
Instability Phenomena in Underloaded Packet
Networks with QoS Schedulers
M.Ajmone Marsan, M.Franceschinis, E.Leonardi, F.Neri, A.Tarello

Abstract— Instability in packet-switching networks is normally
associated with overload conditions, since queueing network mod-
els show that, in simple configurations, only overload generates
instability. However, some results showing that instability can
happen also in underloaded queueing networks appeared in the
recent literature. Underload instabilities can be produced by
complex scheduling algorithms, that bear significant resemblance
to the Quality of Service (QoS) schedulers considered today for
packet networks. In this paper, we study with fluid models and
with adversarial queueing theory possible underload instabilities
due to strict-priority schedulers and to Generalized Processor
Sharing (GPS) schedulers.

I. INTRODUCTION

Simplicity has been for a long time a characteristic of
packet schedulers within IP routers; indeed, packets arriving
at a router, after being checked for correctness and routed,
were normally inserted into simple FIFO queues, awaiting
their turn for transmission. The desire for high performance
router architectures and Quality of Service (QoS) guarantees
is now changing this picture, specially for what concerns
packet scheduling algorithms. Priority queues and/or Gen-
eralized Processor Sharing (GPS) queues [1], [2] are now
widely accepted as useful tools for the differentiation of the
treatment of packet flows with different QoS requirements [3],
[4]. Input Queued (IQ) switches with Virtual Output Queueing
(VOQ) are based on complex heuristic schedulers, that try to
approximate Maximum Weight Matching (MWM) schedulers
with acceptable complexity.

In spite of these significant increases in the complexity of
scheduling algorithms, when it comes to performance evalua-
tion issues, and to considerations about possible instabilities
due to the level of traffic at the router queues, the com-
mon belief is that only overload generates instability, while
underloaded queues may induce delays longer than desired,
but always remain stable. This general wisdom goes back to
the models of packet-switching networks originally developed
by Kleinrock [5], and based on Jackson queueing networks
[6]. Stability results for more general classes of queueing
networks, such as BCMP networks [7] and Kelly networks [8],
also confirmed the general result that only overload generates
instability, and the same effect was due to the insensitivity in
GI/GI/1 queues of average queue sizes to the scheduling dis-
cipline for all work-conserving schedulers that treat customers
independently of their service time.

This work was supported by the MIUR PLANET-IP Project. The au-
thors are with: Dipartimento di Elettronica, Politecnico di Torino, Italy;
{surname}@mail.tlc.polito.it

The first results showing that instability can happen also in
underloaded queueing networks1 started to appear less than a
decade ago [9], [10], when some classes of queueing networks
were identified, for which underload does not automatically
guarantee stability, i.e., for which the backlog at some queue
in the network can indefinitely grow also when such queue is
not overloaded. It is important to observe that these underload
instabilities are often produced either by customer routes that
visit several times the same queues, or by variations of the
customer service times at the different queues, or by complex
scheduling algorithms.

The first hints to the possible connections between underload
instabilities in queueing networks and unstable behaviors in
packet-switching networks have appeared very recently in [11],
[12], where it was shown that underload instability phenomena
can arise in networks of IQ switches with MWM schedulers
even in the case of acyclic packet routes, and service times
that vary only according to channel capacities.

In [13] it was shown that unstable behaviors can be observed
at underload for a class of open queueing networks called re-
entrant lines, where customers visit several times the same
queue, and all stations serve incoming customers according to
a strict-priority scheduling.

In this paper we discuss the possible underload instabilities
due to QoS schedulers in packet-switching networks, focusing
both on strict priority schedulers and on GPS schedulers.
The considered scenarios always refer to the case of acyclic
packet routes, and consider customer service times that vary
only according to channel capacities. With these assumptions,
the considered scenarios bear a significant resemblance to the
approaches being currently considered for QoS provisioning
in the Internet, specially DiffServ [3], [4].

In particular, when considering GPS schedulers, we examine
both the case of exact matching of the actual packet rates
to the GPS rates, and the more realistic case of inaccurate
estimation of the actual packet rates. While the stability of
any queueing network with GPS schedulers was proved for
the case in which the actual packet rates do not exceed the
GPS rates [2], [13], in this paper we prove that a queueing
network with GPS schedulers may be unstable when some of
the actual packets rates exceed the GPS rates, thus confirming

1We say that a queueing network is underloaded when the traffic loading
each queue is less than the service capacity at the same queue. Traffic at a
queue is the product of the average customer arrival rate times the average
customer service time.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

the conjecture formulated in [2]2.
Instead, when considering strict priority schedulers, we

prove that all queueing networks are stable, provided that the
priority ordering of packet flows does not change from a router
(queue) to another (that is, if flow 1 has higher priority than
flow 2 at a router, the same happens also at all other routers).
Note that, on the contrary, when the priority ordering of packet
flows can change from a router to another, instability may arise,
as proved in [10].

Finally, we prove that the combination of priority and FIFO
schedulers (for example due to packet flows that have identical
priority at some routers) may lead to a weak form of instability
for loads larger than 0.8. The fact that the combination of
priority and FIFO may lead to instability is not surprising,
due to the known possible instability of FIFO for loads above
0.85 [14]. The fact that the instability region expands to lower
load values is instead quite remarkable.

II. DEFINITIONS AND NOTATIONS

We consider an acyclic network of J discrete-time queues
represented by row vector Q, whose j-th component, q(j), 1 ≤
j ≤ J , is a descriptor associated with the j-th queue. However,
all results in this paper apply also to networks of continuous-
time queues.

The network of queues handles F customer flows. Cus-
tomers belonging to flow f , 1 ≤ f ≤ F , arrive at the network
from outside, receive service at a number of queues, and leave
the network. In most applications, the routing of customers
belonging to flow f is deterministic; however, more general
acyclic routings are allowed by our model.

Customers belonging to the same flow, and stored at the
same physical queue, form a virtual queue. The number of
virtual queues in a network is denoted by N . A physical queue
is also called a station. Of course, N ≤ FJ , since routing is
acyclic, and, at most, all customer flows visit all stations. In
addition, N ≥ max (F, J), since each flow must visit at least
one station, and any station must be visited by at least one flow
(otherwise the station can be removed from the network). Let
L(k) = j be the system location function that associates virtual
queue k with the physical queue j at which customers are
enqueued. L−1(j) is the counter-image of j through function
L(k). In general, L−1(j) returns a set of virtual queues of
cardinality |L−1(j)|; however, when N = J , each virtual
queue is in one-to-one correspondence with a physical queue.

Let Xn = (x(1)
n , x

(2)
n , . . . , x

(N)
n) be the row vector whose

k-th component x(k)
n , 1 ≤ k ≤ N , represents the number

of customers at virtual queue k in the system at time n.
We assume in the paper that X0 has null components. We
suppose that the service time required by customer i of virtual
queue k is a random variable S

(k)
i distributed according to

a discrete-time general distribution with average s(k); service
times distributions are assumed to be bounded. We consider

2Only a particular sub-class of networks of queues implementing GPS
schedulers was proved in [2] to be always stable in underload conditions,
even when some actual packet rates exceed the GPS rates.

only non-preemptive atomic service policies, i.e., policies
that serve customers in an atomic fashion, with no service
interruption. However, all our results also hold for work-
conserving preemptive service policies.

The evolution of the number of customers at virtual queue
k is described by x

(k)
n+1 = x

(k)
n + e

(k)
n − d

(k)
n , where e

(k)
n

represents the number of customers that entered virtual queue
k (and thus physical queue L(k)) in time interval (n, n+1], and
d
(k)
n represents the number of customers departed from virtual

queue k in time interval (n, n+1]. En = (e(1)n , e
(2)
n , . . . , e

(N)
n)

is the vector of entrances in virtual queues, and Dn =
(d(1)

n , d
(2)
n , . . . , d

(N)
n) is the vector of departures from virtual

queues. With this notation, the system evolution equation can
be written as:

Xn+1 = Xn + En −Dn (1)

The entrance vector En is sum of two terms: vector An =
(a(1)

n , a
(2)
n , . . . , a

(N)
n), representing the customers arrived at the

system from outside, and vector Rn = (r(1)n , r
(2)
n , . . . , r

(N)
n)

of recirculating customers; r(k)
n is the number of customers

departed from some virtual queue and entered into virtual
queue k in time interval (n, n+1]. Note that when customers
do not traverse more than one queue (as it is the case for a
switch in isolation), vector Rn is null for all n, and En = An.

The N×N matrix Pn = [p(k,l)
n] is the routing matrix, whose

element p(k,l)
n represents the fraction of customers departing

from virtual queue k in time interval (n, n + 1] that enter
virtual queue l. Note that, since routing is acyclic, Pn can be
put in (upper or lower) triangular form by reordering rows
and columns. Since in most applications the routing of each
flow is deterministic, Pn belongs to the class of deterministic
doubly sub-stochastic matrices, i.e., matrices whose elements
take values in the set {0, 1} and whose lines (both rows and
columns) comprise elements whose sums do not exceed 1.
Thus, throughout this paper we suppose that Pn = P is
deterministic, even if our models and most of the results can
be easily extended to more general contexts3.

By noting that Rn = DnP , the evolution of virtual queues
can be rewritten as:

Xn+1 = Xn +An −Dn(I − P) (2)

where I denotes the identity matrix.
Finally, let us introduce the following norm definition:
Definition 1: Given a vector Z ∈ IRN , Z = (z(k), 1 ≤

k ≤ N), and a location function L(k) = j, from 1 ≤ k ≤ N
to 1 ≤ j ≤ J , with J ≤ N , norm ||Z||L is defined as:

||Z||L = max
j=1,...,J

∑

k∈L−1(j)

|z(k)|

 (3)

3It is possible to apply the fluid model methodology to all systems of queues
forming an open network. In such a case, if E[X] denotes the expectation of
random quantity X and I denotes the identity matrix, ∆ = I + E[Pn] +
E[Pn]2+E[Pn]3+. . . = (I−E[Pn])−1 exists and is finite, i.e., I−E[Pn] is
invertible for all n. It is, however, necessary to further assume that the routing
matrix Pn satisfies the strong law of large numbers: limn→∞

1
n

∑n−1
i=0 Pi =

P with probability 1.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

A. Traffic and System Stability Definitions

Definition 2: The external arrival processes An =
(a(1)

n , a
(2)
n , . . . , a

(N)
n) are stationary if E[An] = Λ =

(λ(1), λ(2), . . . , λ(N)), i.e., if E[An] does not depend on time
interval [n, n+ 1).

Let Π = Λ(I−P)−1 be a vector whose k-th component π(k)

represents the average effective arrival rate at virtual queue k.
Let Wn = (w(1)

n , w
(2)
n , . . . , w

(N)
n) be the workload provided

at each virtual queue by customers that entered the network
of queues in time interval [n, n + 1), i.e., the global amount
of work required at each virtual queue by customers entering
the network in time unit [n, n + 1). The average workload
provided at each virtual queue by customers that entered the
system of queues in time interval [n, n+ 1) is given by: Ω =
E[Wn] = (ω(1), ω(2), . . . , ω(N)), with ω(k) = π(k)s(k), being
S = (s(1), s(2), . . . , s(N)) the vector of the average service
times at virtual queues.

Definition 3: A stationary traffic pattern is admissible if
||Ω||L < 1

Definition 4: A stationary arrival process An at vir-
tual queues satisfies the strong law of large numbers if4:
limn→∞

1
n

∑n−1
i=0 Ai = Λ w.p. 1

Definition 5: A system of queues is rate-stable if:

lim
n→∞

Xn

n
= lim

n→∞

1
n

n∑

i=0

(Ei −Di) = 0 w.p. 1

Definition 6: A system of queues achieves 100% through-
put if it is rate-stable under any admissible traffic pattern
satisfying the strong law of large numbers.

Definition 7: A system of queues is stable if, for every
ε > 0, there exists an M > 0, such that for every n:

P(Xn > M) < ε

Note that system stability implies the tightness of the family
of probability measures describing the system evolution.

Definition 8: A traffic pattern is [ρ, φ] regulated if, for
every window W comprising φ consecutive time units, the
total workload provided by customers entering the network in
W satisfies:

||
∑

n∈W
Wn||L ≤ ρφ

Note that any [ρ, φ] regulated traffic pattern with ρ < 1 and
finite φ falls in the class of (ρ0, σ) leaky-bucket constrained
traffic patterns5, with ρ0 = ρ and σ = ρφ. In addition, any
(ρ0, σ) leaky-bucket constrained traffic pattern, with ρ0 < 1
and finite σ, falls within the class of [ρ, φ] regulated traffic
patterns for φ ≥ φmin. To see this, it is enough to choose ρ
such that ρ0 < ρ < 1 and then to consider any φ ≥ φmin =

σ
ρ−ρ0

. Thus, the class of all [ρ, φ] regulated traffic patterns

4The notation “w.p. 1” means “ with probability 1”.
5A (ρ0, σ) leaky-bucket constrained traffic pattern is a traffic pattern such

that in any window of t consecutive time units, the amount of workload
arriving at any network server does not exceed ρ0t + σ.

with ρ < 1 and finite φ, and the class of all (ρ0, σ) leaky-
bucket constrained traffic patterns with ρ0 < 1 and finite σ are
coincident.

Definition 9: A system of queues is said to be universally
stable if, under any [ρ, φ] regulated traffic pattern, with ρ <
1 and any φ < ∞, the number of customers in the system
remains finite.

Note that universal stability implies that delays in the queue-
ing network are bounded under any leaky-bucket constrained
traffic with finite burstiness.

The above stability definitions have different strengths, and
different implications in the application domain of packet-
switching networks. The weaker stability Definitions are 5 and
6; they cannot guarantee the boundedness of queue lengths,
and are thus of lesser interest. Definition 7 is the standard
definition for stability in queueing systems. Definition 9 is in-
stead the stability definition deriving from adversarial queueing
theory, and is the strongest of our stability conditions. Stability
under Definition 9 implies all other forms of stability, as shown
in [15]; instability under Definition 7 implies instability under
Definition 9.

III. ANALYTICAL TECHNIQUES

A. Previous Work

Two existing analytical tools were mainly applied in stability
studies: the stochastic Lyapunov function methodology [16],
and the fluid limit theory [13]. Both tools, and the latter in
particular, can be applied to general networks of queues, under
some mild regularity conditions on the stochastic processes
describing the system. Using these tools, general necessary
and sufficient conditions for the stability of networks of queues
were identified, in the case of networks with two stations that
operate under a strict priority service discipline. In addition,
it was also possible to prove that a large class of underloaded
networks of FIFO queues6 [17], as well as networks of GPS-
queues [13], where GPS rates are exactly matched to packet
flow rates, are stable (according to Definitions 5 and 7).

As an alternative to the two cited stochastic techniques,
a new analytical framework, called Adversarial Queueing
Theory (AQT) [14], [18], was developed.

Applying AQT, several interesting results were obtained.
Common service disciplines, such as FIFO, LIFO, and
Nearest-To-Go (NTG) (where priority is given to packets
nearest to their destination), were proved not to be univer-
sally stable in all networks of queues. Instead, other service
disciplines, such as Longest-In-System (LIS) (where priority
is given to packets first injected in the system), Shortest-In-
System (SIS) and Furthest-To-Go (FTG), were proved to be
universally stable in all networks of queues [14].

6The result applies only to a restricted class of FIFO queueing networks:
the class of generalized Kelly-type networks. In more general FIFO networks
it was shown that some underload instability may arise. However, since FIFO
queueing networks modeling communication networks always fall in the class
of generalized Kelly-type networks, we only consider such networks in this
paper.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

It is important to observe that, as proved in [15], universal
stability implies rate-stability and stability of the queueing
network (the opposite is, of course, not true).

Finally, we notice that an important stability result for
underloaded GPS networks was obtained in [2] by applying
Network Calculus [19], [20] concepts. In [2], any underloaded
network of queues implementing GPS schedulers was proved
to be stable when fed with leaky-bucket constrained traffic
flows, whenever the GPS rates assignment to flows satisfies
the Consistent Relative Session Treatment (CRST) constraint.
The CRST constraint implies that, for any pair of flows fi

and fj whose paths are not disjoint, the ratios between GPS
weights and packet actual rates are in the same order relation
at every shared node.

B. Adversarial Queueing Theory

Adversarial queueing theory [14], [18] follows a determinis-
tic approach to define stability criteria for queueing networks,
in the sense that packet generation at the network inputs,
packet service times, and packet routing, are supposed to be
deterministic.

In AQT, a queueing network is represented by a directed
graph, where edges represent queues, and nodes represent
routing points. Packets originate at a node, follow some path
consisting of a set of consecutive edges and nodes, and then
leave the network at another node. Different paths may share
some edges.

Time is assumed to proceed by discrete steps, named time
units. When two or more packets following different paths
need to traverse the same edge, only one can be chosen
in a time unit, while the others are forced to wait in the
node. The decision about which packet has to be served in
case of contention defines the service discipline at the nodes.
Only work-conserving service disciplines are considered, i.e.,
service disciplines according to which a packet must be served
at a node whenever some packets are waiting for service.

The basic idea of AQT is the following. At each time unit,
an adversary injects in the network a set of packets, each one
characterized by a particular path, which is defined when the
packet is generated, and cannot be changed. Of course, the
network can be flooded with packets, if no restriction is set
on packet generation processes. Therefore, for any 0 ≤ ρ <
1, a (ρ, φ) adversary injects a [ρ, φ] regulated traffic pattern
into the network. The aim of a (ρ, φ) adversary is trying to
find a deterministic traffic pattern under which the length of
some queue grows toward infinity, and the network becomes
unstable. More precisely, let G identify a network (a graph), S
be a service discipline, and A an adversary: system (G,S) is
said to be universally stable if, for every initial condition on G,
and for every adversary A, a constant integer M exists, such
that any queue length is upper bounded by M . In this case the
queueing network G is universally stable under service policy
S.

A queueing network G is said to be universally stable if it is
universally stable under any service discipline S and, similarly,

a scheduling policy S is said to be universally stable if it is
stable for all networks G.

It is worth noting that the queueing network stability crite-
rion provided by AQT is very tight, because it derives from a
worst-case analysis under a wide class of deterministic arrival
patterns. In this sense, AQT is somewhat similar to Network
Calculus [19], [20].

C. Fluid Models

The evolution of a queueing network is traditionally de-
scribed by vector equation (2), where Dn is a function of both
Xn and the scheduling policy. An alternative expression of the
evolution of the queue lengths vector can be provided in terms
of the cumulative processes. Let

• A(n) be the cumulative number of arrivals in time interval
[0, n), i.e., A(n) =

∑n
i=0 Ai;

• D(n) be the cumulative number of departures in time
interval [0, n), i.e., D(n) =

∑n
i=0 Di;

• T (n) be the cumulative amount of work provided to vir-
tual queues in time interval [0, n) whose k-th component
represents the amount of work provided to virtual queue
k.

With these definitions, the equation describing the queue
lengths vector evolution becomes:

Xn+1 = X0 + A(n) − D(n)[I − P] (4)

where D(n) can be expressed as a stochastic function of T (n).
By linearly interpolating Xn, A(n), D(n) and T (n) we can

define their extensions to continuous time: X̂(t), Â(t), D̂(t)
and T̂ (t). We first focus our attention on the behavior of:

lim
m→∞

1
m
X̂(mt) = X(t)

which is called the fluid limit of the queue length vector
(this limit exists under weak regularity conditions). Note that
X(0) = limm→∞

1
mX̂(0) = 0 whenever a finite number of

customers is in the system at time 0 (as we assume throughout
the paper).

It was shown in [13] that the fluid limit of the queue length
vector exists with probability 1 if A(n) and P(n) satisfy the
strong law of large numbers, i.e., limm→∞

A(mn)
m = Λn, and

limm→∞

∑m

i=1
S

(k)
i

m = s(k).
In addition, the fluid limit is a continuous function which is

derivable almost everywhere (i.e., it is derivable in all points
of t ∈ IR+, except for at most a set of null Lebesgue measure),
with probability 1.

In order to study the behavior of X(t), the following
theorem [13] is fundamental.

Theorem 1: The fluid limit X(t) is a solution of the
fluid model differential equations, obtained by averaging the
stochastic equations of the system evolution:

X(t) = X(0) + Λt−D(t)(I − P) (5)

and:
D(t) = T (t)Γ (6)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

where Γ is a diagonal matrix whose non-null elements γ(k) are
equal to the inverse of the average service times at the different
virtual queues, and T (t) = (t(1)(t), t(2)(t), . . . , t(N)(t)) is
a non-decreasing function describing the time spent serving
the different virtual queues in time interval [0, t), which must
satisfy additional constraints that identify the service discipline
at queues.

For example, if the service discipline at queue j is work-
conserving, then T (t) satisfies the following equation:

∫ ∞

0

∑

k∈L−1(j)

x(k)(t)

 d

t−
∑

k∈L−1(j)

t(k)(t)

 = 0 (7)

i.e., the server is working whenever there is some unit of
work to be performed. Indeed, inside the integral we have the
sum of virtual queue lengths at station j, and the integral is
performed with respect to the difference between time and the
work performed at station j; if queues are empty, the integral is
zero; if queues are nonempty, the time increments must equal
the performed work, so that again the integral becomes zero.

The following results relate the behavior of the solution of
the fluid model equations (5) to the behavior of the network
of queues.

Theorem 2: If X(t) = 0 ∀t > 0 is the only solution of the
fluid model equations, under the initial condition X(0) = 0,
then the system of queues is rate-stable [13]. In this case the
fluid model is said to be weakly stable.

Theorem 3: Consider a fluid Markov model (i.e., a process
with continuous state space, that satisfies the Markov prop-
erty). If t∗ exists, such that for all fluid solutions, X(t) =
0 ∀t > t∗ under any initial condition with ||X(0)||L = 1,
then the system of queues is Harris recurrent [13] (which is
an extension of the concept of recurrence for Markov chains).
In this case the fluid model is said to be stable.

Theorem 4: If there exists t > 0 such that X(t) > 0 for
every solution of the fluid model equations (5), under the initial
condition X(0) = 0, then the system is unstable (i.e., some
queue lengths grow to infinity) with probability 1. In this case
the fluid model is said to be weakly unstable.

Theorem 5: Consider a fluid Markov model. If an initial
condition exists with ||X(0)||L = 1, such that, for every
solution of the fluid model equations, lim supt→∞ ||X(t)||L =
∞, then the queueing system is not Harris recurrent, i.e., it is
not stable with probability 1. In this case the fluid model is
said to be unstable.

Note that for fluid models the definitions of weak instability
and instability are not the converse definitions of weak stability
and stability, respectively. Nothing can be said about the
behavior of the system of queues when the fluid model is
neither (weakly) stable nor (weakly) unstable. This is due to
the fact that, in general, fluid limits are only a subset of the
solutions of the fluid model differential equations. Thus, it is
difficult to isolate fluid limits, discarding fluid solutions that do
not correspond to fluid limits, and then infer information on the
queue system behavior when fluid solutions exhibit different
behaviors (i.e., some solutions are null and some are not null).

IV. NEW RESULTS

In this section we present our stability results for networks of
queues. We start by considering in the first subsection networks
of queues implementing GPS schedulers, and then we consider
priority service disciplines.

By using the fluid model methodology it was previously
shown that a network of queues with GPS schedulers achieves
100% throughput under any admissible traffic pattern when
GPS weights are equal to or greater than the corresponding ef-
fective average rates [13]. This result was further strengthened
by showing that networks of queues implementing GPS sched-
ulers are universally stable under the same condition on flow
rates. For these reasons GPS schedulers are often considered
the optimal architectural solution for communication networks
supporting traffic streams with QoS requirements. However,
since neither any form of Call Admission Control (CAC), nor
any type of ingress traffic shaping is currently implemented in
packet-switching networks adopting the Internet protocol suite,
it is impossible to obtain a precise knowledge about the average
effective flow rates at network routers (and at their schedulers).
The calibration of GPS weights at routers (and at GPS sched-
ulers within routers) often relies on local traffic measurements
or rough estimates. As a consequence, a mismatch between
GPS weights and effective average rates is not only possible,
but likely. In the next subsection we discuss an example of
a network of queues implementing GPS schedulers in which
instability arises (according to Definition 7) under admissible
traffic when the nominal flow rates are not exactly matched to
the effective average flow rates.

We then focus our attention on networks of queues with
strict priority schedulers. We first prove that such networks
are universally stable, provided that the priority ordering of
packet flows does not change from a router (queue) to another
(that is, if at a router flow 1 has higher priority than flow 2,
the same happens also at all other routers). Note that, on the
contrary, when the priority ordering of packet flows can change
from a router to another, rate-instability may arise, as proved
in [9], [10], [13]. Finally, we prove that networks of queues
implementing a combination of priority and FIFO schedulers
(for example due to packet flows that have identical priority
at some routers) are rate-stable, but not universally stable for
loads larger than 0.8.

A. Networks of GPS queues

Consider the queueing network shown in Figure 1, which
comprises four physical queues traversed by four different
flows. Each flow enters the network at a physical queue, and
follows a simple route7 that traverses three physical queues.
Three virtual queues are co-located at each physical queue,
the first storing packets that have just entered the network,
the second storing in-transit packets, the last storing packets
which are about to leave the network. The N = 12 virtual
queues are numbered as shown in the figure. Each station of

7Routes are said to be ‘simple’ when they are acyclic.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

12
8
4

6
2

9
5
1

11
7
3

10

λ

λ

λ

λ γ

γ

γ

γ

4

3 2

1

Fig. 1. Queueing network exhibiting instability

0

50000

100000

150000

200000

0 2e+06 4e+06 6e+06 8e+06 1e+07

Q
ue

ue
 L

en
gt

h

Time [s]

x(9)(t)
x(10)(t)

Fig. 2. Evolution of x(9) and x(10) by simulation with GPS weights not
matched to flow rates

the queueing network adopts a GPS service discipline. In order
to reduce the number of parameters of our model, we assume
a perfect symmetry among the nominal flow rates; thus, rate α
is assigned at all stations to virtual queues storing packets that
are about to leave the system, rate β is assigned to in-transit
flows, and rate δ is assigned to flows entering the network.

We assume the server capacity at each station to be 1, so that
relation α+ β+ δ ≤ 1 must always hold. Figure 2 reports the
simulated evolution of the lengths of some of the virtual queues
in the network of Figure 1 as a function of time, assuming that
all exogenous packet arrival processes (at virtual queues i =
9, 10, 11, 12) are Poisson with rate λ(i) = λ = 1

3.25 [s−1], that
service times are exponentially distributed random variables
with average parameter s(i) = s = 1

γ = 1 [s] ∀i, and that the
GPS weights α, β, δ are respectively equal to 0.6, 0.3 and 0.1.
The plots clearly show that the queueing network is unstable,
in spite of the fact that no server in the network is overloaded
(at each physical queue j,

∑
k∈L−1(j) ω

(k) = 3
3.25 ≈ 0.923).

This behavior is explained through a fluid model.

Theorem 6: Under admissible input flow rates, the fluid
model of the queueing network in Figure 1 can be unstable
when the GPS weights α, β and δ are such that δ < α and

δ < β. In particular, instability arises when:

λ

γ
≥ 1 − α

2(1 − α+ β)
if α > β

λ

γ
≥ 1 − β

2(1 − β + α)
if α < β

(8)

Proof: In order to write the system of deterministic
differential equations that drive the fluid model associated with
the queueing network, we need to introduce some notation.
Given any function f(t), let Uf be the Heaviside step function
of f(t), i.e., a function taking value 0 when f(t) ≤ 0, and
equal to 1 when f(t) > 0. For each virtual queue k, let k∗

be the index of the virtual queue that comes before k in the
packet route (if k is the first queue of the route, k∗ = 0); let
c(k) be the GPS weight associated with virtual queue k. We can
then write, ∀k = 1, . . . , 12, two equations; the first one says
that the change in the length of the size of virtual queue k is
obtained as the difference between the service rates at queues
k∗ and k; the second equation says that the service rate at
virtual queue k is either (if the virtual queue is not empty) its
GPS rate c(k) scaled by the largest possible coefficient rL(k)(t)
accounting for empty virtual queues at the same station, or (if
virtual queue k is empty) the minimum between the service
rate at virtual queue k∗ and the product c(k)rL(k)(t):

ẋ(k)(t) = γ
[
ṫ(k

∗)(t) − ṫ(k)(t)
]

ṫ(k)(t) = Ux(k)c(k)rL(k)(t)+
+(1 − Ux(k))min

[
ṫ(k

∗)(t), c(k)rL(k)(t)
] (9)

Note that ṫ(0)(t) must be considered constant with respect to
time t, and equal to λ

γ . Note, finally, that ṫ(h) depends on the
scaling factor rj(t), ∀j = 1, 2, 3, 4, which is defined according
to the following expresssion:

rj(t) = arg max
rj(t)≥1

∑

h∈L−1(j)

ṫ(h)(t) ≤ 1

 (10)

i.e., rj(t) is the maximum parameter that makes the instanta-
neous work provided by the server at station j less or equal
to 1.

In spite of the apparent complexity of Equation System (9),
its solution is rather simple: indeed, the components x(k)(t) of
the solution X(t) are piecewise linear, while the components
ṫ(k)(t) of the solution Ṫ (t) are piecewise constant; moreover,
the discontinuity points correspond to time instants where
some queue becomes empty.

We can for example solve (9) in the case α + β + δ = 1,
γ = 1 [s−1], α > β, assuming that at time t = 0 the system
is in the following initial condition:

x(k)(0) =
{

q > 0 k = 9, 12
0 k �= 9, 12

The following values of ṫ(k)(t) can be computed:

ṫ(k)(t) =

1 − α− β

1 − α+ β
k = 1, 4, 5, 8, 10, 11

β

1 − α+ β
k = 2, 3, 6, 7

α+ 3β − 1
1 − α+ β

k = 9, 12

(11)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Indeed, due to symmetry, the values of ṫ(k)(t) at stations 1
and 4 must be the same, as well as at stations 2 and 3. We
can thus write:

ṫ(11)(t) = ṫ(10)(t) = x ≤ λ

ṫ(8)(t) = ṫ(5)(t) = y

ṫ(6)(t) = ṫ(7)(t) = z

Note that it must be y ≤ x, because virtual queues 5 and 8
are initially empty, and they receive x as input.

We can also write that:

ṫ(1)(t) = ṫ(4)(t) = y

because
c(1) = c(4) = α >

1
3
> λ

Then we can deduce:

ṫ(9)(t) = ṫ(12)(t) = 1 − 2y

because the whole service capacity is always used at a station
if at least one virtual queue is not empty.

However, since:

y ≤ x ≤ λ ≤ 1
3

we get 1 − 2y ≥ y. This, together with β > δ, forces x = y:
indeed, according to (9), the solution y < x is inammissible
because it would cause virtual queue 5 and 8 receiving less
(or equal) service than virtual queues 9 and 12 while growing
up, although their own GPS weight β is strictly higher than
δ, characterizing virtual queues 9 and 12. Now, considering
stations 2 and 3, we can write:

ṫ(2)(t) = ṫ(3)(t) = z

Indeed, it cannot be ṫ(2)(t) > z, because virtual queue 2
receives z as input, and x(2) = 0; and it cannot be ṫ(2)(t) < z,
because α > β.

To avoid that the service capacity at physical queues 2 and
3 exceeds 1, it must be z < 1 − 2x (otherwise, the service
capacity would be at least equal to 2−3x). As a result, virtual
queues 6 and 7 are forced to grow, because the fluid arrival
rate is higher than the fluid departure rate. Thus, z and x can
be determined as follows. First, we impose 2z + x = 1, that
is:

z =
1 − x

2
Then, recalling that x ≤ λ and comparing virtual queues 6
and 10, we say that x = λ is acceptable if:

x

δ
<

z

β

otherwise, we suppose x < λ (this means that also virtual
queue 10 is forced to grow), and obtain x by imposing x

δ = z
β .

We ignore the first alternative, which leads to all empty queues,
and consider the case x < λ, which holds under condition:

λ >
1 − α− β

1 − α+ β

The values reported in (11) can be easily obtained by substi-
tuting the value found for x in the previous expressions. Such
values are valid until x(9)(t) and x(12)(t) become null. This
happens when:

t = t1 = q

(
α+ 3β − 1
1 − α+ β

− λ

)−1

Considering the rates at which the fluid arrives and is drained
at the different queues, the length of the queues at time t1 is:

x(k)(t1) =

q

(λ− 1 − α− β

1 − α+ β
)

(
α+ 3β − 1
1 − α+ β

− λ)
k = 10, 11

q
(α+ 2β − 1)

(1 − α+ β)(
α+ 3β − 1
1 − α+ β

− λ)
k = 6, 7

0 otherwise

Proceeding as before, it is easy to verify that, in the new set
of values for the ṫ(k)(t) after t1, the only variation consists in
ṫ(9) = ṫ(12) = λ.

The next relevant event is the emptying of virtual queues 6
and 7 at time t = t1 + t2, where t2 is given by the ratio of
x(6)(t1) and x(7)(t1) and the difference between the draining
and arrival rates of fluid at those two queues. At time t =
t1 + t2, the length of the queues is:

x(k)(t) =

q
λ(1 − α+ β) − (1 − α− β)

β − λ(1 − α+ β)
k = 10, 11

0 k �= 10, 11

By observing the evident symmetry of the network configura-
tion that is reached at t1 + t2 with the initial condition, it is
possible to conclude that the quantities x(10)(t) and x(11)(t)
(and the same is true for x(9)(t) and x(12)(t)) grow to infinity,
so that the fluid model is unstable when:

λ(1 − α+ β) − (1 − α− β)
β − λ(1 − α+ β)

≥ 1

that proves the assert. With a similar procedure it is possible
to obtain the condition when β > α.

If the dynamics of the queueing network correspond to a
Markov process, the instability of the fluid model implies the
instability (according to Definition 7) of the queueing network.
Thus, it is possible to conclude that:

Theorem 7: A queueing network with GPS schedulers,
whose evolution can be described by a Markov process, may
be unstable (according to Definition 7) under admissible traffic
when nominal flow rates at the stations are not matched to the
effective average flow rates.

Note that Markov processes, i.e., processes satisfying the
Markov property, possibly with continuous state space, are
very general models, to which almost all queues and network
of queues of practical interest can be reduced. For example,
the evolution of the unfinished work in a network of GI/GI/m
queues can be described by a (complex) Markov process.

Of course, the instability of the fluid model automatically
implies that the GPS service discipline is not universally stable

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

0

200000

400000

600000

800000

1e+06

1.2e+06

0 2e+06 4e+06 6e+06 8e+06 1e+07

Q
ue

ue
 L

en
gt

h

Time [s]

x(11)(t)
x(12)(t)

Fig. 3. Evolution of x(11)(t) and x(12)(t) by simulation with strict-priority
service

when nominal flow rates are not matched to the effective
average flow rates.

B. Networks of Priority Queues

We consider in this section strict-priority/FIFO queueing
networks, defined as follows.

Definition 10: A strict-priority/FIFO queueing network is
a network of queues in which all virtual queues within the
same physical queue are associated with a priority level; cus-
tomers are served according to a strict priority non-preemptive
service discipline, i.e., customers are always extracted from
one of the non-empty highest-priority virtual queues. When
the same priority is assigned to several virtual queues within
the same station, ties are broken according to a FIFO service
discipline.

We associate each virtual queue k with a priority index p(k)

with 1 ≤ p(k) ≤ |L−1(L(k))|, in such a way that lower indices
correspond to higher priorities. The same priority index is
associated with virtual queues with the same priority residing
at the same physical queue.

Dai [13] showed that instability phenomena can arise in
strict-priority queueing networks, thus reducing the maximum
achievable throughput. However, instability was observed in
queueing networks where either customers visit several times
the same physical queue, or the relative priority order assigned
to flows is different in different physical queues. For example,
consider again the queueing network depicted in Figure 1,
that we have already studied in the case of GPS schedulers.
Imagine that a strict-priority service discipline is adopted by
servers, and that priority index p(k) is respectively equal to: 1
if virtual queue k is storing packets which are about to leave
the network, 2 if it is storing in-transit packets, and 3 if its
packets have just entered the network. Simulation results (see
Figure 3) under an admissible traffic pattern (λ = 1

3.25 [s−1]
and s = 1 [s], as in previous subsection) show that the network
is unstable. However, in modern multi-service communication
networks, packets normally follow simple routes, and priorities
are usually assigned to packet flows in such a way that the

relative priority order is the same at different nodes. For this
reason, we specialize our investigation in this paper to a sub-
class of strict-priority/FIFO queueing networks, called acyclic
strict-priority/FIFO networks.

In order to obtain a precise definition of the class of acyclic
strict-priority/FIFO queueing networks, we need to define
the Priority Dependency Graph (PDG) induced by a priority
assignment.

Definition 11: The Priority Dependency Graph is the di-
rected graph G(V,E) satisfying the following properties:

• a vertex v ∈ V corresponds to each network flow f ;
• a directed edge e ∈ E connects vertices vm and vn (e :
vm → vn), corresponding respectively to flows fm and
fn, if there exists a physical queue q traversed by flows
fm and fn, such that p(km) < p(kn), where km and kn

are the virtual queues residing at q associated respectively
with fm and fn.

We say that flow fm is father of flow fn if the PDG contains
an edge from vm to vn; in this case fn is said to be a child
of fm.

Now we are ready to formally define the class of acyclic
strict-priority/FIFO queueing networks.

Definition 12: An acyclic strict-priority/FIFO queueing
network is a strict-priority/FIFO queueing network in which

• routes of flows are simple, i.e., all flows can visit at most
once any physical queue;

• the PDG is acyclic.
We can now prove a very general and useful result.
Theorem 8: Each acyclic strict-priority/FIFO queueing

network is rate-stable under any admissible traffic pattern
satisfying the strong law of large numbers.

Proof: The queueing network can be studied through
the fluid equations (5) and (6) introduced in Section III-C.
With a strict priority service discipline, T (t) satisfies, ∀k, the
following variation of (7):

∫ ∞

0

∑

h∈L−1
k+ (j)

x(h)(t)

 d

t−
∑

h∈L−1
k+ (j)

t(h)(t)

 = 0 (12)

where L−1
k+ (j) is the function that returns the set of virtual

queues located at station j, whose priority index is not greater
than p(k) (note that virtual queue k itself belongs to this set).
According to (12), the server must work on the highest priority
virtual queue, whenever there is some unit of work to be
performed there.

Since the priority dependency graph is acyclic, we can
associate an ordinal number of with 1 ≤ of ≤ F to each
flow f in the network satisfying the following rule: for any
pair of flows fm and fn, with fm father of fn in the priority
dependency graph, then ofm

< ofn
. Note that of induces

an order relation among virtual queues. However, this order
relation is quite weak, since all virtual queues corresponding
to the same flow correspond to the same ordinal number.
In order to strengthen the previously defined order relation
among virtual queues, we proceed as follows. We associate an

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

ordered pair of indices with each virtual queue: the first index
corresponds to the ordinal number of the flow that originates
the considered virtual queue, while the second index, that we
denote with h(k), represents the number of queues that the
considered flow has traversed before virtual queue k. Then,
a global order relation GO can be introduced among virtual
queues, according to the following rule: virtual queue km

precedes virtual queue kn, iff ofm
< ofn

, or ofm
= ofn

and
h(km) < h(kn) along the path described by fm = fn.

Now we are ready to proceed with the proof. We first assume
that there are no stations where two or more virtual queues
have the same priority; then we will relax this assumption.
Under that assumption, we claim that:

Claim 1: Given any state vector X(t) whose components
are sorted in increasing order according to GO, indicating with
k0 the first non-null component of X(t) and L(k0) = j0, if t
is a regular point for X(t), then:

ẋ(k0)(t) =

∑

k∈L−1
k0+ (j0)

ω(k) − 1

 γ(k0) = χ < 0

Proof: Let f0 be the flow that originates k0. For any empty
virtual queue k in a regular point t, ẋ(k)(t) = 0, as proved for a
general fluid model in [13]; then, the fluid departure rate equals
the fluid arrival rate. By induction, it is immediate to verify
that ė(k)(t) = π(k) at each virtual queue k that follows only
empty queues along the path described by its traffic flow. But
virtual queue k0, by construction, follows only empty queues
along the path described by its traffic flow. Moreover, every
virtual queue originated by a father of f0 must be empty by
construction. Thus, for all the higher priority virtual queues
k co-located with k0, ė(k)(t) = ḋ(k)(t) = π(k). We can
write: ẋ(k0)(t) = ė(k0)(t) − ḋ(k0)(t). But ė(k0)(t) = π(k0),
and ṫ(k0)(t) is equal to 1 minus the sum of ω(m) for all
queues m residing at physical queue j0, but having a higher
priority than queue k0. Hence ḋ(k0)(t) is equal to γ(k0) minus
the sum of π(m) at co-located, higher-priority queues. The
claim follows immediately, taking into account the fact that∑

k∈L−1
k0+ (j0) ω

(k) < 1.

Consider now another non-empty virtual queue m. We
do not have much information on the behavior of ẋ(m)(t);
however, the maximum amount of fluid which can arrive at it
in a unit of time is bounded, due to the boundedness of the
service capacity of all queues that come before virtual queue m
along the path described by the considered traffic flow (recall
that matrix ∆ is bounded). Thus, there exists a constant C such
that |ẋ(m)(t)| < C, ∀m. In particular, we can take C > |χ|.
Consider the following Lyapunov function:

L(X(t)) =
N∑

k=1

x(k)(t)
(

|χ|
2C

)k

To prove stability, we must verify that, whenever X(t) > 0,
then L̇(X(t)) < 0. Indeed, being empty all queues that come
before k0 (so that for all those queues ẋ(k)(t) = 0), and being

ẋ(k0)(t) = χ, we can write:

L̇(X(t)) ≤
(

|χ|
2C

)k0
[
χ+

∑N−k0
i=1 C

(
|χ|
2C

)i
]
=

=
(

|χ|
2C

)k0
[
χ+ |χ|

2

∑N−k0−1
i=0

(
|χ|
2C

)i
]
< 0

Thus, X(t) = 0 is the only solution8 of the fluid model for the
initial condition X(0) = 0. The fluid model is weakly stable
and then the stochastic system is rate-stable for Theorem 2.

With similar arguments, the proof can be extended to the
case in which more flows that visit the same physical queue
fall in the same priority class. Due to space limitations, we
only sketch here the main steps of the proof.

If different flows with the same priority visit the same
physical queue, we must partition traffic flows in classes,
denoted with Ki, i = 1, . . . , L, where L is the cardinality of
the partition, and characterized by the same ordinal number.
We order these classes in such a way that if i < j then
ofm

< ofn
∀fm ∈ Ki, fn ∈ Kj . Let Kα represent the highest

priority group of flows to which corresponds at least a non-
empty virtual queue, and use now k to indicate any virtual
queue belonging to a flow in Kα. Moreover, let i < α, so
that Ki denotes any priority class higher than Kα, and let h
indicate any virtual queue belonging to a flow in Ki.

The presence of lower priority virtual queues does not
perturb the behavior of ẋ(k)(t), because of the strict priority
discipline. Moreover, it results ẋ(h)(t) = 0 at every regular
point t. Thus, ṫ(h)(t) = ω(h). This allows us to locally study
the behavior of ẋ(k)(t): indeed, virtual queues belonging to
flows in lower priority classes can be ignored, while every
virtual queue h subtracts at its correspondent server j = L(h)
an amount of work equal to ω(h). In other words, the study of
local behaviors of virtual queues k can be reduced to the study
of the evolution of queue lengths in an underloaded single
priority system in which virtual queues are served according
to a FIFO discipline.

By applying the same Lyapunov function LFIFO used
in [17] 9 and denoting with 1IKα

a N×N diagonal matrix that
has unit diagonal elements in correspondence of virtual queues
belonging to Kα and null elements elsewhere, it is possible
to conclude that L̇FIFO(1IKα

X(t)) < χ < 0. For the lower
priority classes Kj , there exists a constant C > 0 such that
L̇FIFO(1IKj

X(t)) < C, since all the growing rates of queues
are finite. Thus, defining:

L(X(t)) =
L∑

i=1

(
|χ|
2C

)i

LFIFO(1IKi
X(t))

it results L̇(X(t)) < 0. Then the queueing network is rate-
stable, again for Theorem 2.

8Assume L(t) ≥ 0, L(0) = 0, and L̇(t) ≤ 0. Consider L2(t) =
2
∫ t

0
L(x) dL(x). By definition L2(t) ≥ 0, but

∫ t

0
L(x) dL(x) ≤ 0. Hence

L(t) = 0, ∀t (see [13]).
9LFIFO =

∑J

j=1

∑
k∈L−1(j)

∫ t+Wj(t)

t
π(k)h(ḋ(k)(s)/π(k))ds

with h(x) = x log(x) and Wj(t) =
∑

k∈L−1(j) s(k)x(k)(t).

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

TABLE I

PRIORITY ASSIGNMENTS FOR FLOWS IN THE NETWORK

Source Destination Route Priority Phase
1 9 (b, n, h) 1 0
1 11 (b, c, d, p, i) 1 1
8 9 (h) 0 1
2 3 (c) 0 2
8 11 (h, o, d, p, i) 1 2
3 11 (d, p, i) 0 3

We notice that a strict parallelism exists among the stability
result for acyclic strict-priority/FIFO queueing networks, and
the stability result for networks of GPS schedulers under the
consistent relative session treatment proved in [2]. The concept
of acyclicity in strict-priority networks, indeed, can be con-
sidered an extention to the case of strict-priority/FIFO disci-
plines of the concept of consistent relative session treatmenent
defined for GPS schedulers. The extension is, however, non
trivial as the following results will show.

We discuss next the property of universal stability for acyclic
strict-priority/FIFO queueing networks.

Theorem 9: Acyclic strict-priority/FIFO queueing net-
works are universally stable under any [ρ, φ] regulated traffic
pattern with arbitrary φ and average external arrival rate ρ < 1,
if no pairs of flows traversing the same station have the same
priority.

Proof: This proof is similar to the previous one; we omit
it due to the lack of space, but the interested reader can find
it in [21].

The extension of the previous result to the case in which
several flows share the same priority is impossible, since it was
proved [14] by counterexample that the FIFO service discipline
is in general not universally stable for ρ > 0.85. Note, indeed,
that an acyclic strict-priority/FIFO network reduces to a FIFO
network when the same priority is assigned to every flow.
The unstable example studied in [14], however, requires that
some packets follow closed paths (i.e. trajectories that start and
end at the same node). Thus, the reader may wonder whether
acyclic strict-priority/FIFO networks can be still proved to be
not universally stable under the further restriction that packet
routes are selected according to “reasonable” routings.

The following generalization of the example reported in [14]
shows that instability still arises in acyclic strict-priority/FIFO
networks in which packets are routed according to a shortest
path routing. It also shows that the adoption of an acyclic
strict-priority/FIFO discipline entails a further reduction of the
stability region with respect to a pure FIFO discipline.

Theorem 10: Acyclic strict-priority/FIFO queueing net-
works are not universally stable for average external arrival
rates ρ greater than 0.8, when assuming all servers have unitary
capacity.

Proof: Consider the queueing network in Figure 4, where
queues are represented by numbered circles, and labelled edges
represent possible customer routes. In Table I we specify
customer flow routes and priorities (where smaller numbers
mean higher priority).

a

c

d

e

f

b h
n o

2 3

4

56

9

1

8

7 10

1112

m

l
q

p

ig

r

s

t

Fig. 4. An acyclic strict-priority/FIFO queueing network that is not univer-
sally stable

We will show that a (ρ, φ) adversary exists under which
some queue lengths in this network grow indefinitely.

We divide the network evolution into periods. Each period
is itself sub-divided into phases. Table I also reports the phase
in which each flow enters the network. In the following, we
consider each phase lasting W0 time units.

Let us start by examining the network behavior during the
first period. We suppose that each server in the network serves
flows according to an acyclic strict-priority/FIFO discipline.
We suppose that, at the beginning of the period, W0 packets
are stored in the network at node 1 directed to node 9 over
path (b, n, h).

During the first phase, ρW0 packets arrive at node 1, directed
to node 11, over path (b, c, d, p, i); in addition, ρW0 packets
are injected at node 8, directed to node 9 over path (h).

During this phase, all the W0 packets 1 → 9 move from
node 1 to node 8, since they are older than packets 1 → 11;
thus, at the end of the phase, all packets 1 → 11 are still
enqueued at node 1. In addition, at the end of the phase ρW0
packets belonging to flow 1 → 9 are still enqueued at node 8,
where the ρW0 packets belonging to flow 8 → 9 could access
link h thanks to the higher priority and only (1−ρ)W0 packets
1 → 9 coulb be serviced.

During the second phase, ρW0 packets are injected at node
8 directed to node 11 over path (h, o, d, p, i), and ρW0 packets
are injected at node 2 directed to node 3 over path (c).

During this phase, all the higher priority packets belonging
to flow 2 → 3 reach their destination, along with the packets
belonging to flow 1 → 9, that can access link h being older
than packets 8 → 11. While all the ρW0 packets 1 → 11 have
been served at node 1, the residual server capacity at nodes 2
and 8 is exploited by (1−ρ)W0 packets belonging respectively
to flows 1 → 11 and 8 → 11. As a result, at the end of this
phase ρW0 − (1 − ρ)W0 = (2ρ− 1)W0 packets belonging to
flow 1 → 11 are enqueued at node 2 and (2ρ− 1)W0 packets
belonging to flow 8 → 11 are enqueued at node 8.

During the third phase, ρW0 packets are injected at node
3, directed to node 11 over path (d, p, i). Packets belonging
to flows 1 → 11 and 8 → 11 are served at nodes along
their paths until they reach node 3. Thus, all packets in the

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

system converge at node 3: here, priority is given to flow
3 → 11 so that its ρW0 packets can reach their destination. The
residual server capacity at node 3 is exploited by some packets
belonging to flows 1 → 11 and/or 8 → 11 (they have the same
priority, so packets choice depends on the FIFO order). At the
end of the phase, W1 = 2(2ρ−1)W0−(1−ρ)W0 = (5ρ−3)W0
packets directed to node 11 are still enqueued at node 3.

If ρ > 0.8, W1, the number of packets enqueued at node 3
at the end of the first period, exceeds W0. Note that the initial
condition for the second period closely resembles the initial
condition for the first period (the topology clearly exhibits
a symmetry under which paths 1 → 9 and 3 → 11 are
equivalent). Thus, there exists an external arrival pattern such
that at the end of the second period W2 > W1 > W0 packets
are stored at node 5 and directed to node 7. Finally, with
similar considerations, it is possible to show that there exists
an external arrival pattern such that, at the end of the third
period, W3 packets (with W3 > W2 > W1 > W0) are stored
at node 1 and directed to node 9 through path (b, n, h). By
induction, we can prove that the number of packets left in the
network at the end of each period indefinitely grows, thus the
network is not universally stable if ρ > 0.8.

V. CONCLUSIONS

In this paper we have discussed possible underload insta-
bilities due to GPS and strict priority schedulers in packet-
switching networks, considering scenarios with acyclic packet
routes, and service times that vary only according to channel
capacities.

Our analysis extends recent results showing that instability
can happen in underloaded queueing networks, loosening
the system assumptions in a way that our findings can be
applied to the approaches being currently considered for QoS
provisioning in the Internet.

Our main results are that: i) GPS schedulers may be unstable
when some of the actual packet rates exceed the GPS rates; ii)
strict priority schedulers are stable, provided that the priority
ordering of packet flows does not change from a router to
another; iii) the combination of priority and FIFO schedulers
may lead to a weak form of instability for loads larger than
0.8.

In [22], using different techniques, we show that most
instability phenomena shown in this paper are not mitigated
by an adaptive behavior of traffic sources, as for example in
the case of general additive-increase multiplicative-descrease
source rate adaptation, and of TCP algorithms in particular.

REFERENCES

[1] A.K.Parekh, R.G.Gallager, ”A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks - The Single Node
Case” IEEE/ACM Transactions on Networking, Vol. 1, n. 3, June 1993,
pp. 344-357.

[2] A.K.Parekh, R.G.Gallager, ”A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks - The Multiple Node
Case” IEEE/ACM Transactions on Networking, Vol. 2, n. 2, April 1994,
pp. 137-150.

[3] J.Heinanen, F.Baker, W.Weiss, J.Wroclawski, Assured Forwarding PHB
Group, RFC 2597, June 1999.

[4] V.Jacobson, K.Nichols, K.Poduri, An Expedited Forwarding PHB, RFC
2598, June 1999.

[5] L.Kleinrock, Queueing Systems, Vol. 2, John Wiley, New York, 1976.
[6] J.R.Jackson, “Jobshop-like Queueing Systems”, Management Science,

Vol. 10, n. 1, October 1963, pp. 131-142.
[7] F.Baskett, K.M.Chandy, R.R.Muntz, F.Palacios, “Open, Closed and

Mixed Networks with Different Classes of Customers”, Journal of the
ACM, Vol. 22, n. 2, April 1975, pp. 248-260.

[8] F.P.Kelly, Reversibility and Stochastic Networks, John Wiley, New York,
1979.

[9] S.H.Lu, P.R.Kumar, “Distributed Scheduling Based on Due Dates and
Buffer Priorities”, IEEE Transactions on Automatic Control, Vol. 36, n.
12, December 1991, pp. 1406-1416.

[10] J.G.Dai, G.Weiss, “Stability and Instability of Fluid Models for Re-
Entrant Lines”, Mathematics of Operations Research, Vol. 21, 1996, pp.
115-135.

[11] M.Andrews, L.Zhang, “Achieving Stability in Networks of Input-Queued
Switches”, INFOCOM 2001, Anchorage, Alaska, April 2001, pp. 1673-
1679.

[12] M.Ajmone Marsan, E.Leonardi, M.Mellia, F.Neri “On the Maximum
Throughput Achievable in Multi-Class Input-Queued Switches and Net-
works of Switches”, INFOCOM 2002, New York, NY, June 2002,
pp. 1605-1614.

[13] J.G.Dai, Stability of Fluid and Stochastic Processing Networks, Miscel-
lanea Publication n.9, Centre for Mathematical Physics and Stochastic,
Denmark (http://www.maphysto.dk), January 1999.

[14] M.Andrews, B.Awerbuch, A.Fernandez, J.Kleimberg, T.Leighton, Z.Liu,
“Universal Stability Results for Greedy Contention-Resolution Proto-
cols”, Journal of the ACM, Vol. 48, n. 1, January 2001.

[15] D.Gamarnik, “Using Fluid Models to Prove Stability of Adversarial
Queueing Networks”, IEEE Transactions on Automatic Control, Vol. 45,
n. 4, April 2000, pp. 741-746.

[16] P.R.Kumar, S.P.Meyn, “Stability of Queueing Networks and Scheduling
Policies”, IEEE Transactions on Automatic Control, Vol. 40, n. 2,
February 1995, pp. 251-260.

[17] M.Bramson, “Convergence to Equilibrium for Fluid Models of FIFO
Queueing Networks”, Queueing Systems, Vol. 22, 1996, pp. 5-45.

[18] A.Borodin, J.Kleimberg, P.Raghavan, M.Sudan, D.P.Williamson, “Ad-
versarial Queueing Theory”, Journal of the ACM, Vol. 48, n. 1, January
2001.

[19] R.L.Cruz, “A Calculus for Network Delay, Part I: Network Elements
in Isolation”, IEEE Transactions on Information Theory, Vol. 37, n. 1,
January 1991, pp. 114-131.

[20] R.L.Cruz, “A Calculus for Network Delay, Part II: Network Analysis”,
IEEE Transactions on Information Theory, Vol. 37, n. 1, January 1991,
pp. 132-141.

[21] M.Ajmone Marsan, M.Franceschinis, E.Leonardi, F.Neri, A.Tarello,
Instability Phenomena in Underloaded Packet Networks with
QoS Schedulers, Technical Report, http://www.tlc-
networks.polito.it/˜ emilio/net-rep/instability-
tec-rep.pdf

[22] M.Ajmone Marsan, M.Franceschinis, P. Giaccone, E.Leonardi, F.Neri,
A.Tarello, Instability Phenomena in Underloaded Packet Networks with
Elastic Traffic, Technical Report, available at: http://www.tlc-
networks.polito.it/˜ emilio/net-rep/elastic.pdf

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

