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Abstract— Emerging spread spectrum high-speed data net-
works utilize multiple channels via orthogonal codes or
frequency-hopping patterns such that multiple users can trans-
mit concurrently. In this paper, we develop a framework for
opportunistic scheduling over multiple wireless channels. With a
realistic channel model, any subset of users can be selected for
data transmission at any time, albeit with different throughputs
and system resource requirements. We first transform selection
of the best users and rates from a complex general optimization
problem into a decoupled and tractable formulation: a multi-user
scheduling problem that maximizes total system throughput and
a control-update problem that ensures long-term deterministic or
probabilistic fairness constraints. We then design and evaluate
practical schedulers that approximate these objectives.

Index Terms— Weighted fair scheduling, multi-channel
scheduling, probabilistic fairness guarantees, wireless networks

I. INTRODUCTION

Achieving fair bandwidth allocation is an important goal for
future wireless networks and has been a topic of intense recent
research (see [1] for example and the references therein). In
particular, in error-prone wireless links with a binary channel
model (0 or 100% link error) it is impractical to guarantee
identical throughputs to each user over short time scales; yet,
over longer time scales, as channel conditions vary, lagging
flows can “catch up” to re-normalize each flow’s cumulative
service (see [2] for example). Under a more realistic “contin-
uous” channel model, any user can transmit at any time, yet
users will attain different performance levels (e.g., throughput)
and require different system resources depending on their
current channel condition. Several scheduling algorithms have
been designed for continuous channels that provide temporal
or throughput fairness guarantees [3], [4], [5].

Regardless of the channel model employed, a common
assumption of existing designs is that only a single user can
access the channel at a given time, i.e., time division multiple
access (TDMA). However, spread spectrum techniques are
increasingly being deployed to allow multiple data users to
transmit simultaneously on a relatively small number of sepa-
rate high-rate channels. In particular, multiple logical channels
can be created via different frequency hopping patterns or via
orthogonal codes in Code Division Multiple Access (CDMA)
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systems. In this paper, we develop a novel framework for
design and analysis of multi-channel wireless schedulers that
opportunistically exploit variations in user channel conditions
to select the best set of users and rates to schedule at each
time instance subject to fairness and resource constraints. Our
approach is as follows.

First, we develop a general methodology for design of
opportunistic fair wireless schedulers using an adaptive con-
trol framework. The framework consists of a scheduling-
optimization problem that guarantees a throughput-optimal
selection of users and a control-parameter-update problem
that ensures that the fairness constraints are satisfied. By
decoupling the problem into two parts, the two sub-problems
can be solved separately thereby significantly simplifying and
standardizing the design procedure.

With this methodology, we next formulate and solve the
multi-channel scheduling problem. Our key technique is to
jointly exploit the temporal variations in the resource consump-
tion of multiple users to opportunistically select users with
greater throughput potential, while also ensuring that fairness
constraints are satisfied. Towards this end, we develop MFS-D
and MFS-P, a Multi-channel Fair Scheduler with Deterministic
and Probabilistic fairness constraints respectively. For MFS-
D the (long-term) expected throughput of different users are
required to be equal, whereas for MFS-P they can differ by a
fixed amount with a bounded probability. The two schedulers
provide system operators with the flexibility to trade between
stringency of the fairness guarantee and total system through-
put. In both cases, we employ stochastic approximation based
algorithms for updating the control parameter to ensure the
respective fairness constraints are satisfied.

Finally, we perform an extensive set of simulations to
evaluate the performance of MFS-D and MFS-P under chan-
nel models that incorporate mobility and fast fading. The
simulations quantify the throughput gains of multi-channel
scheduling under increasingly relaxed fairness constraints.
Moreover, we study the impact of channel heterogeneity and
system constraints such as limits on total power transmission.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the framework for wireless scheduling. In
Section III, we formulate the problem of scheduling multiple
users concurrently on the wireless medium. In Section IV we
develop MFS-D and in Section III MFS-P. Next, in Section
VI we present simulation results. Finally, we review related
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work in Section VII and conclude in Section VIII.

II. A FRAMEWORK FOR WIRELESS SCHEDULING

A. Preliminaries

We consider scheduling for a wireless system accessed by
multiple users in which a centralized scheduler at the base
station controls downlink scheduling, and uplink scheduling
uses an additional mechanism such as polling to collect
transmission requests from mobile nodes. We assume that
downlink and uplink transmissions do not interfere with each
other as in GPRS [6] for example.

Changing channel conditions are related to three basic
phenomena: fast fading on the order of msec, shadow fading
on the order of tens to hundreds of msec, and finally, long-
time-scale variations due to user mobility. As our algorithm
will exploit the users’ channel conditions in making the
scheduling decision, we consider systems with mechanisms to
make predicted channel conditions available to the base station
as is commonly the case with technologies such as HDR [7],
UMTS-HS-DPA [8], (E)GPRS [6], etc.

To develop a scheduling algorithm that is applicable to a
broad class of standards and systems, we abstract a user’s
channel condition into its “resource consumption”, which
reflects the system efficiency due to selecting that particular
user for data transmission. For example, scheduling a user that
currently has a poor quality channel would require consuming
additional resources such as transmission power, stronger
forward error protection, or longer transmission time due to
lower data rates.

Due to inherent limits on the total system resources (e.g.,
power or time), high resource consumption by one user may
prevent other users from being scheduled. In this way, resource
consumption differs from “utility”, as the former represents a
cost to other users and the latter a gain to one particular user.
We remark that resource consumption is a non-negative and
non-increasing function of the channel quality indication (e.g.,
SNR).

B. Scheduler Design

Our objective in wireless scheduler design is to ensure fair-
ness while simultaneously employing opportunistic scheduling
strategies to increase the total system throughput by selecting
users with high-quality channels when possible. To solve the
problem, we observe that the two conflicting goals (throughput
optimization and fairness guarantees) can be decoupled and
solved as two separate entities as described in Figure 1: the
control parameter updating block for fairness guarantees and
the scheduling decision block targeting system throughput
optimization.

A detailed description of the framework is as follows.
The scheduling block makes scheduling decisions based on
the channel condition �c(k) = [c1(k), · · · , cN (k)] and con-
trol parameters �w(k) = [w1(k), · · · , wN (k)]. The output of
the scheduling block is the scheduling decision �X(k) =
[X1(k), · · · ,XN (k)] for time slot k. In general, the scheduling
decision represents a set of rates for simultaneous transmission
of multiple users. That is, Xi(k) denotes the scheduler’s
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Updating Block
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Fig. 1. A General Wireless Scheduling Formulation

selected transmission rate of user i in slot k. For the degenerate
case of single-channel scheduling, the decision is simply the
next flow to be serviced, e.g., [0, · · · , 1, 0]. Selection of this
decision vector is accomplished by solving an optimization
problem, implicitly or explicitly, to maximize the system
throughput or a function of it. Unlike the update block, the
scheduling decision is temporally local in the sense that it
only optimizes the objective at the current slot. This scheduling
decision is output to the physical layer which transmits packets
accordingly.

TABLE I

NOTATION SUMMARY

Term Definition
ci(k) Channel condition of user i in time slot k
wi(k) Control parameter of user i in time slot k
Xi(k) Scheduling decision for user i in time slot k
φi Assigned weight of flow i

Because adapting to the channel condition will easily lead
to short-term deviations from ideal fairness, memory of the
decision history is required. Therefore, to enable service
compensation at a later and more opportune time to under-
serviced flows, the scheduling decision is fed back to the
updating block. The functionality of the updating block is
to update the control parameter �w(k) to �w(k + 1) in such
a manner that the output of the scheduling block will satisfy
the fairness criteria on a larger time scale.

Observe that if a fixed optimal control parameter vector
is given, the scheduling block will maximize the system
throughput subject to the resource constraint. By monitoring
the output of the scheduling block, the updating block ensures
that the control parameter vector converges to the optimal
value subject to the fairness constraint so that the overall
system is optimized.

Thus, the philosophy of decoupling the system design into
a scheduling block and control-update block is to simplify
and structure the design process into two standard procedures,
allowing different combinations of optimization objectives and
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fairness constraints. We next apply this design methodology
to the multi-channel scheduling problem.

III. MULTI-CHANNEL PROBLEM FORMULATION

A. System Model

Using CDMA as an example, we formulate the fair schedul-
ing problem over a multi-channel wireless system. In voice
CDMA system, wireless users are separated via orthogonal
codes with power control employed to maintain a particular
Signal to Interference Noise Ratio (SINR) at the receivers [9].
In data CDMA systems, a number of higher-rate orthogonal
channels are available for data transmission (typically fewer
than the number of users). The multi-channel scheduling prob-
lem is to select the times, channels, and rates for transmission
of queued packets (note that users can receive on any pre-
assigned code, albeit with different resource consumption). In
this paper, total transmission power is considered to be the
system resource constraint while the power requirement per
bit is used as an indication of a user’s channel condition. Fol-
lowing the system model for scheduling described in Section
II, we present the following multi-channel formulation.

Consider N users accessing the system such that user i has
a set of possible transmitting rates in slot k given by Ri(k) ∈
{0, R1

i , ..., R
Mi
i }, where (Mi + 1) denotes the number of the

possible rates for user i, and rate 0 indicates that the user is
not scheduled at that time. Such a rate set is enabled by, for
example, using different spreading codes and/or modulation
schemes on the different wireless channels. In time slot k,
user i experiences a certain wireless channel condition ci(k)
abstracted as a per bit power consumption in order to guarantee
a certain SINR. In other words, the transmitting user i in slot k
using rate Ri(k) requires power Ci(k) = ci(k)Ri(k).1 Notice
that ci(k) is a random process reflecting the user’s channel
condition as driven by user mobility and channel shadowing.

B. Objective and Resource Constraint

The objective of the scheduler is to maximize the system
throughput subject to the fairness and resource constraints.
Mathematically, let Xi(k) denote the transmission rate of user
i in time slot k and let Y (k) =

∑N
i=1 Xi(k) denote the total

throughput in slot k. The objective of the scheduler is then to
maximize the expectation of Y (k), i.e.,

max Y = E(
N∑

i=1

Xi(k)) (1)

One constraint is the total system resource limitation which
in a CDMA system is the maximum transmission power limit
in each time slot given by

N∑

i=1

ci(k)Xi(k) ≤ P, (2)

where P denotes the maximum total power transmission
regulated.

1We assume a linear relationship of the scheduled rate and power con-
sumption as applicable to (for example) transport format selection in a UMTS
system [8]. A non-linear relationship is a trivial but lengthy extension.

The second constraint is fairness, and we consider two
fairness objectives: deterministic and probabilistic. The two
fairness criteria lead to two scheduler designs described in
Section IV and V and provide techniques for network oper-
ators to trade stricter fairness for higher throughput while in
both cases maintaining quantifiable fairness characteristics at
longer time scales.

IV. SCHEDULER DESIGN FOR DETERMINISTIC FAIRNESS

In this section, we devise MFS-D, a multi-channel scheduler
for deterministic fairness. Let Yi = E(Xi(k)) denote the
expected throughput for user i. Given user i’s target weight
φi in the system, deterministic fairness requires

Yi

φi
=

Yj

φj
. (3)

That is, for any two flows i and j, their expected throughput
should be exactly proportional to their assigned weights.
Therefore the scheduling decision can be formulated as the
following optimization problem.

max Y =
N∑

i=1

Yi (4)

s.t.
Yi

φi
=

Yj

φj
(5)

N∑

i=1

ci(k)Xi(k) ≤ P (6)

Xi(k)
Mi∏

l=1

(Xi(k) − Rl
i) = 0, 1 ≤ i ≤ N (7)

To solve this problem, we observe that the above is equiv-
alent to the following problem.2

max Z (8)

s.t.

Z ≤ Yi

φi
, 1 ≤ i ≤ N (9)

N∑

i=1

ci(k)Xi(k) ≤ P (10)

Xi(k)
Mi∏

l=1

(Xi(k) − Rl
i) = 0 , 1 ≤ i ≤ N (11)

Intuitively, if we maximize the minimum Yi

φi
, the system

throughput is maximized subject to the fairness constraint.
Consequently, the first constraint leads to the requirement that

Z =
Yi

φi
, 1 ≤ i ≤ N, (12)

since one can easily reduce the throughput for users with
surplus. Moreover, since each Yi

φi
is identical, the objective

function is equivalent to maximizing

Z =
N∑

i=1

wiYi, wi ≥ 0 (13)

2See [3], [10] for other applications of such a transformation technique.
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where wi is a non-negative constant. Thus, if (1) we can
maximize Z defined in (13) for a fixed �w∗, and (2) we can
also satisfy the fairness constraint, the resulting scheduler will
be the optimal solution to the original problem.

We remark that a fixed control vector leading to the optimal
solution is not available, as the channel information can not be
obtained in advance, and the channel conditions may change
over time. Thus, as described in Section II, we dynamically
adjust the control parameters online such that it converges to
the optimal solution. Next, based on the above discussion, we
introduce a control parameter wi(k) for each user i in time
slot k and design the scheduling block and updating block
respectively.

A. Design of the Scheduling Block

According to the framework, the functionality of the
scheduling block is to ensure a throughput-optimal selection
of users and rates. According to (13), the objective of the
scheduling block is set to

max
N∑

i=1

wi(k)Xi(k), (14)

such that in each time slot the weighted system throughput is
maximized. The constraints of this optimization are given by
the following.

N∑

i=1

ci(k)Xi(k) ≤ P (15)

Xi(k)
Mi∏

l=1

(Xi(k) − Rl
i) = 0 , 1 ≤ i ≤ N (16)

Notice that there is no fairness constraint as (from Section II)
fairness is treated in the updating block.

We observe that this optimal scheduling block formulation
is an NP hard Knapsack problem [11]. Consequently, since a
complete search of the solution space is infeasible in practice,
we develop an approximation to the optimal solution as
follows. Observe that the larger the ratio wi(k)

ci(k) , the more
likely the user should be selected, as it adds increasingly to
the objective function. Hence a greedy algorithm to solve this
problem can be formulated by first generating the following
sorted list:

c1(k)
w1(k)

≤ c2(k)
w2(k)

≤ ... ≤ cN (k)
wN (k)

. (17)

Then select Xi = max(0, R1
i , ..., R

Mi
i ) beginning with

ordered-flow 1 and proceeding sequentially until flow j such
that the maximum power limit is reached. (Notice that flow j
may have to select a rate smaller than its maximum possible.)
For all i > j, the transmission rate in time slot k will be
set to zero. This approximation to the optimal solution has
computational complexity due to the sort of O(Nlog(N)).

However, the deviation of the greedy algorithm from the
optimal solution is unbounded. For example, assume 2 users
both with rate set {0, 1} are in the system. Let w1(k) = 10,
w2(k) = 10P − 1, c1(k) = 1, and c2(k) = P , where P is the
total transmission power. According to the greedy algorithm,

only user 1 will be selected as long as P is greater than 2.
In contrast, the optimal solution is to select user 2 so that the
deviation between the two solutions increases with P .

A simple enhancement to limit the deviation from the
optimal solution is as follows. First, still employing the greedy
algorithm, we generate user sets T = {1, 2, ..., j} and T ′ =
{(j+1)} where T is the solution given by the greedy algorithm
and j, (j + 1) are the index of the sorted list described as
above. If set T generates a better result than T ′, T is selected;
otherwise, T ′ is selected. This algorithm has been shown to
achieve an objective within a factor of 2 to the optimal value.
Readers can find other enhanced approximation algorithms in
[11] at the cost of increased computational complexity.

We make two observations about the scheduling block. First,
note that we consider the resource limits and rate set as con-
straints. If the system has other constraints, they can be added
into the scheduling block optimization problem. For example,
if user i and user j can not be scheduled simultaneously in
one time slot, we can set another constraint Xi(k)Xj(k) = 0.
This may be important for particular underlying physical layer
implementation. For example, in a CDMA network, two users
may not be assigned in the same time slot in order to maintain
code orthogonality.

Second, observe that although a rate set is assigned to each
user, the maximum rate is most often used in the approxi-
mation to the Knapsack problem. With a linear relationship
between ci(k) and Xi(k), other rates are only used for the
last selected user to utilize the remaining total transmission
power. However, we remark that for a non-linear relationship,
the rate set will be of increased importance in selecting users.

B. Design of the Updating Block

The function of the updating block is to update the control
parameters in order for the output of the scheduling block to
satisfy the fairness requirement. Recall that the requirement
of the updating block is to guarantee that the control vector
converges to the optimal value while satisfying the fairness
constraint. To ensure this, we employ the stochastic approx-
imation algorithm in the updating block. We note that such
a technique is first employed in [4] in the context of single
channel scheduling.

Define a vector function f(�w) = [f1(�w), ..., fN (�w)], where

fi(�w) =
φi∑N

j=1 φj

− E(
Xi(k)

∑N
j=1 Xj(k)

), (18)

and �w = [wi, ..., wN ] denotes the adaptive control vector. The
deterministic fairness constraint of Equation (3) is equivalent
to the requirement f(�w) = 0. In other words, the control pa-
rameter updating algorithm has to find the solution �w∗ for this
function. Notice that the value of fi(�w) depends on the output
of the scheduler decision so that the updating algorithm should
be dynamically adjusted according to scheduling decisions.

Stochastic approximation is an effective technique for find-
ing zeros of a function f(·) which cannot be explicitly known
[12]. If a noisy measurement is available, i.e., yk = f(xk)+ek,
where ek denotes the observed noise, stochastic approximation
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recursively estimates the root for f(·) by

xk+1 = xk − akyk, (19)

where ak is the step size. If ek is white noise and ak converges
to zero, xk will converge with probability 1 to the root of f(·)
if certain conditions on f(·) are satisfied.3

In our case, since f(�w) is an expected value, we can not
directly observe it. However, we do have a noisy observation
yk = [yk

1 , ..., y
k
N ], where

yk
i =

φi∑N
j=1 φj

− Xi(k)
∑N

j=1 Xj(k)
(20)

The expected value of the observation error in this case is

E(ek) = E(yk − f(wk)) = 0. (21)

Therefore, we can use the stochastic approximation algorithm
to adaptively find �w∗ as

wi(k + 1) = wi(k) − akyk
i , (22)

where ak is chosen to converge to zero, e.g., ak = 1/k.
Thus, the resulting scheduler MFS-D contains the above

scheduling and update blocks. Note that this solution max-
imizes the total normalized throughput in each time slot,
ensures that �w converges to a fixed �w∗, and ensures that
the deterministic fairness constraint is satisfied. Thus, MFS-D
provides an approximate solution to the optimization problem
of Equations (4) to (7).

V. SCHEDULER DESIGN FOR PROBABILISTIC FAIRNESS

In this section, we use the methodology of Section II to
develop MFS-P, a multi-channel scheduler for probabilistic
fairness.

In [5] a wireless scheduler is designed under a probabilistic
fairness index defined by

Pr(
∣∣Yi

φi
− Yj

φj

∣∣ > x) ≤ f(i, j, x) (23)

Notice that Equation (23) defines probabilistic fairness on the
entire distribution of the service difference between user i
and user j. To simplify the scheduler design, we relax the
probability constraint to a fixed point. In other words, for the
multiple channel scheduling problem, we use the following
fairness constraint to replace (23)

Pr(
∣∣Yi

φi
− Yj

φj

∣∣ > δ) ≤ Pδ, (24)

where Pδ the targeted probability and δ is an operator-specified
constant denoting the service discrepancy where probabilistic
fairness is to be ensured. For a fixed Pδ , a lower value of δ
provides for more stringent fairness such that δ = 0 provides
that two users’ throughputs have 0 difference with probability
of no more than Pδ. With a scale factor of

∑N
i=1 Yi on δ, this

equation can be further transformed into

Pr(
∣∣ Yi∑N

j=1Yj

− φi

∣∣ > 0.5δφi) ≤ Pδ (25)

3Different stochastic algorithms require different conditions. General re-
quirements include stationarity and a certain order differential. Readers are
referred to [12] for a detailed discussion.

A. Design of the Scheduling Block

We employ the same control parameter wi(k) as in MFS-D
and formulate the objective function of the scheduling block
as

max
N∑

i=1

wi(k)Xi(k). (26)

Together with the resource and rate constraints, this again
is a Knapsack problem such that MFS-P’s scheduling block
employs the same algorithmic solution as in Section IV.

A general proof of optimality of the MFS-P scheduling
block is difficult to obtain due to the probabilistic fairness
constraint. However, for the special case of δ = Pδ = 0, the
proof for MFS-P is identical to that of MFS-D. However, in
general as well as in this special case, the actual scheduling
decisions and control updates for MFS-P and MFS-D are quite
different, as quantified in Section VI.

B. Design of the Updating Block

We employ stochastic approximation to ensure the proba-
bilistic fairness constraint via convergence of control parame-
ter updating as follows. Define a vector function of the control
parameter (�w) as

f(�w) = [f(w1), ..., f(wi), ..., f(wn)] (27)

where

f(wi) = Pr(| Yi∑n
j=1Yj

− φi| > 0.5δφi) − Pδ

= E(I(| Yi∑n
j=1Yj

− φi| > 0.5δφi)) − Pδ.

The target is to have f(�w) = 0. Notice that f(�w) is an
expected value and is not directly observable. However, in
each time slot k, we have a noisy observation

I(| Yi(k)∑n
j=1Yj(k)

− φi| > 0.5δφi) − Pδ, (28)

where Yi(k) is the user i throughput at time slot k. A measured
and smoothed version of Yi(k) can be obtained as

Yi(k) = (1 − β)Yi(k − 1) + βXi(k), (29)

where β is the filter parameter.
Therefore, we can use the stochastic approximation algo-

rithm to update the control parameters again as follows.

wi(k + 1) = (30)




wi(k) + α(1 − Pδ) ( Yi∑ N
j=1Yj

− φi < −0.5δφi)

wi(k) (| Yi∑ N
j=1Yj

− φi| ≤ 0.5δφi)

wi(k) − α(1 − Pδ) ( Yi∑ N
j=1Yj

− φi > 0.5δφi)

We remark that in (28), the relationship between
( Yi(k)∑ n

j=1Yj(k) − φi) and 0.5δφi is only captured as an indicator
function which takes on values 0 and 1. This is rooted from the
fairness requirement measured at only one service discrepancy,
δ. While a simple updating scheme, this approach may have
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larger unfairness for deviations larger than δ. To limit such
unfairness, the updating algorithm can be refined as follows.

wi(k + 1) = (31)





wi(k) − α(1 − Pδ)(
Yi(k)∑ n

j=1Yj(k) − φi + 0.5δφi)

( Yi∑ N
j=1Yj

− φi < −0.5δφi)

wi(k)
(| Yi∑ N

j=1Yj
− φi| ≤ 0.5δφi)

wi(k) − α(1 − Pδ)(
Yi(k)∑ n

j=1Yj(k) − φi − 0.5δφi)

( Yi∑ N
j=1Yj

− φi > 0.5δφi)

The added terms measure the deviation of the current fairness
from the requirements and scale the adjustment speed on the
control parameters. This leads to faster convergence and less
fluctuation.

VI. SIMULATION EXPERIMENTS

In this section, we present an extensive set of simulation
experiments to evaluate the performance of the deterministic
and probabilistic multichannel fair schedulers (MFS-D and
MFS-P) designed in Sections IV and V.

Our experimental design considers throughput and fairness
as the primary performance measures and we consider a
number of factors of scheduler performance. We first compare
the dynamic behavior of MFS-P and MFS-D in terms of both
control parameter update and short-term fairness behavior. We
next study the fundamental throughput-fairness tradeoff by
exploring the impact of the operator designated fairness dis-
crepancy parameter δ on fairness and total system throughput.
Third, we study the effects of scaling the number of users
in the system in multi-channel vs. single channel schedulers.
Next, we consider the effect on fairness of one user having a
perpetually good channel. Finally, we explore the impact of
total system power on throughput and fairness.

A. Channel Model

To explore the role of the channel conditions on system
throughput and per-user fairness, we consider a simple model
to capture the effects of mobility and fading. In the model,
power consumption per bit ranges from 0 (best) to 1 (worst).
The channel condition is represented by a random process
consisting of a sinusoid with random phase plus additive noise.
That is, the channel condition for user i at time t is given by

ci(t) = 0.5 + d cos(2πfit + θi) + Xσi
(t) (32)

where θ1, θ2, · · · are independent and uniformly distributed in
[0, 2π) giving the channel conditions statistically independent
phases.

The sinusoidal term represents the long time scale effects of
mobility for different mobility speeds and channel time scales
1/fi and d represents the range of the channel effects due
to mobility. The additive noise Xσi

(t) represents a model of
the effects of Rayleigh and shadow fading via the conservative
assumption of additive white Gaussian noise with variance σ2

i .
This model allows us to study the influence of the experienced
channel on both system throughput and fairness.

We assume that power control is perfect and the transmis-
sion rate equals the throughput at each time slot. The power
consumption for user i transmitting at rate Ri(k) in slot k
is simply ci(k)Ri(k). All users in the system are allocated
with the rate set {0, 1}. We consider traffic in which all
flows are continuously backlogged such that the achieved
fairness and throughput is entirely related to the scheduling
process and channel conditions without any variation due to
traffic fluctuations. Moreover, we assume that data can be
dynamically fragmented to fit into one time slot at the specified
transmission rate. Unless otherwise specified, fi = 0.005,
d = 0.3, and σi = 0.2.

B. Scheduler Dynamics

A key distinction between MFS-D and MFS-P is their
control parameter updating blocks that target different fairness
guarantees. Intuitively, the updating block of MFS-P is less
reactive as the control parameter is updated only when the
threshold of discrepancy is triggered. In contrast, MFS-D
updates the control parameter at every time slot to satisfy the
stricter fairness constraint.
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Fig. 2. MFS-D and MFS-P Control Parameter Update

This phenomena is illustrated in Figure 2 which depicts
a temporal snapshot of the control parameter updating pro-
cedures for MFS-D and MFS-P. Notice that in MFS-D, the
user’s control parameter is continuously being updated due
to its stricter fairness requirement. The oscillating pattern of
the updating curve represents the scheduler’s effort to track
and converge to the underlying channel condition. In order
to maintain identical normalized throughput in the long term,
MFS-D has to accumulate “credits” via control parameter
updating for bad channel users in order for it to acquire a
transmission opportunity in the future.

In contrast, control parameter updates for MFS-P occur
more smoothly and the control parameter stays constant for
a certain time interval, especially for a larger δ. The means
that during these slots, the condition (| Yi∑ N

j=1Yj
−φi| ≤ 0.5cφi)

is satisfied and the updating procedure is not triggered. For the
special case of δ = 2 and above, a user’s control parameter is
not increased even if its throughput is zero, and a continuously
bad channel user will not accumulate credit for catching up
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at a later time. Thus, as further elaborated below, δ < 2 is
required to ensure fairness.
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Fig. 3. Distribution of Short Term Unfairness

The less stringent update policy of MFS-P also has an
impact on short-term fairness. In particular, with MFS-P a bad
channel user can temporarily lose its chance for transmission
until the control parameter threshold is met. Figure 3 depicts a
histogram of the normalized service discrepancy between two
users with a 30 time slot measurement interval. Observe that
MFS-P has more density at high discrepancies indicating that
MFS-P allows the scheduler to deviate farther from perfect
fairness than does MFS-D.

C. Throughput and Fairness

The goal of opportunistic scheduling is throughput maxi-
mization subject to the fairness guarantee and resource con-
straints. Here, we study the throughput gain of MFS-P as a
function of the fairness threshold parameter δ. From Equa-
tion (25), the parameter δ represents the normalized service
discrepancy that is allowed with probability Pδ . For example,
with δ = 1 and identical weights, two flow’s throughputs can
differ by up to a factor of 1 with probability Pδ. Similarly, with
δ = 0, any two flows’ service is maintained to be identical with
probability Pδ.

In this set of simulations, 16 users are active with 12 users
having weight 1 and 4 users having weight 2.4 The maximum
transmission power is set to be 2 and Pδ = 0.2. The total
simulation time is 2000 slots.

Figure 4 depicts the effect of the parameter δ on throughput.
The x-axis depicts δ ranging from 0 to 3 with step length 0.5.
Each bar in the graph contains three components: the lower bar
represents the average throughput per time slot normalized to
the weight unit, the middle and upper bars respectively depict
the standard deviation and the maximum difference between
any two users’ normalized throughput. Essentially, the lower
bar represents the efficiency of the scheduler in increasing
system throughput, the middle bar denotes the average system

4Use of different weights in this scenario gives more flexibility to the
scheduler.
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Fig. 4. Throughput vs. Fairness Parameter δ

unfairness, and the upper bar represents the maximum system
unfairness.

Observe that system throughput increases roughly 25% with
increasing δ, as larger values of δ represent increasingly re-
laxed fairness constraints. Moreover, notice that the throughput
cannot increase further when δ is greater than 2: when δ ≥ 2,
according to (31), a user’s parameter will not be updated even
if its throughput is zero. Between these extremes, a wide range
of δ’s yield an effective tradeoff between throughput gains and
fairness.

D. Number of Users

A larger number of users provides an increased degree of
freedom for the scheduler to exploit varying channel condi-
tions and select the best subset of users for transmission. In
this set of simulations, we investigate the relationship between
the total system throughput and number of users for multi- and
single-channel schedulers. For MFS-P, we consider δ given by
0.5, Pδ given by 0.2, and all users having weight 1.

Figure 5 shows the total system throughput per time slot
versus the number of users in the system. The figure indi-
cates that the total system throughput increases almost almost
linearly with the number of users until saturation due to the
system’s total power constraint. This implies that with joint op-
timization of multiple channel scheduling over multiple users,
the average throughput per user remains roughly unchanged
with an increased number of users in the system, up to the
fundamental throughput limits of the system due to physical
constraints.

To explore this result more deeply and compare multi-
channel to single-channel scheduling, we perform a set of
simulations in which each user’s channel conditions is uni-
formly distributed in [0,1] and the total transmission power
is still 2. Moreover, to isolate the effects of the channel and
user and rate selection, we fix the control parameter to always
be 1 such that the best channel(s) are always selected without
regard to fairness.

Figure 6(a) illustrates that this linear relationship holds for
a wide range of maximum per-user rates from 1 to 11. Figure
6(b) depicts the result for single-channel scheduling under
the same simulation setup and shows that the total system
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Fig. 5. Throughput vs. Number of Users

throughput is strongly dependent on the maximum user rate
available in the system. When the maximum rate is low, single-
channel scheduling is limited by the one-user-at-a-time rule
and thus cannot claim unused power in the system. As the
maximum rate increases, the total system throughput begins
to increase with the number of users as well, although at
a significantly lesser rate. Observe that equal throughput is
achieved in both systems only in the extreme case in which the
maximum user rate in the single-channel system is limited only
by the total system power, an unrealistic scenario in cellular
systems.

E. Heterogeneous Channel Conditions

Here, we consider the impact of users having perpetually
different channel conditions. For MFS-D and MFS-P, we use
an approximate solution to the Knapsack problem in the
scheduling block. After scheduling users according to the
algorithm described in Section IV-A, the scheduler checks the
remaining users to determine if one can be fit in to to claim the
excess power. If so, the user will be scheduled regardless of its
control parameter or position in the sorted list. Observe that
when a user has an extremely good channel and hence little
resource consumption, the scheduler is likely to select this user
using the remaining power after scheduling other users.

In these experiments, we modify the above simulation
scenario such that one “best-channel” user has a constant high
quality channel condition. In different simulations, this user’s
power per-bit consumption varies from 0.01 to 0.3.

Figure 7 shows the results and depicts two bars for each
channel condition. The right bar denotes the throughput for the
user with the perpetually high-quality channel and the left bar
denotes the average throughput of all other users. Observe that
the best-user’s throughput decreases as its channel condition
gets worse. However, when its channel condition is extremely
good (the left-most bars), this user is scheduled in almost every
time slot. The reason is that although this user continuously
incurs a decreasing fairness control update parameter due
to receiving high service rates, it can nearly always be fit
into the remaining power budget which cannot be claimed
by the other users with lower quality channels. Thus, while
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Fig. 6. Throughput vs. User Number

the attained throughputs are not strictly “fair”, it is indeed a
desirable outcome as this throughput obtained by the best-
channel user would otherwise be wasted. In other words,
unique to multiple channel scheduling, unfairness may become
not only unpreventable, but also desirable.

Similarly, Figure 8 illustrates the effects of having a sin-
gle user with a perpetually poor channel condition. While
the degradation in that user’s throughput is expected with
increasingly poor channel conditions, the key observation is
that the average system throughput is nearly unchanged. Thus,
in the multi-channel system, other users are not forced to wait
while the lagging bad-channel flow catches up, as such a user
occupies at most one channel.

F. Maximum Transmission Power

The above issue of fitting in an “extra” best-channel user
becomes more pronounced when the total resource is relatively
large, as a better channel user can be more easily accommo-
dated in the remaining power budget. This issue is also affected
by the transmission rate set: in the limit, if a single user can
utilize all available resources and transmit at a very high rate,
no remaining power budget would be available to scheduler
other users.

Figure 9 depicts the results of experiments that consider the
effects of varying the total transmission power from 2 to 8. The
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figure illustrates that for the reasons described above combined
with the flexibility of multi-channel scheduling, a larger total
transmission power results in increases in the normalized
average throughput, as well as the standard deviation and
maximum difference in throughput.

VII. RELATED WORK

While many fair wireless schedulers were designed under
the binary channel model e.g., [1], a number of schedulers
have been designed under a more realistic multi-rate channel
model [3], [4], [5], [13], [14], [15], [16]. Such schemes
have the advantage of being able to opportunistically exploit
channel variations to select good-channel users while also
satisfying fairness constraints. In contrast, MFS considers a
more general multi-channel formulation applicable in spread
spectrum networks in which multiple users can be sched-
uled simultaneously, again at multiple rates. As illustrated in
Section VI, multi- and single-channel systems behave quite
differently in terms of their achievable throughput and fairness
characteristics.

At the physical layer, multiple-channel power control in
CDMA networks is an area of intense study, e.g., [17], [18],
[19], [20]. The objective of such research is to select the set
of user transmission powers to optimally allocate the total
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Fig. 9. Throughput vs. Maximum Total Transmission Power

power budget subject to per-user SINR requirements or per-
user throughput requirements. However, such power allocation
problems are quite different from our formulated multi-channel
scheduling problem as the latter determines which users to
schedule when and at which rates as given by the formulated
optimization problem. In other words, in contrast to a purely
physical layer optimization, MFS-D and MFS-P provide an op-
timal MAC-layer scheduling algorithm that exploits physical-
layer information on channel conditions to dictate the rates,
times, and powers of each user’s transmission.

Finally, the generic problem of scheduling a set of jobs
over multiple resources (machines) has been studied in [21],
[22], [23] for example. Such papers focus on minimizing the
average job delay and developing on-line algorithms that ap-
proximate the optimal solution with bounded error. However,
such solutions are not applicable here as the multi-channel
wireless scheduling problem has a unique formulation such
as constraints of fairness among users, high variability in the
resource availability and cost (i.e., a complex channel model),
etc.

VIII. CONCLUSIONS

This paper formulates the problem of opportunistically
scheduling multiple users concurrently in wireless networks.
We introduced and analyzed Multi-channel Fair Scheduler
(MFS), the first wireless scheduling algorithm that provide
long term deterministic (MFS-D) and probabilistic (MFS-
P) fairness guarantees respectively over multiple wireless
channels. By considering resource consumption over different
channels, the algorithms allow system operators to jointly
optimize the transmission over multiple channels for total
throughput maximization while maintaining flexible fairness
constraints.
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