asymptotic model. First results on the convergence
of the moments are reported in [12] for the single router case.
In many asymptotic models of this mean field type, a central
limit theorem can be established, which allows one to prove
that the fluctuations around the limit are Gaussian, and to
estimate them (see e.g. [11]). Whether this type of results also
holds for the general class of dynamics identified here will be
the object of future research.

Equivalent large population equations: If we take as
state variables x̃s = nsxs, in place of xs, s ∈ S, then the large
population equations can be rewritten under the equivalent
form, which will also be used later:

x̃
(s)
n+1 = γ

(s,r̃n+1)
n+1

[
x̃(s)

n +
1

R̃2
s

τ̃n+1

]
, (8)

where R̃s = Rs/
√
ns and where τ̃n = τn, r̃n = rn.
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E. The Three Levels

The proposed model allows one to represent and neverthe-
less to decouple three different levels:

1) The network level, which is captured by (6) or (8), and
where the large population averaging takes place; this
level, which we believe to be the main new paradigm
identified in the present paper, will be the central object
of the mathematical study of the next section.

2) The flow level, which is captured by the stochastic
equation (7); the results obtained at the network level
(e.g. the determination of the period of the sequence
{τn, rn}, see Theorem 1) can be used to determine the
effect of the network on each flow via the stochastic
recurrence (7); this type of stochastic recurrences was
already studied (at least in some special cases) in [4],
[12] and more recently in [9], and we will not pursue the
mathematical analysis of this level in the present paper.

3) The packet level, which is captured by the synchroniza-
tion rate formula (see Formula (7) of [6]), which takes
into account the delay of reaction proper to TCP. This
packet level influences both the network and the flow
levels via the impact of the synchronization rate on this
level.

As we will see, each level is responsible for parts of the
fluctuations of the throughput obtained by flows of aggregates
of flows. By decoupling, we simply mean that the fluctuations
of all levels can be analyzed independently.

F. Billiards Interpretation

The dynamics of the large population asymptotic model
can be seen as that of a deterministic billiards model, the
geometry of which is determined by the routes and the RTTs of
the various flow classes and the capacity of the routers. The
stochastic multi-AIMD model can be seen as a randomized
version of the billiards.

This is illustrated by the three–class, two–router network
of Fig. 1. Here c1 = c2 = C

2 , S1 = {1, 3}, S2 = {2, 3},

Z

X Y:S1 :S2

:S3

1

C1

2

C2

Fig. 1. 2 Router, 3 Class Network Topology

and as,r = 1
2 (or equivalently ns = 1) for all s and r. As

for RTT’s, we take Rs = 1 for all s. The synchronization
rates are all assumed to be equal to 1, so that γs,r

n = 1/2

for all s and r. Let us look at the evolution of the large
population asymptotic vector (x(1)(t), x(2)(t), x(3)(t)) in the
three dimensional Euclidean space (X,Y, Z). Notice that in
this particular case (6) and (8) are the same. This vector lives
in the polyhedron: X ≥ 0, Y ≥ 0, Z ≥ 0, X + Z ≤
C, Y +Z ≤ C, which is depicted on Fig. 2 and is the domain
of the billiards. The plane H1 (X + Z = C) represents the

Z

X

Y

C

C

C

G1
H1

1

2

Fig. 2. Billiards Domain

capacity constraint of router 1, with a similar interpretation
for the plane H2 (Y + Z = C). From any point in the
domain, the ball (i.e. the throughput process) moves linearly
with time along the main diagonal with a constant velocity, as
a consequence of the AI rule and the fact that all RTT’s are the
same. If the ball reaches the plane H1, then it instantaneously
jumps (red arrow, or arrow 1 for black and white reading) to
the plane G1 (X+Z = C/2), which describes the occurrence
of losses on router 1. After this jump, the process (X,Y, Z)
grows along the main diagonal again (blue arrow or arrow
2) until it hits one of the planes H1 or H2 (the last one
is met first for this trajectory) and so on. Notice that due
the these jumps, the process is actually closer to a pinball
than to a billiards. Fig. 3 gives a more complete view of
the parts of all planes H1, H2 and G1, G2, where similar
phenomena take place, namely jumps from H2 to G2 and
growth along the main diagonal from G2 to either H1 or H2.
Fig. 3 depicts a (projective) view along the main diagonal.
In this projective view, any linear increase is just a point. An
instance of sequence of additive increases and multiplicative
decreases (which appear as arrows) is illustrated there where
the ball departs from H1 and then successively hits G1, H2,
G2 and H1.

In the stochastic model, the multiplicative dynamics is a
randomized version of the last one: facets H1 and H2 still
exist, but reflection on say H1 sends the ball in a random
neighborhood of the point of G1 where the deterministic bil-
liards jumps. The neighborhood in question is approximately
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H1 H2

G1 G2

Fig. 3. Billiards Facets and Trajectories.

Gaussian in the three dimensional space.

III. ANALYSIS OF THE NETWORK LEVEL EQUATIONS

Billiards models have been extensively studied using er-
godic theory (e.g. Sinai’s billiards [22]). Billiards reducible to
iterates of piecewise affine maps (our TCP billiards belong to
this class) have also been studied (see e.g. [19]). Within this
piecewise affine class, even in the case where all maps are
contracting, there are unfortunately no general results holding
for all dimensions. In particular, there are simple examples
of small dimension where some situations lead to a periodic
behavior, whereas others lead to a non-periodic one. The
subclass of TCP billiards (piecewise affine billiards that stem
from TCP dynamics) has some specific properties that could
make it amenable to a more specific analysis: the domains
where the map is affine are intersections of half-spaces; each
map is the composition of the multiplication by a diagonal
matrix and of a projection on along some direction etc.

A. Periodic Regime

The aim of this subsection is to give a general sufficient
condition for having only periodic behaviors; this sufficient
condition is in term of a sequence of linear problems; as we
will see, this also allows one to determine the period and the
orbit. In this subsection, we will assume A to hold.

The reference space is the Euclidean space of dimensionK ,
where K is the cardinality of S. We will use (8) rather than
(6). We will drop the “tilde” on the variables for the sake of
easy notation. Let Hr denote the hyperplane

∑

s∈Sr

x(s) =

(
∑

s∈Sr

ns

)
cr, (9)

which will be referred to as facet r of the billiards.

1) Discrete Time Dynamics: Rather than the continuous
time dynamics, we will study the discrete time dynamics,
{yn}, which gives the throughput process sampled just before
congestion epochs, that is when the ball hits one of the facets.

For all r, let φr : RK → R denote the affine form

φr(y) =
cr −

∑
u∈Sr

au,ry
(u)

∑
u∈Sr

au,r

R2
r

.

For all r, s, let Fr,s denote the subset of Hr where when
applying the discrete time dynamics once, the ball hits facet
s at next step. Since the open domain of RK where s is hit
before any other facet is that where φs(y) < φv(y) for all
v �= s, each Fr,s is a convex polyhedron of Hr which is the
intersection of Hr and of a finite family of half spaces. By
definition,

• on Fr,s, the one-step discrete time dynamics is some
affine map that will be denoted by Br,s;

• the family Fr,s, s = 1, . . . , |R| =card(R) is a partition
of Hr (up to the boundary points).

More generally, for all sequences r1, . . . , rk with elements
in {1, . . . , |R|}, let Fr,r1,... ,rk

be the subset ofHr where when
applying the discrete time dynamics k times, one successively
visits the facets r1, . . . , rk. For all sequences r1, . . . , rk,

• on Fr,r1,... ,rk
, the k-step discrete time dynamics is the

affine map Br,r1,... ,rk
= Brk−1,rk

◦ · · · ◦ Br,r1 ;
• the domain Fr,r1,... ,rk

is the (possibly empty) intersection
of Hr and of the finite family of half spaces:

φr1(y) < φv(y), ∀v �= r1;
φr2 ◦Br,r1(y) < φv ◦Br,r1(y), ∀v �= r2;

· · · · · ·
φrk

◦Br,r1,... ,rk−1(y) < φv ◦Br,r1,... ,rk−1(y), ∀v �= rk;

• the family Fr,r1,... ,rk
ri = 1, . . . , |R|, i = 1, . . . , k,

forms a partition of Hr up to the boundary points.

The discrete time dynamics features a sequence {ri}, i ≥ 0
of faces that are successively hit, which depends on the initial
condition for the throughput vector. Using A, one proves:

Lemma 1 (facet hiting) For all r, for all initial conditions
in Hr, the sequence {ri}, with r0 = r, exits r in a number
of steps bounded by a constant er. For all r, for all initial
conditions in Fr = ∪s	=rFr,s, the sequence {ri}, with r0 = r,
returns to r in a number of steps bounded by a constant fr.

We will say that step i is an exit step from r if ri = r and
ri+1 = s �= r. Fix r0 = r, some initial condition in Fr (so
that i = 0 is an exit step from r) and consider the discrete
time dynamics until the next exit step from r. This next exit
step is finite as a corollary of Lemma 1.

The set of possible facet sequences r0 = r, r1, . . . , rk, k ∈
N, r1 in {1, . . . , |R|}, between two exit steps from r is that
with k ≤ er + fr, rk−1 = r and rl �= r, for all l = 1, . . . p
with p < k−1 and p ≤ fr. The cardinality of this set, denoted
by qr, is finite.
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Denote by θr the mapping that associates to each initial
condition in Fr the point where the ball is located at the next
exit step from r, or equivalently when it first returns to Fr.
From what precedes, θr satisfies:

Lemma 2 (facet partition) The domain Fr can be parti-
tioned into a finite number of convex polyhedrons Er,1, Er,2,
. . . , Er,qr , each of which is the intersection of Hr and of
a finite family of half spaces. These domains, which we will
refer to as the linearity domains of facet r, are such that for
all n, for all initial conditions in the interior of Er,n,

• the sequence of facets that are successively hit until the
first return to Fr is exactly the same;

• θr is some affine mapping Ar,n from Fr to itself.

2) Sufficient Conditions for Facet Periodicity: The simplest
sufficient condition for the periodicity of the facet sequence,
which will be referred to as the inclusion test in what follows,
is given in the following lemma.

Lemma 3 (facet periodicity) If for some r, for all n =
1, . . . , qr, the set Ar,n(Er,n) is completely included in one
of the linearity domains, say Er,g(n), of facet r, then, for all
initial conditions of the throughput process, the sequence of
facets is ultimately periodic.

Proof: Iterates of g, which is a function from a finite set
to itself are ultimately periodic.
In case this condition is not satisfied, one ought to check
whether θ2r = θr ◦ θr satisfies the appropriate inclusion
property: denote by E(2)

r,1 , . . . , E
(2)

r,q
(2)
r

the linearity domains
of this map (again defined as the intersection of Hr and of
certain half spaces) and by A(2)

r,1 , . . . , A
(2)

r,q
(2)
r

the affine maps

on these domains. Then if A(2)
r,n(E(2)

r,n) ⊂ E
(2)
r,g(n) for all n, for

some function g : {1, . . . , |R|} → {1, . . . , |R|}, then for all
initial conditions of the throughput process, the sequence of
successively hit facets is ultimately periodic.

A similar sufficient condition (which will be referred to as
the inclusion test of order k) can be obtained from θk

r = θr ◦
θk−1

r for any k ≥ 2.
3) Sufficient Conditions for Billiards Periodicity:

Lemma 4 (billiards periodicity) Let r1, r2, . . . , rn be a
fixed periodic sequence of facets. Then in the class indepen-
dent (CI) case, for all dynamics with a sequence of facets
which is ultimately periodic, with period r1, r2, . . . , rn, the
associated billiards is asymptotically periodic and with a
uniquely defined period that is independent of the chosen
initial conditions.

The proof of the lemma, which is based on a contraction
argument, can be found in [5]. Combining this last lemma
and the sufficient conditions for the periodicity of the facet
process provides a sufficient condition for the periodicity of the
throughput process. As it will be exemplified in the following

examples, this also provides a way of computing the value of
the throughput process over a period.

An interesting question which is still open at this stage is
that of the irreducibility. When A is not assumed to hold, it
is quite easy to find networks (e.g. with 3 routers) where two
or more different periodic regimes can be reached depending
on the initial condition. When A holds, we did not find
situations with multiple non-degenerate periodic regimes yet
(i.e. regimes where the periodic regime is such that ball
bounces on the intersection of more than one facet during
the period).

Notice that in the general case, the number of linearity
domains grows in a non-polynomial way with K =CardS
and the order k of the inclusion test. This clearly indicates
that this method, when employed as an analytical modeling
tool, can unfortunately not be used to assess the properties of
large networks. As we will see below, it is however an efficient
tool for analyzing small networks.

Z

X

C/2 C/2

Y

E11

H1 H2

E21

F21F11

Fig. 4. Periodic Billiards Trajectories

a) Example 1: Consider the network introduced at the
end of the last section. The ball lives in the polyhedron of Fig.
3. Let yn = (Xn, Yn, Zn) be the three dimensional vector of
throughputs just before the n-th congestion epoch. At these
epochs, the ball is on one of the two facets H1 and H2
(respectively the red or leftmost and the green or rightmost
sides of this polyhedron). Let ∆ be the dashed line on the
red (leftmost) facet. This line partitions H1 into two triangular
domains, the rightmost of which is F1,2: if y0 belongs to F1,2,
y1 belongs to H2, and it is obtained from y0 by the affine
transformation

B1,2(X,Y, Z)=
1
4




2 −2 −1
0 2 −1
0 −2 1








X
Y
Z



 +
1
2




C
C
C



 .

If y0 belongs to the complement of F1,2, then y1 belongs toH1
and it is given from y0 via another affine transformation. The
situation is similar on the facet H2, to which one associates
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two domains F2,1 (which leads to H1 via B2,1) and its
complement (which leads to H2).

In this example F1 has a single linearity domain E1,1 =
F1,2,1,2 and the inclusion test holds as F1,2,1,2 ⊂ F1,2.

This implies that regardless of the initial condition in H1,
the sequence of facets is ultimately periodic with period 2
and that the sequence of affine operators that are applied is
periodic too, also with period 2. Since A1,1 is a contraction
from F1 to itself, it admits a unique fixed point.

It is not difficult to check that the last conclusions actually
hold for any configuration as above but for general RTTs Rx,
Ry and Rz and general synchronization rates px, py and pz

provided that Rx = Ry and px = py .
In the special case Rx = Ry = Rz = 1, px = py = pz =

1 that is considered above, the fixed point of A1,1 is easily
computed as being X∗ = C/2, Y ∗ = 2C/3, Z∗ = C/3. This
fully determines the periodic behavior which is unique in this
case, at least when excluding degenerate periodic regimes such
as the one that oscillates from a point of the line X = Y =
1 − Z to another point of the line X = Y = 1/2 − Z .

The stationary throughput in continuous time, which is the
average of the periodic throughput process depicted on Fig. 4,
is easily obtained from a cycle type formula: λx = λy = C/2
and λz = C/4. If Rx = Ry = 1 and px = py = pz = 1,
direct calculations give

λx = λy =
3CR2

z

2(2R2
z + 1)

, λz =
3C

4(2R2
z + 1)

. (10)

b) Example 2: We come back to the network of Fig. 2,
still with ns = 1 for all s. Here, we take c1 = 2c2 = 1/2. The
billiards associated with (8) now lives in a less symmetrical
polyhedron depicted in the top left part of Fig. 5. The linearity
domains of H1 are given in the top right part of this figure,
which gives a view of H1 projected on the X = 0 plane.
From E1,1 = F1,2,2,1,2, the ball hits H2 twice before coming
back to F1, whereas in E1,2 = F1,2,2,2,1,2 it hits H2 three
times before returning to F1. The ∆ line that separates the
two linearity domains is here 10Y +11Z = 8, Z+X = 2. In
this case, the inclusion test does not hold for k = 1 but it does
for k = 6, and there is a unique periodic regime of period 19.

The projection of this periodic regime on the Y = 0 plane
is depicted on Fig. 5. The leftmost region (up to 1.03 of the
horizontal axis) is the image of E1,2 by θ, whereas the region
between 1.03 and 1.33 is the image of E1,1. The rightmost
line is the projection of H1 on H2. The facet period is
((H2)3E1,2)4(H2)2E1,1 (with a notation that should be clear)
and the billiards period is easily deduced from the unique fixed
point of the corresponding affine operator.

B. Non-Periodic Regimes

The aim of this section is to provide numerical evidence that
non-periodic facet sequences are possible. The way for search-
ing for such behaviors consists in choosing some topology
where a single parameter like e.g. the speed of some router,
or the population of some class, is varied and in plotting the
period of the billiards.

Y

H2

H1
X

Z

Y

Z

0

E11

E12

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

z

x

Periodic orbit on H2: projection on (X,Z)

Fig. 5. Example 2. Left Top: Non symmetrical billiards. Right Top: Linearity
domains. Bottom: Period

1) Example 3: Consider the three class, two router network
of Fig. 2 with Rx = Ry = Rz = 1, px = py = pz = 1/2 but
this time with C2 = 105, C1 = C. Fig. 6 gives the period of
the billiards process as a function of C.

Fig. 6 suggests that the period achieves constant integer
values on a Cantor type set of the horizontal axis; in addition,
this figure gives numerical evidence that there are infinitely
many values of C for which either the right or the left limit
of the period is infinite. For instance the period is constant and
equal to 2 on the interval [2, C0) with C0 ∼ 104295, whereas
the right limit of the period at this point seems to be +∞.

The impact of this phenomenon on average throughput is
exemplified on Fig. 7, where we plot the mean throughput
w.r.t. C in the neighborhood of C0. Class 1 takes advantage
of the increase of C; there is no such monotonicity for class
2 nor for class 3. Notice the very irregular shape of mean
throughput (which is itself a fractal as shown by the zoom)
and the singularity at C0.

2) Example 4: This is the 6-class, 3-router network of Fig.
8 also with R = 1, p = 1/2. The default value for the speed
of a router is C = 105. Fig. 9, where we plot the successive
values achieved by the throughput of a given class over the
period as a function of C. This figure shows that the set of
achieved values lives on a fractal.
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Fig. 6. Billiards Period as a Function of C

C. Fairness

1) Single Router, Several RTTs: Assume that a single router
is shared by several classes that only differ through their RTT.
Let Ri denote the RTT of class i and pi its synchronization
rate (that we will later take as a function of the average rate).
It follows from (7) that a typical flow of class i satisfies the
stochastic recurrence: X(i)

n+1 = γ
(i)
n+1(X

(i)
n + τn

R2
i
) where the

sequence {γ(i)
n } is i.i.d. As a consequence of results in [12], τn

then converges to a constant τ . Taking expectations in the last
equation determines the stationary throughput at congestion
epochs (X

(i)
). Within this setting, the stationary throughput

in continuous time is obtained from X
(i)

via the relation
λi = X

(i)
+ τ/2R2

i (see Section 4.1 in [4]). Elementary
manipulations give:

λi =

(
γ(i)

1 − γ(i) +
1
2

)
τ

R2
i

=
1
2

1 + γ(i)

1 − γ(i)

τ

R2
i

=
4 − pi

2pi

τ

R2
i

.

So for all i, j, we have:

λi

λj
=
R2

j

R2
i

(4 − pi)pj

(4 − pj)pi
∼
R2

j

R2
i

pj

pi
, (11)

where the last equivalence is when the synchronization rates
are small. If we assume that synchronization probabilities are
proportional to the rate λi, i.e., pi

pj
= λi

λj
, then throughput is

proportional to the inverse of RTT (cf. [13], [18], [7], [21]).
If we assume that pi does not depend on the throughputs, we
get throughputs proportional to the square of the inverse of
RTT.

Let us now concentrate on the RD case. If one takes

pi = β(1 − exp(−λiδ)), (12)

as suggested in Formula (7) of [6], then the stationary through-
puts should satisfy the fixed point equation:

λi

λj
=
R2

j

R2
i

(1 − exp(−λjδ))
(1 − exp(−λiδ))

. (13)

Fig. 7. Top: Mean Throughput of Class 1 (upper curve) and Class 2 (lower
one) of Example 3. Bottom: Zoom for Class 2. The y axis is scaled down by
a factor of 103

If Ri < Rj , then λi > λj , and hence pj < pi. In addition,
from (12), pi/pj < λi/λj . Therefore we always have:

Rj

Ri
<
λi

λj
<

(
Rj

Ri

)2

. (14)

This confirms experimental studies (cf. [14]) which suggest
that the ratio λi/λj is always proportional to (Rj/Ri)a with
1 < a < 2. Let us identify the possible values of a from our
analytical framework. When λδ (defined in (12)) is small, we
see that (14) is valid indeed with a close to 1; since δ in (12) is
common to all flows, λδ will be small for the slow flows (here
those with large RTTs). Similarly, for those sources with λiδ
large enough (the fastest flows, or equivalently here those with
small RTTs), pi is close enough to 1, and hence a is close to
2. So, if there is a large enough range of RTT’s, the logarithm
of the stationary throughput should be a linear function of the
logarithm of the RTT, with a slope that is close to -1 for small
throughputs, and close to -2 for larger throughputs.

2) Two Routers, Several RTTs: Let us revisit Example 1
(§III-A.3.a) with some more general parameters. The RTT of
class i is Ri and its synchronization rate pi. Whenever the
sequence of facets is periodic with period two, one can then
identify the periodic regime from the following set of affine
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Fig. 8. Example 4: Triangle Network with 6 Classes

Fig. 9. Instantaneous Throughput as a Function of C for Ex. 4

equations:

µx = (µ′
x +

τ ′

R2
x

), µy = γy(µ′
y +

τ ′

R2
y

), µz = γz(µ′
z +

τ ′

R2
z

)

µ′
x = γx(µx +

τ

R2
x

), µ′
y = (µy +

τ

R2
y

), µ′
z = γz(µz +

τ

R2
z

).

Direct calculations lead to:

λx =
4 − px

2px

T

R2
x

, λy =
4 − py

2py

T

R2
y

,

λz =
2

pz(4 − pz)
T

R2
z

(
8 − 4pz + p2z

4
− T ′p2z

2T 2

)

with T = τ + τ ′ and T ′ = ττ ′. We see that for the ratio
λx/λy, the result is as the single router case, whereas

λz/λx =
R2

x

R2
z

4px

pz(4 − pz)(4 − px)

(
8 − 4pz + p2z

4
− T ′p2z

2T 2

)
.

Hence

λz

λx
=
R2

x

R2
z

px(4 − pz)
pz(4 − px)

× α,

with 1/3 ≤ α ≤ 1/2. This means that even if the flow that
crosses the two routers had the same RTT as the two others,

in the best case (p proportional to λ) this flow is 30% slower
than the two others; in the worst case (px = py = pz), it could
be 3 times slower than the others. These theoretical bounds
are quite realistic: cf. Table 2 in [6], where NS simulation with
Ni = 10 gives a slow down ranging from a 20% slowdown
to 5.3 times slower. Now if its RTT is twice larger than that
of the other flows, then the best it can get is 3 times slower
compared to the others, and in the worst case its connection
is 12 times slower!

3) Fairness in the Non-Periodic Case: The aim of this
section is to analyze bandwidth sharing as a function of the
network parameters, and in particular the speed of the routers.

The following 3 figures illustrate bandwidth sharing for
Example 4. We plot the throughput obtained by certain classes
against that obtained by other classes, when varying the speed
C1 of router 1 on some interval. We do this both for mean
throughput and for instantaneous throughput (the set of values
achieved by the throughput process over its period, sampled
at the hitting times of a certain face).

In Fig. 10, we plot the sum of the mean throughput of all
classes that use router 3 (classes 2,3 and 6) against the mean
throughput of the 2-hop class that does not use router 3 (class
1) for C1 ranging from 7300 to 8700 appr. We again observe
a fractal and a non-monotonic behavior. Notice the similarity
with the shape obtained for the same kind of functions from a
packet level model of window flow control over a two router
network in [2].

272

274

276

278

280

282

284

286

288

30 31 32 33 34 35

Fig. 10. Example 4: Sum of the Mean Throughputs of Classes 2,3 and 6
w.r.t. that of Class 1

The upper part Fig. 11 plots the sum of the instantaneous
throughput of classes 1 and 4 w.r.t. the instantaneous through-
put obtained by class 2 (these three classes are those sharing
router 1). The lower part is a zoom. Here also, we find a
general trend, but a quite complex fractal behavior along this
trend, which leaves little hope for simple closed form formulas.

When playing with parameters, such fractals show up
in all topologies (not reduced to one router) with a wide
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Fig. 11. Instantaneous Bandwidth Sharing for Example 4

variety of shapes. A collection of fractals generated by
this class of interaction models can be downloaded at
http://www.di.ens.fr/∼trec/aimd

D. A Conservation Law

Assume a stochastic TCP billiards admits a stationary
regime. Assume in addition that its synchronization rate is
rate and class-independent (see §II).

Let νr denote the (continuous time) intensity of the conges-
tion epochs of router r. Let S(t) =

∑
i,sX

(s,i)(t) be the sum
of all flow throughputs in continuous time.

• But for a denumerable set of discontinuities, S(t) is
linearly increasing with the rate

∑
sNs/R

2
s.

• Because of the class-independent assumption, each type
r congestion epoch creates a jump of S(t) downward of
mean magnitude Cr(1 − γr).

The drift upward should compensate the jumps downward, so
that the following conservation law necessarily holds (see the
rate conservation principle in e.g. [3]):

∑

s∈S

Ns

R2
s

=
∑

r∈R
νrCr(1 − γr). (15)

This implies the following relation for the associated deter-
ministic billiards (νr has the same interpretation as above):

∑

r∈R

∑

s∈Sr

as,r

R2
s

=
∑

r∈R

νrcr(1 − γr). (16)

E. Implications

The long periodic or non-periodic behaviors illustrated in
§III-B and III-C.3 only hold for the large population asymp-
totic model with N = ∞. In order to capture the behavior
of any model with finite population, one should add small
Gaussian fluctuations to this, which results into a blur of the
dynamics and of the limiting sets describing bandwidth sharing
and throughput. Such a blur is illustrated by Fig. 12, where
we plot the trajectories of the empirical means x(s)

n [N ] =
(
∑

i∈s[N ]X
(s,i)
n [N ])/(Ns[N ]), for multi-AIMD models with

the same characteristics but for the population parameter
N . The figure shows how the stochastic trajectories of the
empirical means concentrate and converge to the trajectory
of the limiting infinite population model x(s)

n = x
(s)
n [∞],

when N grows large (the period of the large population
asymptotic billiards is 19). These results indicate that for
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Fig. 12. Concentration toward the Large Population Asymptotic as the
Population Grows Large

large populations networks, when taking synchronization into
account, aggregated throughputs (empirical means) exhibit
fluctuations that are due to the network as a whole and that
follow some complex fractal pattern.

IV. CONCLUSION

We have introduced a model allowing one to study the
bandwidth sharing operated by TCP on networks composed
of several tail-drop routers or links and which takes source
synchronization into account.

This model is based on the interplay between three (sub)
models: a deterministic network level model (the billiards),
a set of more or less independent stochastic models for
individual flows, where the influence of the whole network
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is taken into account via certain averages, and a packet level
model that is only used for determining the delay of reaction
of sources and the associated synchronization rates.

Each level creates its own type of fluctuations on through-
put. The flow level and packet fluctuations have already been
studied. Flow level fluctuations of throughput aggregates have
for instance been studied in [4], [12] and for the throughput
of individual flows in [9]. The representation of TCP con-
trolled networks as billiards has allowed us to quantify the
fluctuations at network level, that is the time/space location
of the congestion epochs, these local storms that are induced
by the AI process here and there in the network, and that are
in charge of the overall control within the drop tail setting.
We produced numerical evidence that both periodic and non-
periodic asymptotic behaviors are possible for the empirical
mean values of throughputs and that any slight changes in
the model parameters, for instance trends in the population
parameters as,r or ns, could result into drastic changes for
the instantaneous values achieved by empirical averages.

In [20], [24], [1], it was experimentally shown that ag-
gregated traffic of internet traces often exhibits multifractal
scaling properties at short time scales. There have been many
attempts to explain these properties and to link them to
TCP itself (for short time scales, TCP is the only likely
explanation, whereas long time scale fluctuations have been
shown to be HTTP induced). Such a multifractal scaling means
that aggregated traffic trajectories are extremely irregular and
have fluctuations at all short time scales. The identification
of network level fluctuations with complex patterns is one
more step in the direction of the classification of all types
of TCP induced fluctuations that contribute to the extreme
irregularity of aggregated traffic. Flow level variability seems
to be enough to provide a multifractal short time scale behav-
ior [4]. However the fact that aggregated traffic could have
fluctuations with arbitrarily long periods is also a possible
explanation for time and flow averages to have fluctuations
over several time scales. The combination of fluctuations of
all three levels seems required for a complete prediction of
the global statistical structure of aggregated traffic.

The properties reported in the present paper are different
from the simulation based observations on the chaotic behavior
of TCP reported in [23]. The main difference lies in the
fact that the properties of the present paper bear on the
sensitivity of aggregated traffic (the empirical mean values as
defined above) w.r.t. some topology parameter (e.g. the speed
of a router), whereas the observations of [23] focus on the
dependence of the throughput of individual flows w.r.t. initial
conditions for a given topology. There might however be a
link between the sensitivity w.r.t initial conditions and the fact
that the facet and billiards could have a non-periodic behavior
for a given topology.

We intend to continue exploring this class of models and to
try to enrich it with other types of traffic than the long lived
TCP sessions on which this first step is focused.
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