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Abstract— We propose a game theoretic pricing mechanism for
statistically guaranteed service in packet-switched networks. The
mechanism provides congestion control, differentiated qualities
of service, and efficient resource allocation. For users, the mech-
anism offers better quality and lower price. Service providers
can base new service and revenue models within the mechanism.
We apply this mechanism to the Internet.

I. INTRODUCTION

The predominant form of pricing of Internet services in the
United States is flat rate pricing. Residential users subscribe
to certain amount of bandwidth to access the Internet at a
monthly flat fee. Businesses may use customized contracts,
almost all of which are also flat rate based. The flat rate
tariff grants a subscriber unlimited use of the network. A
flat rate pricing scheme encourages waste, increases cost,
and forces light users to subsidize heavy users according to
experiments at Berkeley [4], [24]. An inevitable consequence
is the emergence of negative congestion externalities.

For service providers, flat rate increases per subscriber
recruitment and retention cost, and lowers service quality. In
fact the providers cannot generate sufficient revenue from the
network service to sustain the enormous investment required to
provide the service. The lack of a proper pricing and revenue
model is partly responsible for the current difficulties of the
telecommunication industry. Bundling seems to be the only
way to survive. Witness the merger between American-On-
Line and Time-Warner—a marriage between network service
and content. The jury is still out on whether this is a viable
alternative.

At the same time, network engineers have developed ap-
proaches to deliver quality of service (QoS). The Internet
generally provides a single quality of service known as the
“best effort” datagram delivery. This service model is scalable
and robust, and can support different network applications
provided that there is no congestion [6]. Different applications
require different levels of guarantees of QoS, measured in
terms of delay, jitter, and loss. When there is congestion,
packets may be dropped and delayed, and delivery guarantee
becomes variable.

A core issue of concern to network users, service providers,
and engineers is the constantly changing network behavior that
is under nobody’s control. The network behavior depends on
the aggregated traffic load of the network—the result of many
users’ individual decisions on how to use the network. These

decisions are affected by the incentives users face. Thus, our
approach is to bring price into network engineering design
as a signal of network control. In doing so, we address both
the engineering problem of delivering QoS and the economic
problem of pricing network services.

Our work is inspired by MacKie-Mason and Varian who in
1994 proposed a “smart market” mechanism [19] that suggests
an auction based scheme to price congestion. The smart market
mechanism remains a preliminary proposal. Our mechanism,
named the Smart Pay Admission Control (SPAC) mechanism,
provides QoS differentiation in addition to congestion control.
This feature makes SPAC practical since flows of packets can
be treated as aggregates of different levels of QoS, a well
researched approach in networking, e.g., DiffServ [21].

The rest of the paper is organized as follows. In section II,
we illustrate the relevance of incentives for network congestion
control. Section III presents the SPAC mechanism. We apply
the mechanism to a pricing scheme for a network architecture
in section IV. Section V concludes the paper with a summary.

II. THE LACK OF INCENTIVES FOR CONGESTION

CONTROL

The Internet provides congestion control through the Trans-
port Control Protocol (TCP) [13]. Congestion is inferred
from the absence of acknowledgements of packets from the
sender. When there is no congestion, the sender slowly but
continuously increases the rate of sending packets. As soon
as congestion occurs, the sender halves the sending rate. This
“multiplicative decrease and additive increase” is the key to
the TCP algorithm.

If everyone uses TCP, congestion could be managed. How-
ever, there is one problem: there is no intrinsic incentive for
a user to submit to the congestion control algorithm. We
illustrate this point from a game theoretic perspective. We start
with a simple model of two users, and then analyze a general
model of an arbitrary number of users.

A. Two-User Case

Consider a hypothetical scenario with only two users (User
A and User B) sending packets, at rate 1, through a bottleneck.
The bottleneck can allow one packet to pass through in each
time interval. When two packets compete, the bottleneck
randomly admits one packet to pass and discards the other. We
model how the two users might interact in a game of strategic
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form. The game is played over a TCP acknowledgement
timeout interval for a packet waiting to be sent in the next
time interval.

Each user may choose one of two opposing strategies. One
strategy is to follow an authentic TCP congestion control
scheme which decides not to send the packet because the
timeout has occurred. We call this strategy “follow-TCP.” The
other strategy sends the packet despite the timeout signal. We
call this strategy “cheat-TCP,” because it represents behavior
that amounts to cheating in a community adhering to TCP.

The payoff to each user is the probability of a packet getting
through the bottleneck in the next time interval. Obviously,
if the packet is not sent at all, the payoff is zero. If the
packet is sent when there is no other packet in the bottleneck,
the payoff will be one. When two packets are competing for
the bottleneck, we assume that the probability of each packet
getting through is pA and pB for user A and B respectively,
where pA > 0, pB > 0, and pA + pB = 1.

The bi-matrix in Table I summarizes the different payoffs to
the two users under all possible outcomes of the game. Each
cell of the bi-matrix first lists the payoff to the row player,
User A, and then the payoff to the column player, User B.
For example, when both users choose follow-TCP strategy,
the payoffs are 0 to both users (the upper-left cell) because
no packets are sent. If A chooses follow-TCP and B chooses
cheat-TCP then A receives payoff 0 and B receives payoff
1 (the upper-right cell). When both users choose cheat-TCP
strategy, the payoffs are pA and pB (the lower-right cell).

TABLE I

CONGESTION IN A TWO-USER GAME

User B

follow-TCP cheat-TCP

User A follow-TCP 0, 0 0, 1

cheat-TCP 1, 0 pA, pB

Evidently User A is always better-off choosing cheat-TCP
regardless of what User B does. So is User B by choosing
the same cheat-TCP strategy regardless of what User A does.
Therefore, the strategy profile in which both users choose
cheat-TCP is a dominant strategy equilibrium of this game.
Furthermore, in any other combination of strategies, at least
one user has an incentive to deviate from that combination.
Clearly, it is not a stable state for both users to choose the
follow-TCP strategy.

Although our two-user game model is highly simplified, it
demonstrates the lack of incentives in TCP congestion control.

B. Many-User Case

Now consider a packet-switched network with n users. Let
ri denote user i’s rate of sending packets, i = {1, · · · , n}. The
total rate, L =

∑n
i=1 ri, is a measure of the network load. The

maximum rate the network can accommodate is Lmax. Suppose
that

1) rates are continuously divisible;

2) users’ cost to send packets is a charge of c per unit rate1;
and

3) each user’s value of sending packets is a function of the
network load, v(L) per unit rate; and the marginal value
decreases as the network load increases, i.e., v(L) > 0
for L < Lmax, v(L) = 0 for L ≥ Lmax, v′(L) < 0 and
v′′(L) < 0 for L < Lmax.

A central planner, acting on behalf of all the users, would
find the optimal solution to

max
0≤L<∞

Lv(L) − Lc, (1)

the first-order condition for which is

v(L̂) + L̂v′(L̂) − c = 0 (2)

where L̂ is the optimal network load.
However, in reality, there is no central planner in a decen-

tralized network such as the Internet. The users simultaneously
choose how fast to send packets based on their private incen-
tives. We model this feature as a strategic game.

A strategy for user i is a sending rate, ri ∈ [0,∞). The
payoff to user i from sending at ri is

ri[v(L) − c]. (3)

Let (r∗
1 , · · · , r∗

n), a profile of rates, one for each user, be a
Nash equilibrium. Then, for each user i, r∗

i must maximize
the payoff function (3) given that the other users choose
a profile of rates, (r∗

1 , · · · , r∗
i−1, r

∗
i+1, · · · , r∗

n). Let L∗
−i =∑n

j=1,j �=i r∗
j . The first-order condition for maximizing the

payoff (3) is

v(ri + L∗
−i) + riv

′(ri + L∗
−i) − c = 0

Summing over all n users’ first-order conditions yields

v(L∗) +
1
n

L∗v′(L∗) − c = 0 (4)

where L∗ is the network load under the Nash equilibrium,
L∗ =

∑n
i=1 r∗

i .
It is straightforward to prove that L∗ > L̂, that is, too

many packets (L∗) are sent in a Nash equilibrium compared
to the optimal level of network load, L̂. The network resource
is over-utilized because each user considers only her own
incentives, not the effect of her actions on the other users. This
is how a “successful” network—in terms of user popularity—
can run into serious trouble without proper incentives for usage
and congestion control. Economists and political philosophers
have long recognized this phenomenon as “the tragedy of
commons” [11].

1Instead of per unit rate charge, one could also assume a charge of flat fee.
The result of the analysis is the same.
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C. Information Asymmetry

Interestingly, despite the lack of incentive to conform to
it, the TCP congestion control algorithm seems to be working
fine in today’s Internet. Our explanation is “information asym-
metry.” TCP has been widely adopted by all major software
companies and works transparently to end users. Few people
are aware of the incentive. Few people know how to change
their software to gain in this game of congestion control.

However, this lack of knowledge does not mean the problem
does not exist. It is merely a good fortune, which depends upon
a few “benevolent” dictators (i.e., organizations that implement
TCP/IP stacks). The knowledge will spread; and once widely
known, users will “cheat.”

In fact, a number of applications bypass the TCP congestion
control scheme. They include FlashGet, GolZilla, ReGet,
Download Accelerator, GetRight, GetSmart, and Download
Devil, as noted in [14]. These applications parallelize the
download of each web object by opening multiple connections
per object and downloading a different portion of the object on
each connection. Some commercial versions of these applica-
tions open additional connections during congestion. Although
each connection still uses TCP, these applications behave in
a much more aggressive way that in effect abandon the TCP
congestion control without changing it.

Moreover, modifying the source code of TCP implementa-
tion is not difficult. The number of lines of code involved can
be as few as a dozen (for FreeBSD). With the popularity of
open source software such as Linux, one can imagine the time
when the grandma next door starts to cheat TCP by using a
plug-in downloaded by her granddaughter.

III. THE SMART PAY ADMISSION CONTROL MECHANISM

Since congestion is caused by too many users competing
for a limited resource, our objective is to find an economically
efficient way to allocate network resource among users. In a
packet-switched network, network resource usage is reflected
in the statistical guarantee the packets receive. This means
that the higher the value a user puts on the service (packet
delivery), the better statistical guarantee of delivery the user
should get, especially during congestion. This is our notion
of “congestion control” and “economically efficient resource
allocation.” The different guarantees of delivery form the basis
of “differentiated qualities of service.”

However, this goal requires that we know the true value each
user puts on the network service. We designed a mechanism,
the Smart Pay Admission Control (SPAC) mechanism, in
which every user has an incentive to voluntarily disclose this
“true value” out of his or her own selfish concerns.

This section presents the SPAC mechanism. First, we il-
lustrate the main idea behind the mechanism (III-A). Then,
we lay down some formal definitions (III-B) and describe the
actual admission control algorithm (III-C). Next, we analyze
why users would want to disclose their true values (III-D).
The complete proof is in Appendix A. Finally, we show the
conditions under which users and service providers would

want to participate in this mechanism (III-E, Appendix B, and
III-F).

A. An Illustration of the Main Idea

The SPAC mechanism is an auction-based admission control
algorithm.

A service provider sells a service to a group of users. The
service has a range of different qualities: QoS, defined as the
statistical guarantee of the service delivery, the probability
that the service will be completed successfully. The higher
the probability, the better is the quality.

Users bid for the service by announcing how much they are
willing to pay for the service, and in return, receive admission
tickets (to the service) in different colors. These different
colors represent different qualities of service. Every user is
served with certain quality according to the color of her ticket.
Notice that although users are aware of the differentiated QoS,
they announce their value of the service, not the values of
different qualities.

The SPAC mechanism decides which color (QoS level)
each user is entitled to, based on the bids of all users. For
instance, suppose that the service has three different levels
of QoS: level- 2, 1 and 0 (level-2 being the highest quality),
and each level can accommodate N2, N1 and N0 number of
users respectively. All bids are sorted (equal bids are ordered
randomly among themselves). The highest N2 bidders receive
the service at the highest quality, level-2. The next highest N1
bidders get quality level-1, and the remaining bidders get the
lowest quality, level-0.

The SPAC mechanism requires that the lowest quality level
accommodate all remaining users who are rejected for any
higher quality levels. This may be accomplished by arbitrarily
lowering the quality of the lowest QoS level. This means that
every user is admitted to the service. Even if a user bids
zero (bidding negative values is not allowed), she still receives
the service, albeit the quality may be the lowest, or, may be
not, depending how other users bid. We call this feature the
“universal coverage” constraint.

The users must pay a price, known as the congestion fee, for
the QoS they receive. For the lowest level QoS, the congestion
fee is always zero. This is analogous to the current free “best
effort” service in the Internet. For other higher level QoS,
the fee is calculated based on a variant of the generalized
Vickrey auction, also known as the VCG (Vickrey-Clark-
Groves) mechanism [25], [1], [10]. The actual formula for
the price is presented in III-B.

Based on the payment scheme in SPAC, it can be shown
that the best bid for each user is to announce her true value
of the service, regardless of what other users may do (Propo-
sition 1 in III-D). Thus, the SPAC mechanism achieves the
economically efficient allocation of different qualities among
a group of autonomous and selfish users.

Furthermore, both users and the service provider have
incentives to participate in this mechanism. For the users,
they are assured that if they are served at the lowest level
of QoS, they will pay nothing. This is exactly what they are

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



getting now in the current Internet.2 If they are willing to pay
more, they can receive better service, but they will not be
overcharged above their willingness to pay—the value they
obtain from the successful delivery of the service is always
greater than the charge they have to pay (Proposition 2 in
III-E).

The service provider can devise the network resource to
provide a variety of services and is rewarded with extra com-
pensation for the services. There is no longer undersupply nor
oversupply of the resource, users practically put themselves
into the right categories of services [17].

B. The Formal Definition

Formally, a mechanism is a game with players, outcomes,
players’ strategies, outcome functions and players’ payoff
functions. We define the SPAC mechanism, MSPAC, as follows.

1) Players: There are n + 1 players including n agents,
denoted by player i = 1, · · · , n, and, one principal, denoted
by player i = 0.

2) Profile of Values: Borrowing a common notation from
game theory, we refer to a collection of values of some
variable (e.g. α), one for each player, as a profile, denoted
by (α1, · · · , αn). For any profile α = (α1, · · · , αn) and any
i ∈ n, let α−i be the list of elements of the profile a for all
players except i, that is, α−i = (α1, · · · , αi−1, αi+1, · · · , αn).

3) Service and QoS: The principal provides a service to
the agents. The principal statistically guarantees the service
at different delivery rates—the probability of successfully
completing the service. The QoS (quality-of-service) is defined
as the delivery rate of the service.

There are m levels of different QoS, denoted by k =
0, 1, · · · ,m − 1. Let dk denote the service delivery rate of
k-th level, and d = (d0, , d1, · · · , dm−1) where 0 ≤ d0 <
d1 < · · · < dm−1 < 1.

The provisioning of the service consumes resource. Given
resource capacity C, the principal allocates C among m levels
so that each level can admit at most Ak(C) number of agents.
When fixed as a constant, Ak(C) is simply denoted by Ak.

4) Agents’ Actions: An agent receives the service at QoS
level k = 0, 1, · · · ,m−1. This level of QoS is decided by the
principal based on how all of the agents value the service.

Prior to receiving the service, each agent i is expected to
announce her value of the service. The announced values,
also called bids, are denoted by b = (b1, · · · , bi, · · · , bn)
where bi is the bid for agent i. The bids are disclosed at
least to the principal.3 The true values, also referred to as
types, which are the agents’ private information, are denoted
by θ = (θ1, · · · , θi, · · · , θn) where θi is the true value of agent
i. Let Bi denote the space of allowable bids and Θi the space
of agent type for agent i, i ∈ {1, · · · , n}.

Let b(1), b(2), · · · , b(n) be the order statistics corresponding
to b1, b2, · · · , bn. That is, b(i) is the ith smallest value among
b1, b2, · · · , bn.

2In the current Internet, a flat fee is still charged. However, there is no
usage-based charge.

3In reality, bids are most likely disclosed to the principal only. In our formal
analysis, it does not make a difference if the bids are disclosed to other players.

After receiving the service, each agent pays a congestion
fee (defined later) calculated by the principal.

5) Principal’s Action: Based on agents’ bids, the principal
decides at what QoS level each agent should be served.
Formally, the principal computes a solution, a vector x =
(x1, · · · , xi, · · · , xn), in which xi is the service delivery
rate that agent i is receiving. Thus xi ∈ X and X =
{d0, d1, · · · , dm−1}. Let the function Qk(xi) indicate the level
of QoS agent i receives,

Qk(xi) =
{

1 if xi = dk

0 otherwise

and for all i ∈ {1, · · · , n}, each agent i is served at one and
only one QoS level:

m−1∑

k=0

Qk(xi) = 1.

The solution x∗(b), a function of b, is efficient (i.e., maxi-
mizing the total benefit to all users) and feasible if

x∗(b) = arg max
xi∈X

n∑

i=1

bixi (5)

subject to the capacity constraint: ∀k = 1, · · · ,m − 1,

n∑

i=1

Qk(xi) ≤ Ak (6)

and subject to the universal service coverage (i.e., everyone is
admitted) constraint

m−1∑

k=0

Ak ≥ n. (7)

6) Congestion Price: Based on agents’ bids, the principal
computes a congestion price for each level of QoS. Let
p = (p0, p1, · · · , pm−1) denote all prices, where the price for
level-0 is a constant zero,

p0(b) ≡ 0 (8)

and the price for level-k is, ∀k = 1, · · · ,m − 1,

pk(b) = pk−1(b) + (dk − dk−1)b(n−
∑ m−1

l=k Al). (9)

See III-C for an interpretation of b(n−
∑ m−1

l=k Al).

7) Agents’ Utility: For all i ∈ {1, · · · , n}, agent i’s utility
(payoff) function is

ui(b, θi) = θixi −
m−1∑

k=0

pkQk(xi) (10)

where
∑m−1

k=0 pkQk(xi) is agent i’s payment for receiving the
service at certain QoS level.
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C. Solutions to Principal’s Problem

Based on agents’ bids, the principal must decide how to
provide the service to all the agents at different levels of
QoS. If we fix the number of agents the network can serve
at each level of QoS (excluding the lowest level), that is
{Ak : k = 1, · · · ,m − 1}, then the Principal’s problem
becomes an admission control problem—the principal must
decide which agents to admit at each level of QoS.

This admission problem is formulated in (5), (6), and (7).
The solution is straightforward. First sort all the bids in
descending order. The highest Am−1 bidders are admitted to
the QoS level dm−1, the next higher Am−2 bidders to level
dm−2, and so on, until all the bidders are admitted to some
QoS levels.

Calculation of the congestion prices as defined in (8) and
(9) is straightforward after sorting all the bids. Notice that
according to the admission control algorithm, b(n−

∑ m−1
l=k Al)

is the highest bid of agents who are rejected from the k-th or
above levels of QoS.

D. Agents’ Strategies

A strategy for agent i is how much she should bid, bi ∈
[0,∞). A rational agent chooses a strategy that will maximize
the agent’s utility, which is dependent on the actions taken by
all agents.

However, we claim that for the “linear” utility function (10),
the optimal strategy for every agent, regardless of other agents’
strategies, is to announce her true value. That is, bi = θi is
the solution to maximize (10) for all i ∈ {1, · · · , n}.

A strategy is dominant for an agent if it is optimal for the
agent regardless of other agents’ strategies. A mechanism is
dominant strategy incentive compatible or strategy-proof if it
is a dominant strategy for every agent to announce her true
value (or type).

PROPOSITION 1: The Smart Pay Admission Control
mechanism, MSPAC, is dominant strategy incentive compatible
(or strategy-proof).

We include the complete proof in Appendix A. In fact,
the SPAC mechanism is a special case of the Clarke-Groves
mechanism [1], [10] and can be viewed as a generalized
Vickrey auction [25].

E. Agents’ Participation

Why would a user want to participate in the SPAC mecha-
nism in the first place? Since agents’ participation in MSPAC

is voluntary, MSPAC must provide incentives for the agents to
participate.

First, MSPAC must guarantee that agents will not be over-
charged.

PROPOSITION 2: In the Smart Pay Admission Control
mechanism, MSPAC, every agent’s utility (payoff) from the
mechanism is nonnegative.

The proof is in Appendix B. This property states that the
utility function (10) is always nonnegative for all agents. In
other words, agents can rest assured that the benefit they obtain

from the service is always greater than or equal to the charge
they have to pay.

Second, an agent would participate in a mechanism only if
her expected payoff from the participation is at least as large as
that from not participating in the mechanism. This condition is
known as the participation constraint or individual rationality.

Let ūi(θi) denote the payoff function that agent i can receive
by withdrawing from MSPAC when her type is θi. We can
define three types of participation constraints for each agent:
∀i ∈ {1, · · · , n},

• ex ante participation constraint:

Ebi
[Eb−i

[ui((bi, b−i), θi)|bi]] ≥ Eθi
[ūi(θi)]; (11)

• interim participation constraint:

Eb−i
[ui((bi, b−i), θi)|bi] ≥ ūi(θi); (12)

• ex post participation constraint:

ui((θi, θ−i), θi) ≥ ūi(θi). (13)

In (11) and (12) E denotes expectation.
In cases where agent i is only allowed to refuse to partic-

ipate before the agents learn their types, MSPAC must satisfy
the ex ante participation constraints in order to attract agents’
participation. In other cases, if agent i is allowed to withdraw
from the mechanism after agents have learned their types and
before they have chosen their actions, then MSPAC must satisfy
the interim participation constraints to convince the agents
to stay in the mechanism. In still other cases, if there is no
way to bind the agents to the assigned outcomes of MSPAC

against their will, i.e., agent i can withdraw at any time, then
to insure agent i’s participation, MSPAC must satisfy the ex
post participation constraints.

We now discuss how the principal should devise the service
to satisfy these constraints so as to ensure the agents’ voluntary
participation.

Suppose that

ūi(θi) = d̄θi ∀i ∈ {1, · · · , n} (14)

where d̄ is the service delivery rate agent i can receive
without participating in MSPAC. The conditions under which
the participation constraints can be satisfied depend on two
things:

• the difference of the service delivery rates between d̄ and
d = (d0, d1, · · · , dm−1), and

• the distributions of agent types, θi for all i ∈ {1, · · · , n}.

Given d̄ and the distributions of agents’ types, the principal
can adjust the service delivery rate vector d to satisfy different
variety of the participation constraints defined in (11), (12) and
(13). Based on the actual business plans, the principal decides
which types of participation constraints should be satisfied.

Let q, q ∈ {0, · · · ,m−1}, be a random variable that denotes
the QoS level assigned to agent i. According to definition
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(10)4, agent i’s payoff function from the mechanism is

ui(b, θi) = θixi −
q∑

k=1

(dq − dq−1)b(n−
∑ m−1

l=q Al).

If the distributions of agents’ types are unknown, we can
say little about q. However, the principal can still satisfy the ex
post participation constraint (13) by setting d0 = d̄, providing
a lower bound of payoff function that is equal to the utility
to the agents should they withdraw. This is true because an
agent is guaranteed QoS level-0 which provides the service
at the delivery rate of d0 and at no cost. The proof is a
straightforward extension of the proof of Proposition 2.

If the distribution of agents’ types is available (e.g. through
market research and historical usage data), tighter lower
bounds can be achieved for all three different participation
constraints. Tighter lower bounds are attractive to the principal
because they mean more efficient resource usage.

F. Principal’s Participation

Why would a service provider adopt the SPAC mechanism
in the first place? The rationality for the principal, the service
provider, is similar to that of the agents’ participation con-
straints. Compared with the current flat rate service model,
MSPAC produces better payoff to the principal. In particular,
MSPAC allows a service provider to execute price discrimina-
tion among users, collect the congestion fee, and provide better
service satisfaction to users. New revenue models can be built
based on the SPAC mechanism. Section IV demonstrates one
such example.

IV. SPAC BASED PRICING FOR DIFFSERV

We now specify the SPAC mechanism for network service
management and congestion control in the form of a pricing
scheme for the DiffServ network architecture.

In the DiffServ architecture [21], traffic entering a network
is classified, possibly conditioned at the boundaries of the
network, and assigned to different aggregates. Each aggregate
is identified by a specific DiffServ codepoint in the packet
header. Within the core of the network, packets are forwarded
at each node according to certain per-hop behavior associated
with the DiffServ codepoint. Packets from different aggre-
gates are treated differently; hence service differentiation is
achieved. Scalability is achieved through three major features
of the DiffServ model. First, service differentiation is given to
packet aggregates rather than individual microflows. Second,
traffic classification and conditioning processes are pushed
to the edge of the network. Finally, service differentiation
information is stored inside packet headers rather than network
nodes so that the network does not need to maintain traffic
states.

The service differentiation, conditioning and marking at the
boundary allow for a smooth application of the SPAC mech-
anism, which is essentially an admission control algorithm.
Our DiffServ pricing scheme consists of two parts: pricing for

4See also Lemma 1 in Appendix A.

traffic profiles and pricing for out-profile traffic streams. The
SPAC mechanism is applied only to the second part, pricing
for out-profile traffic.

A. Pricing for Traffic Profiles

A traffic profile (TP) is a description of the temporal
properties of a traffic stream. A well-defined TP provides rules
for determining whether a particular packet is in or out of
profile. For example, a TP may specify a rate R and a burst
size B. A token bucket meter with rate R and buffer size B
can measure a traffic stream against this TP. A packet is in-
profile if, when the packet arrives, there are sufficient tokens
in the bucket; a packet is out-profile if there are insufficient
tokens.

More sophisticated TPs can be devised to accommodate dif-
ferent types of traffic streams with different QoS requirements.
For instance, Voice-over-IP (VoIP) can have a VoIP TP; video
conferencing can have its own TP. Moreover, there can be
a premium quality VoIP TP and a not-so-good quality VoIP
TP. A TP may implicitly include certain MPLS commitment
to ensure end-to-end QoS. The type and number of TPs will
continue to grow as network applications evolve.

A traffic profile is sold at a flat fee for certain time period
with unlimited usage. The in-profile traffic will incur no extra
fee. For example, a user may purchase a VoIP TP for a month
during which she can use it as much as she likes. The trading
mechanism for traffic profiles is deliberated left undefined. A
service provider may choose to directly sell traffic profiles
to their customers—very much like how AOL sells a dialup
access connection for $25 per month. Or, a secondary market
may exist to allow users to exchange their traffic profiles.
The flat rate pricing of TP maintains a sense of monetary
predictability for both users and service providers. The type
and number of marketplaces for TPs will develop as the
network service business evolves and matures.

B. Pricing for Out-Profile Traffic

The out-profile traffic is the potential congestion maker.
While there is no limit on how much out-profile traffic
a user may generate, the user must pay a congestion fee
for the out-profile traffic. The congestion fee is calculated
according the SPAC mechanism, MSPAC, defined in section III.
Following the terminology in DiffServ, a Bandwidth Broker
(BB) assumes the task of congestion fee calculation.

More specifically, the MSPAC-based congestion pricing
works in the following fashion.

1) The service provider decides how many different levels
of QoS the network will provide. This is the “service
delivery rate” vector, d = (d0, d1, · · · , dm−1), defined in
MSPAC.

2) The different service delivery rates are statistically guar-
anteed through a Resource Manager that dynamically
configures the interior of the network, setting queue size
and bandwidth on routers for different classes of traffic.
Each QoS level has its own DSCP (DiffServ Codepoint)
identifying a PHB (Per Hop Behavior) aggregate. We
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have developed a tool for this type of network manage-
ment [23].

3) An Automatic Agent (AA), acting on behalf of the
users, states (or bids) the true value (due to incentive
compatibility of MSPAC) of service for the out-profile
traffic.

4) A Bandwidth Broker (BB), based on all of users’ bids,
calculates the congestion fee for each QoS level, i.e.,
the same p = (p0, p1, · · · , pm−1) as defined in MSPAC.
BB receives from the Resource Manager current capacity
information for different levels of QoS, i.e., the {Ak, k =
1, · · · ,m − 1}.

5) A Marker marks the DSCP of the out-profile traffic
according to the QoS level assigned to the out-profile
traffic. The assignment is according to the admission
control algorithm defined in MSPAC.

6) A Billing system records the out-profile packet counts
from the Marker, and the temporal congestion fee.

Fig. 1 is a schematic representation of the MSPAC-based
DiffServ pricing. The figure shows one traffic source (TG),
one traffic profile (TP) and four different levels of QoS. The
highest quality is reserved for in-profile packets marked as
DSCP=in and provides a high rate of (successful) delivery.
The other three QoS levels are for out-profile packets, marked
as DSCP=med, DSCP=low, or DSCP=be for the medium,
low, or best-effort rates of (successful) delivery, respec-
tively.

To ensure users’ participation in this scheme, as we have

discussed in section III-E, the lowest quality is that of the
best-effort, which is the current quality of the Internet.

MSPAC also ensures that all bids reflect the true value
of service perceived by users, and that congestion is well
controlled at all QoS levels above the best-effort level, because
the correct amount of traffic is admitted for service at those
levels.

Notice that the bandwidth broker, the meter, the marker,
and the billing system all reside at the edge of the network.
This feature, inherited from DiffServ, assures the scalability
of this pricing scheme. The interior of the network needs not
be aware of the SPAC mechanism.

The end-to-end delivery of packets is achieved through the
bilateral agreements between the DiffServ domains along the
delivery path. MPLS can also be used to provide better quality
guarantee along certain paths. The issue of end-to-end QoS is
addressed by network architecture, not the pricing scheme per
se.

When it comes to inter-domain pricing, the network
provider of one DS domain will aggregate its outgoing traffic
and become the user of its downstream domain. The same
pricing scheme can be applied.

V. SUMMARY AND CONCLUSION

We started this paper by recognizing the lack of pricing
structure and service differentiation in the current Internet.
We then showed, both intuitively and formally, that the fun-
damental problem lies in the incentives faced by individual
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network users. The opportunity to solve the problem also
centers upon incentives. As the major theme of the paper,
we proposed the Smart Pay Admission Control mechanism.
We proved the incentive compatibility and the individual
rationality (the participation constraints) of this mechanism.
Finally, we proposed a pricing scheme based on the SPAC
mechanism within the DiffServ network architecture.

The basic idea of SPAC-based pricing is to mark packets
according to their value to their senders. Due to the special
design of the SPAC mechanism, senders have incentives to
reveal their true values. For DiffServ, the marking occurs at the
edge; packets are treated differently according to the marking,
in the interior of the network. The higher the value of packets,
the better the treatment they receive. One can also apply SPAC-
based pricing to MPLS type networks in which traffic profiles
contain routing information and thus congestion is reflected
along a path instead of in a domain.

With our pricing scheme, congestion control is achieved
in an economically efficient way—through the congestion fee
which serves as a signal to users. Those users who value
the service less will voluntarily back down when congestion
occurs. The network load stays in an equilibrium through each
user’s individual, autonomous, and selfish decisions on how to
use the network.

Our pricing scheme allows a service provider to devise
a comprehensive set of service plans with different QoS
characteristics. The service provider should be able to offer
more services at cheaper prices. In the meantime, the provider
will be able to collect congestion fee. Both results will increase
revenue while expanding the customer base.

To network users, our pricing scheme provides predictability
through the concept of traffic profiles. With cheaper and more
customized services, more users will be able to afford high
speed broadband network services. In addition, users will have
the flexibility of when to pay and not to pay for the service (as
oppose to the current flat rate structure in which users have to
pay no matter how they use the network).

Given a good pricing mechanism, the next challenge is to
implement it. Unfortunately, the state of the art for managing
IP networks involves manual configuration of each IP router,
and traffic engineering based on limited measurements. The
network industry is lacking in software systems that a service
provider can use to support traffic measurement and dynamic
configuration. We have developed a network management soft-
ware toolkit to fulfill this need. We call our software system
SNT. A technical paper on SNT is available to interested
readers [23]. With SNT, our SPAC-based pricing scheme
becomes implementable.

APPENDIX A
PROOF OF PROPOSITION 1

We prove that MSPAC is dominant strategy incentive com-
patible (or strategy-proof).

For any agent i, i ∈ {1, · · · , n}, let x∗
−i(b−i) denote the

optimal admission outcome when agent i is absent. That is,

x∗
−i(b−i) = arg max

xj∈X

n∑

j=1,j �=i

bjxj

subject to
n∑

j=1,j �=i

Qk(xj) ≤ Ak ∀k = 1, · · · ,m − 1

and
m−1∑

k=0

Ak ≥ n − 1.

(15)

Let vj(x, bj) denote the (declared) value to agent j from the
service received, which is a function of the admission outcome
and the agent’s bid. That is,

vj(x, bj) = bjxj , ∀j ∈ {1, · · · , n}. (16)

First, we transform the payoff function defined in (10).
LEMMA 1: For all i ∈ {1, · · · , n} there exists q ∈

{0, · · · ,m − 1} such that Qq(x∗
i (b)) = 1, and

n∑

j=1,j �=i

vj(x∗
−i(b−i), bj) −

n∑

j=1,j �=i

vj(x∗(b), bj) = pq(b).

(17)
Proof: By (7), the universal service coverage constraint,

every agent is admitted to one level of QoS, therefore there
exists q ∈ {0, · · · ,m − 1} such that Qq(x∗

i (b)) = 1.
The left hand side of (17) is the impact of agent i’s partici-

pation on all other agents j, j �= i. Without the participation of
agent i, all other agents would have been admitted to certain
QoS levels according to the solution x∗

−i(b−i). With agent i’s
participation, suppose that agent i is admitted to QoS level q
according to the solution x∗(b). Then only one agent at each
level below and including level q is truly affected by agent
i. At level q the agent whose bid is b(n−

∑ m−1
l=q Al) is moved

from level q to q − 1. The change in the value this agent
receives is (dq − dq−1)b(n−

∑ m−1
l=q Al). Likewise, exactly one

agent is affected in the same fashion at each level below q
until level-1. Summing over all these effects yields

(dq − dq−1)b(n−
∑ m−1

l=q Al)+

(dq−1 − dq−2)b(n−
∑ m−1

l=q−1 Al)+

· · ·+
(d1 − d0)b(n−

∑ m−1
l=1 Al)+

(d0 − d0)b(n−
∑ m−1

l=0 Al)

But this is exactly the right hand side of (17), pq(b), as
recursively defined in (8) and (9).

The next corollary follows directly from Lemma 1 and the
definition in (16).

COROLLARY 1: Agents’ utility function defined in (10) is
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equivalent to

ui(b, θi) =θix
∗
i (b)+
n∑

j=1,j �=i

vj(x∗(b), bj) −
n∑

j=1,j �=i

vj(x∗
−i(b−i), bj).

(18)
Using Corollary 1, we can prove the incentive compatibility

result in Proposition 1.
Proof: Let (θi, θ−i) denote the truth-telling strategy

profile for all agents. For (θi, θ−i) to be a (weakly) dominant
strategy equilibrium, we must show that for all agent i, i ∈
{1, · · · , n},

ui((θi, b−i), θi) ≥ ui((bi, b−i), θi) ∀bi ∈ Bi, b−i ∈ B−i.
(19)

By the revelation principle, it suffices to show that the truth-
telling strategy is a dominant strategy in a direct revelation
mechanism. A direct revelation mechanism is a game in which
the only strategy of each agent is to announce her type. The
revelation principle states that a dominant strategy equilibrium
of any Bayesian game can be represented by an equilibrium
in a direct revelation mechanism. This principle has been
enunciated by many researchers, including Gibbard [7], Green
and Laffont [9], Dasgupta et al. [3], and Myerson [20]. In
MSPAC, Bi = Θi for all agent i, i ∈ {1, · · · , n}. Therefore,
we need to show that for all agent i, i ∈ {1, · · · , n},

ui((θi, θ−i), θi) > ui((bi, θ−i), θi) ∀bi ∈ Bi, θ−i ∈ Θ−i.
(20)

Suppose that for some agent i, θi is not a dominant strategy.
Then there exists bi �= θi such that

ui((bi, θ−i), θi) > ui((θi, θ−i), θi).

Substituting from the agent payoff function in (18) in
Corollary 1, we have

θix
∗
i (bi, θ−i)+∑

j �=i

vj(x∗(bi, θ−i), θj) −
∑

j �=i

vj(x∗
−i(θ−i), θj)

>

θix
∗
i (θi, θ−i)+∑

j �=i

vj(x∗(θi, θ−i), θj) −
∑

j �=i

vj(x∗
−i(θ−i), θj)

Substituting from the definition of vi(·) in (16), we have

n∑

i=1

θix
∗
i (bi, θ−i) >

n∑

i=1

θix
∗
i (θi, θ−i)

which contradicts x∗(·) satisfying the maximization condi-
tion defined in (5).

Thus, bi = θi. Therefore, MSPAC is dominant strategy
incentive compatible.

APPENDIX B
PROOF OF PROPOSITION 2

We prove that MSPAC always gives each agent nonnegative
utility (payoff).

Proof: Suppose agent i, i ∈ {1, · · · , n}, is admitted to
QoS level-q, q ∈ {0, · · · ,m − 1}. We can transfer agent i’s
utility function, recursively defined in (8) and (9), as follows:

ui(b, θi) = θidq − pq(b)
= θidq − (dq − dq−1)b(n−

∑ m−1
l=q Al)

− (dq−1 − dq−2)b(n−
∑ m−1

l=q−1 Al)

− · · ·
− (d1 − d0)b(n−

∑ m−1
l=1 Al)

− (d0 − d0)b(n−
∑ m−1

l=0 Al)

(21)

Rearranging (21) yields

ui(b, θi) =dq(θi − b(n−
∑ m−1

l=q Al))

+dq−1(b(n−
∑ m−1

l=q Al) − b(n−
∑ m−1

l=q−1 Al))

+ · · ·
+d1(b(n−

∑ m−1
l=2 Al) − b(n−

∑ m−1
l=1 Al))

+d0(b(n−
∑ m−1

l=1 Al) − b(n−
∑ m−1

l=0 Al))

+d0b(n−
∑ m−1

l=0 Al)

(22)

Since 0 ≤ d0 < d1 < · · · < dm−1, b(1), b(2), · · · , b(n) is the
order statistics corresponding to b1, b2, · · · , bn, and θi = bi by
Proposition 1, we get ui(b, θi) ≥ 0.
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