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Abstract— There is a growing interest among service providers to
offer new services with Quality of Service (QoS) guaranties that are also
resilient to failures. Supporting QoS connections requires the existence of
a routing mechanism, that computes the QoS paths, i.e., paths that satisfy
QoS constraints (e.g., delay or bandwidth). Resilience to failures, on the
other hand, is achieved by providing, for each primary QoS path, a set
of alternative QoS paths used upon a failure of either a link or a node.
The above objectives, coupled with the need to minimize the global use
of network resources, imply that the cost of both the primary path and
the restoration topology should be a major consideration of the routing
process.

We undertake a comprehensive study of problems related to finding
suitable restoration topologies for QoS paths. We consider both bottleneck
QoS constraints, such as bandwidth, and additive QoS constraints, such
as delay and jitter. This is the first study to provide a rigorous solution,
with proven guaranties, to the combined problem of computing QoS
paths with restoration. It turns out that the widely used approach of
disjoint primary and restoration paths is not an optimal strategy. Hence,
the proposed algorithms construct a restoration topology, i.e., a set of
bridges, each bridge protecting a portion of the primary QoS path. This
approach guaranties to find a restoration topology with low cost when
one exists.

In addition to analysis, we test our approach also by way of
simulations. The simulation results demonstrate that our proposed
approximation algorithms identify QoS restoration paths whose cost is
significantly smaller than those provided by alternative approaches.

Keywords– QoS routing, Restoration, Restricted Shortest Path, Ap-
proximation Algorithms.

I. INTRODUCTION

There is a growing interest among service providers to
offer their customers new revenue-generating services with
Quality of Service (QoS) guarantees. This is facilitated by
current efforts to provide resource reservations and explicit
path routing, e.g., MultiProtocol Label Switching (MPLS). A
key requirement for such services is that they also be resilient
to failures. This goal can be achieved by provisioning primary
and restoration paths that satisfy the QoS constraints. The
primary QoS path is used during normal network operation;
upon failure of a network element (node or link) in the primary
path, the traffic is immediately switched to a restoration path.
To facilitate this seamless recovery to a restoration path in
the event of a failure, it is necessary to reserve network
resources (e.g., bandwidth) on both the primary and restoration
QoS paths. Thus, since optimizing the utilization of network
resources is an important requirement for service providers, it

1Corresponding author.

is crucial that the cost of the computed primary and restoration
QoS paths be as small as possible, where the cost of a path is
some measure related to the characteristics of its links, their
degree of utilization, etc.

QoS constraints occur naturally in a number of practical
settings involving bandwidth and delay sensitive applications
such as voice over IP, audio and video conferencing, mul-
timedia streaming etc. For instance, voice (e.g., telephone
conversations) requires a certain bandwidth allocation along
the connection path (currently, around 16–64 Kbs) and the end-
to-end path delay to be below a certain threshold (typically
between 100 and 300 ms). QoS constraints can be divided
into bottleneck constraints, such as bandwidth and additive
constraints, such as delay or jitter.

QoS routing has been the subject of several recent studies
and proposals (see, e.g., [4], [14], [16], [17] and references
therein). However, none of the prior studies on QoS routing
consider the problem of provisioning QoS paths with restora-
tion. Similarly, path restoration and routing over alternate paths
has also attracted a large body of research (see, e.g., [8]–
[12]). Most of the proposed solutions, however, consider only
bottleneck QoS constraints. The few studies that do consider
additive constraints, focus on heuristic approaches and do not
provide proven performance guarantees.

Bottleneck QoS constraints can be efficiently handled by
pruning infeasible links. However, additive QoS constraints are
more difficult to handle. Indeed, the basic problem of finding
an optimal path that satisfies an additive QoS constraint is
NP-hard [6]. Moreover, it turns out that, in the presence of
additive QoS constraints, the widely used approach of disjoint
primary and restoration paths is not an optimal strategy. A
better solution is to provide a restoration topology, i.e., a
set of bridges, with each bridge protecting a portion of the
primary path. The advantage of the disjoint paths strategy is its
ability to switch promptly from the primary path to the backup
path in the event of a failure. While a restoration topology
requires more sophisticated switching with a proper signaling
mechanism, it has several advantages over the disjoint paths
strategy. First, it provides a cheaper solution in terms of
resource consumption. Second, it may find a solution when
one does not exist for the disjoint paths strategy [11]. Third,
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a restoration topology strategy uses fewer backup links upon
a failure, which facilitates more efficient sharing of backup
bandwidth [10]. Finally, the restoration topology strategy en-
ables the network to recover from a failure by simply activating
a local bridge, rather than switching to a completely new path.

Accordingly, this study investigates the problem of provi-
sioning primary and restoration paths that satisfy QoS con-
straints. Since this problem is NP-hard, we present solutions
that are guaranteed to be within a certain factor of the
optimum. The paper makes two major contributions. First, we
address the issue of link sharing by different bridges, which
complicates the process of finding the set of optimal bridges,
and we prove that there is an optimal restoration topology
in which each link is shared by at most two bridges, both
in directed and undirected graphs. This enables us to identify
restoration topologies whose cost is at most 2 times more than
the optimum. The second contribution is the novel concept of
adjusted delay, which allows us to represent the set of bridges
that compose a restoration topology as a single walk2 between
the source and the destination nodes. This concept makes it
possible to adapt standard schemes such as Bellman-Ford’s
Shortest Path algorithm [13] for identification of restoration
topologies. To further illustrate the effectiveness of our pro-
posed solutions, we conduct some simulation experiments. The
simulation results demonstrate that our proposed algorithms
perform well in practice, and in a number of cases, return a
restoration topology even when prior approaches fail to do so.

The remainder of the paper is organized as follows. In
Section II, we present the network model and formulate the
main problems considered in this paper. In Section III, we dis-
cuss a fundamental property of optimal restoration topologies,
namely, the sharing of links by several bridges. In Section IV,
we introduce the basic concepts of adjusted delay and feasible
walk. In Section V, we provide approximation schemes for
provisioning of the restoration topologies. In Section VI, we
extend our results for directed networks. Simulation results are
presented and discussed in Section VII. Finally, conclusions
are presented in Section VIII.

II. MODEL AND PROBLEM FORMULATION

In this section, we describe the network model and the two
problems addressed in this paper. For simplicity of exposition,
we use the terms bandwidth and delay requirements in order
to generically refer to bottleneck QoS constraints and additive
QoS constraints, respectively.

A. The Network Model

We respesent the network by an undirected graph G(V, E),
where V is the set of nodes and E is the set of links. We
denote by N and M the number of network nodes and links,
respectively, i.e., N = |V | and M = |E|. An (s, t)-walk
is a finite sequence of nodes W = (s = v0, v1, · · · , t = vn),
such that, for 0 ≤ i ≤ n − 1, (vi, vi+1) ∈ E. Here, n = |W|
is the hop count of W . Note that nodes and links may appear

2In contrast to a path, a walk may include loops.

in a walk several times. An (s, t)-path P is an (s, t)-walk
whose nodes are distinct. The subwalk (subpath) of W (P) that
extends from vi to vj is denoted by W(vi,vj) (P(vi,vj)). Let
W1 be a (v, u)-walk and W2 be a (u, w)-walk; then, W1 ◦W2
denotes the (v, w)-walk formed by the concatenation of W1
and W2.

Each link l ∈ E offers a bandwidth guarantee bl (which is
typically the available bandwidth on l), and a delay guarantee
dl. The bandwidth B(W) of a walk W is identical to the
bandwidth of its worst link, i.e., B(W) = minl∈W{bl}. The
delay D(W) of a walk W is the sum of the QoS requirements
of its links, i.e., D(W) =

∑
l∈W dl.

In order to satisfy QoS constraints, certain resources such
as bandwidth and buffer space must be reserved along QoS
paths. In order to optimize the global resource utilization,
we need to identify QoS paths that consume as few network
resources as possible. Accordingly, we associate with each
link l a nonnegative cost cl, which estimates the quality of the
link in terms of resource utilization. The link cost may depend
on various factors, e.g., the link’s available bandwidth and its
location. The cost C(W) of a walk W is defined to be the
sum of the costs of its links, i.e., C(W) =

∑
l∈W cl.

In order to model networks with nodes connected by
asymmetric or unidirectional links, we also consider directed
network graphs in this paper (see Section VI). For instance,
in such networks, for a pair of connected nodes (vi, vj),
the bandwidth provisioned on the link in the direction from
vi to vj may be much larger than the allocated bandwidth
in the opposite direction. In addition, the delay and cost
characteristics of link (vi, vj) may be very different from those
of link (vj , vi).

B. QoS paths

A fundamental problem in QoS routing is to identify a
minimum cost path between a source s and a destination t
that satisfies some delay and bandwidth constraints. Bandwidth
requirements can be efficiently handled by simply pruning
infeasible links from the graph, i.e., links l whose bandwidth
bl is lower than the constraint. Thus, in the rest of the
paper, we only consider delay requirements. Accordingly, the
fundamental problem is to find a minimum cost path that
satisfies a given delay constraint. This can be formulated as
the Restricted Shortest Path problem.

Problem RSP (Restricted Shortest Path): Given a source
node s, a destination node t and a delay constraint d̂, find an
(s, t)-path P̂ such that

1) D(P̂) ≤ d̂, and
2) C(P̂) ≤ C(P) for every other (s, t)-path P that satisfies

D(P) ≤ d̂.
In general, Problem RSP is intractable, i.e., NP-hard [6].
However, there exist pseudo-polynomial solutions, which give
rise to fully polynomial approximation schemes3 (FPAS),
whose computational complexity is reasonable (see [5], [7],

3A Fully Polynomial Approximation Scheme (FPAS) provides a solution
whose cost is at most (1 + ε) times more than the optimum with a time
complexity that is polynomial in the size of the input and 1/ε.
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Fig. 1. An example of a network. The delay of all links is 10, except for
bold links whose delay is 1.

[13]). The most efficient algorithm, presented in [13], has
a computational complexity of O(MH(1

ε + log log H)), and
computes a path with delay at most d̂ and cost at most
(1 + ε) times the optimum. We refer to this algorithm as
Algorithm RSP.

C. Bridges and a Restoration Topology

As mentioned earlier, our study focuses on provisioning
QoS paths with restoration. The QoS path that is used during
normal network operation is referred to as the primary path.
Upon failure of a network element (node or link) in the pri-
mary path, the traffic is immediately switched to a restoration
path. Thus, we require that in addition to the primary path, the
restoration paths also satisfy the delay constraint d̂. In this
paper, we primarily focus on link failures, but our results can
be easily extended to deal with node failures by using standard
node splitting techniques (see, e.g., [18]).

A common approach for path restoration is to provision
two disjoint paths that satisfy the delay constraint. However,
as we illustrate below (see also [11]), in some cases, such
disjoint paths do not exist, although it is possible to provision
a primary path with a set of restoration paths. Consider the
network depicted in Fig. 1. Here, the delay of all links is 10,
except for the links marked by bold lines, whose delay is 1.
The only two disjoint paths between the source node s and
the destination node t are P1 = {s, v1, v4, v5, v8, v9, t} and
P2 = {s, v2, v3, v6, v7, v10, t}. For a delay constraint d̂ = 20,
P1 and P2 cannot be used as primary and restoration paths,
because D(P1) = D(P2) = 33 > 20. However, it is possible
to provision a primary path P̂ and a set of restoration paths
that satisfy the delay constraint d̂ = 20. Specifically, we use
the primary path P̂ = {s, v1, v2, · · · , v10, t} and restoration
paths {P̂1, · · · , P̂6} defined as follows. Upon failure of links
(s, v1) or (v1, v2) we use restoration path P̂1 = B1 ◦ P̂(v2,t)

with D(P̂1) = 19, while upon failure of link (v2, v3) path
P̂2 = P̂(s,v1)◦B2◦P̂(v4,t) with D(P̂2) = 18 is used. Similarly,
we construct restoration paths P̂3, · · · , P̂6. As demonstrated in
the example above, a restoration path comprises of portions
of the primary path and a bridge, which serves as a backup
for the failed segment of the primary path. For example, in
Fig. 1, the restoration paths P̂1 and P̂2 include the bridges
B1 = {s, v2} and B2 = {v1, v4}, respectively.

Definition 1 (Bridge for a link failure): Let P̂ = {s =
v0, · · · , t = vn} be a QoS path and P̂(vi,vj) be a subpath
of P̂ . A path B between vi ∈ P̂ and vj ∈ P̂ that has no

common links with P̂ is referred to as a bridge. We say that
bridge B = {vi, · · · , vj} protects the subpath P̂(vi,vj) of P̂ .
Recall that each restoration path must satisfy the delay con-
straint d̂. This implies that the delay D(B) of a bridge B
must also be constrained. Specifically, the delay of a bridge
Bi = {si, · · · , ti} must be at most D(P̂(si,ti)) + d̂ − D(P̂),
where P̂(si,ti) is the subpath of P̂ protected by Bi. We denote
the quantity d̂ − D(P̂) by ∆. Clearly, for larger values of ∆,
it is possible to find cheaper bridges Bi = {si, · · · , ti} that
satisfy D(Bi) ≤ D(P̂(si,ti)) + ∆.

A set of bridges that provides a restoration path for the
failure of any link l ∈ P̂ is referred to as a restoration
topology.

Definition 2 (Restoration topology for link failures): Let d̂
be a QoS constraint and P̂ = {s = v0, · · · , vn = t} be a
QoS path that satisfies d̂ (i.e., D(P̂) ≤ d̂). Then, a restoration
topology R for (P̂, d̂) is a set of bridges {B1, B2, · · · , Bh}
such that:

1) for each bridge Bi = {si, · · · , ti}, it holds that D(Bi) ≤
D(P̂(si,ti)) + d̂ − D(P̂), and

2) for each link l ∈ P̂ , there exists a bridge Bi =
{si, · · · , ti} that “protects” l, i.e., l is included in the
subpath P̂(si,ti) of P̂ protected by Bi.

We refer to R as a feasible restoration topology, in order
to emphasize that each restoration path satisfies the delay
constraint d̂.

Let E(R) be the set of links that belong to bridges of R,
i.e., E(R) = {l|l ∈ Bi, Bi ∈ R}. The cost of a restoration
topology is defined as the total cost of links in E(R), i.e.,
C(R) =

∑
l∈E(R) cl. Note that the cost of each link is counted

only once, even if it belongs to several bridges. We denote by
|E(R)| the number of links in the restoration topology.

We seek restoration topologies that minimize the usage
of network resources. Since the cost of a link is a measure
of its desirability for routing (with lower cost links being
more desirable), our goal is to find a (feasible) restoration
topology R with minimum cost C(R). We will denote by
OP T the minimum cost of a restoration topology for (P̂, d̂).
Note that, depending on how costs are assigned to links, our
approach enables a wide range of restoration topologies to
be selected. For example, associating unit costs with all links
would translate into computing restoration topologies with a
minimum number of links. Also observe that in an optimal
restoration topology, the subpaths of P̂ protected by two
bridges Bi and Bj are not nested, one within the other. Thus,
for any two bridges Bi = {si, · · · , ti} and Bj = {sj , · · · , tj}
in R, if si precedes sj in P̂ then ti also precedes tj in P̂ ,
and vice versa. For clarity of presentation, we assume that the
bridges in R are enumerated such that the source si of bridge
Bi is either identical to or a predecessor of the destination ti−1
of bridge Bi−1 in P̂ .

D. Problem Statement

We are now ready to formulate the two problems that we
consider in this study. The first problem seeks to compute a
suitable restoration topology for a given QoS path.
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Problem RT (Restoration topology for a QoS Path):
Given an (s, t)-path P̂ and a QoS constraint d̂, such that
D(P̂) ≤ d̂, find a minimum cost restoration topology R for
(P̂, d̂).

Next, we consider the problem of provisioning a QoS path
with a restoration topology.

Problem P+RT (QoS Path and Restoration topology):
Given a source s, a destination t and a QoS constraint d̂, find
an (s, t)-path P̂ that satisfies D(P̂) ≤ d̂ and a restoration
topology R for (P̂, d̂) such that their total cost C(P̂)+C(R)
is minimum.
Each of the above problems, namely RT and P+RT, includes
Problem RSP as a special case; hence, they are both NP-
hard. Furthermore, as discussed below, in most cases we
cannot provide an efficient solution without violating the delay
constraint in the restoration paths. Accordingly, we introduce
the following definition of (α, β)-approximations.

Definition 3 ((α, β)-approximation): For constants α and
β, an (α, β)-approximate solution to, either Problem RT or
Problem P+RT is a solution, for which:

1) the cost is at most α times more than the optimum;
2) the primary path satisfies the delay constraint;
3) each restoration path violates the delay constraint by a

factor of at most β.

E. Our results

In the following table, we summarize the approximation
ratios that we obtain for the above two problems. Below, ε
is a constant that captures the trade-off between the quality
of the approximations and the running time of the algorithms.
Specifically, the time complexity of the algorithms is propor-
tional to 1

ε ; thus smaller values of ε yield better approximate
solutions at the expense of higher running times.

Problem Undirected Directed

RT (2 · (1 + ε), 1) (2 · (1 + ε), 2)
P+RT (3 · (1 + ε), 2) (3 · (1 + ε), 3)

The solution of Problem P+RT is the main contribution of
this paper. We emphasize that our solutions may violate the
delay constraint only for restoration paths, while the primary
paths always satisfy the QoS constraints. Therefore, such delay
violations have no effect during normal network operation.
Moreover, many time-sensitive applications can tolerate short-
term delay violations (until the failed link is repaired), e.g.,
by way of buffering.

III. PROPERTIES OF RESTORATION TOPOLOGIES

Finding an optimal restoration topology is a complicated
problem due to the fact that bridges may share links. However,
in this section we establish the existence of an optimal
restoration topology in which the number of appearances of a
node or a link is bounded by 2. This bound is then used to
obtain an approximate scheme within a factor of 2 · (1+ ε) of
the optimal solution.

4P

P̂

ks
kt1s 1t

3P1P 2P

v

vB1
v
kB

Fig. 2. Node v is shared by bridges Bv
1 = P1 ◦ P2 and Bv

k = P3 ◦ P4.

Lemma 1: Given an undirected graph G, a delay constraint
d̂, an (s, t)-path P̂ , D(P̂) ≤ d̂ and a restoration topology R
for (P̂, d̂), there exists a restoration topology R̂ for (P̂, d̂)
such that C(R̂) ≤ C(R), and each node v ∈ R̂ or link l ∈ R̂
is included in at most two bridges.

Proof: Let R̂ be a restoration topology for (P̂, d̂) such
that E(R̂) ⊆ E(R) and |E(R̂)| is minimum. We prove that
each node of R̂ is included in at most two bridges.

By way of contradiction, let {Bv
1 , Bv

2 , · · · , Bv
k}, k ≥ 3 be

the set of bridges of R̂ that contain v, sorted according to their
indexes. Since |E(R̂)| is minimum, it follows that the subpaths
P̂(s1,t1) and P̂(sk,tk) of P̂ protected by bridges Bv

1 and Bv
k ,

respectively, are disjoint (i.e., t1 is a predecessor of sk in P̂),
otherwise we can omit from R̂ the bridges Bv

2 , · · · , Bv
k−1. We

denote the subpaths {s1, · · · , v} and {v, · · · , t1} of Bv
1 by P1

and P2, respectively (see Fig. 2). The subpaths {sk, · · · , v}
and {v, · · · , tk} of Bv

k are denoted by P3 and P4, respectively.

The delay of each bridge B exceeds the delay of the subpath
of P̂ protected by B by at most ∆, i.e.:

D(P1) + D(P2) ≤ D(P̂(s1,t1)) + ∆
D(P3) + D(P4) ≤ D(P̂(sk,tk)) + ∆

It is easy to verify that one of the following two conditions
must hold:

D(P1) + D(P3) ≤ D(P̂(s1,t1)) + ∆
D(P2) + D(P4) ≤ D(P̂(sk,tk)) + ∆

If the first condition holds, then the substitution of bridge Bv
1

in R̂ by a new bridge B̂v
1 = P1 ◦ P3 yields a valid restoration

topology with fewer links than in R̂ which contradicts our
assumption that |E(R̂)| is minimum. Note that this substitu-
tion yields a restoration topology with fewer links even if P2
has common links with P3 or P4. Similarly, we can show a
contradiction if the second condition holds.

We thus conclude that each node v ∈ R̂ is shared by at most
two bridges. It follows that each link l ∈ R̂ is also shared by
at most two bridges.

In Section VI, we derive a similar bound of 2 on the degree
of sharing for each link in a directed network graph. But
first, in the following two sections, we focus on developing
approximation algorithms for Problems RT and P+RT for the
undirected graph scenario.

IV. ADJUSTED DELAY AND FEASIBLE WALK CONCEPTS

In this section, we introduce the basic concepts of adjusted
delay and feasible walk, which lay the foundations for our
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efficient approximation algorithms for Problems RT and P+RT,
presented in Section V.

A. A Simple Algorithm

In order to set the stage for the concept of adjusted delay,
we first present a simple algorithm for Problem RT. The
algorithm, at a high level, consists of the following steps.
First, we compute for each node pair (vi, vj) in P̂ , the
cheapest bridge B(i,j) = {vi, · · · , vj} whose delay is at most
D(P̂(vi,vj))+∆. For this, we delete all the links of the path P̂
from G and apply Algorithm RSP [13] to the resulting graph.
Next, we construct a restoration topology by selecting a subset
of bridges {B(i,j)} such that each link of P̂ is protected and
the total cost is minimum. To achieve this, we construct an
auxiliary directed graph G̃ whose nodes are essentially the
nodes of P̂ . Further, for each link (vi, vi+1) ∈ P̂ we add to G̃
a link (vi+1, vi) and assign it a zero cost. Also, for each pair
(vi, vj) of nodes of P̂ , such that j > i, we add to G̃ a link
l = (vi, vj) whose cost is identical to the cost of the bridge
B(i,j). We now show that each (s, t)-path in G̃ corresponds to
a feasible restoration topology. Consider an (s, t)-path P in
G̃, and let S be the set of bridges that correspond to links
in P . Consider two successive bridges Bi = {si, ti} and
Bi+1 = {si+1, ti+1} in S. Note that si+1 either precedes ti or
else coincides with ti, while ti+1 succeeds ti in the path P̂ .
This ensures that every link in P̂ is protected by a bridge, and
thus S corresponds to a feasible restoration topology. Hence, a
near-optimal restoration topology can be determined by finding
the shortest (s, t)-path in G̃. Specifically, Lemma 1 and the
fact that Algorithm RSP returns a (1 + ε)-approximation for
each B(i,j), jointly imply that a shortest path algorithm (run
on G̃) provides a (2 · (1 + ε), 1)-approximate solution.

The above algorithm, while conceptually simple, is compu-
tationally expensive, because it applies Algorithm RSP [13]
for each pair of nodes in P̂ . Since the time complexity of
the RSP algorithm is O(MN(1/ε + log log N)), it requires
a total of O(MN3(1/ε + log log N)) time. In the following
sections, we describe Algorithm RT, which employs similar
ideas, but whose computational complexity is comparable to
that of Algorithm RSP.

B. The Adjusted Delay Concept

The algorithm presented in the previous section exploited
the relationship between the shortest path in an auxiliary graph
and the restoration topology. In this section, we use this idea
again, but for devising a more efficient algorithm. We construct
a directed auxiliary graph G′ from G by reversing each link
l ∈ P̂ and assigning it a zero cost. In addition, we also
substitute each link l = (u, v) ∈ G, l /∈ P̂ by two directed
links l1 = (u, v) and l2 = (v, u) such that cl1 = cl2 = cl and
dl1 = dl2 = dl. Clearly, each (s, t)-walk in the auxiliary graph
G′ corresponds to a set of bridges that protects each link l ∈ P̂ .
For example, Fig. 3 depicts the auxiliary graph for the network
depicted in Fig. 1 and the primary path P̂ = {s, v1, v2, · · · , t}.
The walk W = {s, v2, v1, v4, v3, · · · , t} in auxiliary graph
corresponds to a set of bridges {B1, · · · , B6}. In general,

s
1v 2v 3v

4v 5v 6v
7v 8v 10v9v t
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Fig. 3. An auxiliary graph for the network depicted on Fig. 1.

however, as explained below, not every (s, t)-walk in the
auxiliary graph corresponds to a feasible restoration topology,
i.e., one that satisfies the delay constraint.

One of the key contributions of this study is an efficient
method for verifying, during its construction, whether a given
walk represents a feasible restoration topology. This method
is used as a basic building block in our algorithm, and enables
us to find a low-cost feasible restoration topology. In order to
identify a walk in G′ that corresponds to a feasible restoration
topology, we introduce the notion of adjusted delay for a walk
W in G′.

Consider a walk W = {s = u0, · · · , uk−1, uk, · · · , t} in
G′ that defines a set S = {Bi = {si, · · · , ti}} of bridges,
and let Pi be the restoration path obtained by activating the
bridge Bi; thus, Pi = P̂(s,si) ◦ Bi ◦ P̂(ti,t). We refer to nodes
si and ti as the start-point and termination-point of bridge
Bi, respectively. Recall that a bridge Bi satisfies the delay
constraint only if D(Bi) ≤ D(P̂(si,ti)) + ∆, or, equivalently,

D(Pi(s,ti)) ≤ D(P̂(s,ti)) + ∆. (1)

Furthermore, every subwalk W(s,u) of W corresponds to a
subset S ′ of complete bridges in S and, possibly, a subpath of
an additional bridge Bj ∈ S. The adjusted delay D̃(W(s,u))
of the walk W(s,u) maintains the following invariant: if all
the bridges in S ′ satisfy the delay constraint, then D̃(W(s,u))
represents the delay between the source node s and the node
u ∈ Bj along Pj , i.e., D̃(W(s,u)) = D(Pj(s,u)). Otherwise,
if there is a bridge in S ′ that does not satisfy the delay
constraint, D̃(W(s,u)) is set to infinity, thus indicating that the
restoration topology formed by the walk W(s,u) is infeasible.
Thus, by applying Condition (1), the adjusted delay enables us
to check easily whether bridge Bj satisfies the delay constraint,
when its termination-point tj is reached.

The adjusted delay D̃(W) of a walk W = {s =
u0, · · · , uk−1, uk, · · · , t} is calculated in a recursive man-
ner. The adjusted delay of an empty walk is zero, that is
D̃({s}) = 0. Now, let us turn to compute the adjusted
delay of W(s,uk) and suppose that we have already calculated
the adjusted delay of the sub-walk W(s,uk−1). Let D =
D̃(W(s,uk−1)) + d(uk−1,uk), where d(uk−1,uk) is the delay of
the link (uk−1, uk). Generally speaking, the adjusted delay
D̃(W(s,uk)) = D, except for the case when uk ∈ P̂ . In this
case, a special procedure is required for verifying if node uk

is the termination-point of a bridge and whether the newly
formed bridge satisfies the delay constraint. Recall that uk ∈ P̂
is not necessarily a termination-point of a bridge, since a
bridge may have several common nodes with the primary
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Fig. 4. An example of a walk in the auxiliary graph G′.

path. For instance, in Fig. 4, bridge B2 comprises of the two
segments B2a and B2b, and node u4 ∈ P̂ is not a termination-
point of a bridge. However, if for link (uk, uk+1) of W , it
holds that uk ∈ P̂ and uk+1 ∈ P̂ , then uk must be the
termination-point of a bridge since a bridge cannot share links
with the primary path. As illustrated in Fig. 4, node u2 must
be the termination-point of the bridge B1, since its successor
node in the walk, node u3, is also included in P̂ .

Based on the above observations, the adjusted delay of a
walk ending at node uk ∈ P̂ is defined as follows. (Below,
D = D̃(W(s,uk−1)) + d(uk−1,uk)).

• Case 1: If uk−1 �∈ P̂ , uk ∈ P̂ and D > D(P̂(s,uk))+∆,
then node uk cannot be the termination-point of a valid
bridge and it may only be an internal node of a bridge.
Thus, D̃(W(s,uk)) = D.

• Case 2: If uk−1 �∈ P̂ , uk ∈ P̂ and D ≤ D(P̂(s,uk)) + ∆
then node uk may be either the termination-point or an
internal node of a bridge. As a result, since uk may be
the starting-point of a new bridge, we set D̃(W(s,uk)) =
min{D(P̂(s,uk)), D}.

• Case 3: If uk−1 ∈ P̂ , uk ∈ P̂ and D̃(W(s,uk−1)) ≤
D(P̂(s,uk−1)), then it follows that node uk is not a
termination-point of a bridge and all the bridges included
by the walk satisfy the delay constraint. Since uk may
be the starting-point of a new bridge, its adjusted delay
D̃(W(s,uk)) = D(P̂(s,uk)).

• Case 4: If uk−1 ∈ P̂ , uk ∈ P̂ and D̃(W(s,uk−1)) >

D(P̂(s,uk−1)) + ∆, then it follows that, if node uk−1 is
the termination-point of a bridge (that is, the predecessor
of uk−1 in walk W does not belong to P̂), then the bridge
ending at uk−1 does not satisfy the delay constraint (due
to Condition (1)). On the other hand, if uk−1 is not the
termination-point of a bridge, then an induction argument
can be used to show that some bridge preceding uk−1
in walk W does not satisfy the delay constraint. Hence,
D̃(W(s,uk)) is set to ∞.

We proceed to present a formal definition of adjusted delay
that considers the four cases mentioned above.

Definition 4 (Adjusted Delay): Let P̂ be a primary path and
let G′ be the auxiliary graph formed from G by reversing
each link l ∈ P̂ . Then, the adjusted delay D̃(W) of a walk
W = {s = u0, · · · , uk−1, uk} in G′ is defined recursively as
follows:

1) The adjusted delay of an empty walk (i.e., k = 0) is 0:
D̃({s}) = 0;

2) Otherwise, the adjusted delay D̃(W) of a walk W =

{u0, · · · , uk−1, uk} is
• min{D(P̂(s,uk)), D} if uk−1 /∈ P̂ , uk ∈ P̂ and

D ≤ D(P̂(s,uk)) + ∆,
• D(P̂(s,uk)) if uk−1 ∈ P̂ , uk ∈ P̂ and

D̃(W(s,uk−1)) ≤ D(P̂(s,uk−1)),
• ∞ if uk−1 ∈ P̂ , uk ∈ P̂ and D̃(W(s,uk−1)) >

D(P̂(s,uk−1)),
• D otherwise,

where D = D̃(W(s,uk−1)) + d(uk−1,uk).
We illustrate the calculation of the adjusted delay using the
walk shown in bold in Fig. 4. Here, the primary path P̂ =
{s, u3, u2, u4, v, t}. The delay of every link l ∈ P̂ is dl = 1
and the delay constraint d̂ = 7. Thus, D(P̂) = 5 and
∆ = 2. The delay of every other link l �∈ P̂ is depicted
in the figure. Let us calculate the adjusted delay of the walk
W(s,t) and its various prefixes. At the base of the recursion,
D̃({s}) = 0. Since, node u1 �∈ P̂ , D̃(W(s,u1)) = 2. For
computing the adjusted delay of node u2 we calculate the value
D = D̃(W(s,u1))+d(u1,u2) = 3. Since D ≤ D(P̂(s,u2))+∆ =
4, node u2 may be either the termination-point of a bridge
that satisfies the delay constraint or an internal node of a
bridge. To allow these two possibilities, we set D̃(W(s,u2)) =
min{D(P̂(s,u2)), D} = min{2, 3} = 2. Since u3 ∈ P̂ , node
u2 must be the termination-point of the bridge B1. Since the
bridge B1 satisfies the delay constraint, we have D̃(W(s,u3)) =
D(P̂(s,u3)) = 1. Now, to compute D̃(W(s,u4)), we calculate
the corresponding value D = D̃(W(s,u3)) + d(u3,u4) = 6.
Because D > D(P̂(s,u4)) + ∆ = 3 + 2 = 5, node u4 can
only be an internal node inside a bridge and its adjusted
delay is D̃(W(s,u4)) = 6. Finally, when computing the
adjusted delay of W(s,t), D = D̃(W(s,u4)) + d(u4,t) = 7.
Node t is the termination-point of a valid bridge B2 and
D̃(W(s,t)) = min{D(P̂), D} = 5. We conclude that the given
walk represents a feasible restoration topology.

C. Feasible Walk Concept

An (s, t)-walk whose adjusted delay does not exceed the
delay D(P̂) of the primary path P̂ is referred to as a
feasible (s, t)-walk. From Lemma 2 below, it follows that there
is a one-to-one correspondence between feasible walks and
feasible restoration topologies.

Lemma 2:
1) Let R = {B1, B2, · · · , Bh} be a feasible restoration

topology and W be the corresponding (s, t)-walk in G′.
Then, D̃(W) ≤ D(P̂).

2) Let P̂ be a primary path and W be an (s, t)-walk
in the auxiliary graph G′ such that D̃(W) ≤ D(P̂).
Then, there exists a feasible restoration topology R that
corresponds to W .

Proof: See [2].
In general, there may be more than one way to decompose a

walk into a set of bridges, i.e., there are several sets of bridges
that can be constructed out of a single walk. For example, in
Fig. 4 there are two sets of bridges S1 and S2 that correspond
to walk W: S1 is formed by bridges {B1, B2a, B2b}, while
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in S2, the bridges B2a and B2b are combined into a single
bridge B2. Note that only some of these sets constitute feasible
restoration topologies. One can construct a feasible restoration
topology from a feasible walk by simply choosing as the
termination-point for a bridge, the first node uk ∈ P̂ in the
bridge for whom D̃(W(s,uk)) = D(P̂(s,uk)).

We denote by Wopt the minimum cost feasible (s, t)-walk
in the auxiliary graph G′ and by copt the cost of Wopt.
We show a relationship between Wopt and the optimum
restoration topology (whose cost is denoted by OP T ).

Suppose that we assign a cost of 0 to each link in the
auxiliary graph G′ that originated from a link l ∈ P̂ . Clearly,
due to Lemmas 1 and 2, it follows that there exists a feasible
walk W such that C(W) ≤ 2 · OP T . Thus, copt ≤ 2 · OP T .
Further, note that the cost of a restoration topology constructed
from a walk never exceeds the cost of the walk itself. Thus,
if we could compute the optimal feasible walk, then we
could compute a (2,1)-approximation to the optimal restoration
topology.

V. APPROXIMATION SCHEMES FOR PROVISIONING OF

RESTORATION TOPOLOGIES

We are now in a position to present efficient approxima-
tion schemes for Problems RT and P+RT. We begin with a
pseudo-polynomial algorithm for Problem RT, which serves
as the basic building block for the approximation scheme for
Problem RT presented in Section V-B. Finally, in Section V-C
we present the approximation scheme for Problem P+RT.

A. Pseudo-polynomial Solution for Problem RT

The fundamental concepts of adjusted delay and feasible
(s, t)-walk give rise to a pseudo-polynomial algorithm for
Problem RT, i.e., an algorithm whose running time is propor-
tional to the cost of the optimal solution. The algorithm, re-
ferred to as Algorithm PP is presented in this section. Because
of its simplicity, the algorithm can be easily implemented in
practice. However, in the worst case, its running time can be
very high.

Algorithm PP computes a minimum-cost feasible (s, t)-
walk W and the corresponding restoration topology. The
algorithm is a natural extension of the well-known Bellman-
Ford algorithm and uses the dynamic-programming technique
of relaxation [3]. The algorithm assumes that the costs of links
are integer values greater than 0, and an upper bound U on
the cost of the solution is given.

We first describe the relaxation technique used by Algo-
rithm PP. For each node vi ∈ V , we maintain an array Dvi

[c]
of minimum delay estimates. The array Dvi

[c] stores, for each
cost c, the minimum adjusted delay of an (s, vi)-walk, whose
cost is at most c. Initially, Dvi

[c] = ∞ for every vi ∈ S \s
and c ≥ 0. We only relax links whose cost does not exceed
the current budget restriction c. The process of relaxing a link
(vi, vj) consists of testing whether we can improve the best
(s, vj)-walk (i.e., the walk whose adjusted delay is minimum)
found so far to vj by going through vi without exceeding the
current budget restriction c and if so, updating Dvj

[c]. The

relaxation technique is implemented by Procedure RELAX (see
Fig. 5).

Next, we proceed to describe Algorithm PP, whose pseudo-
code appears in Fig. 5. The purpose of Algorithm PP is to
check, for a given value of upper bound U , whether there
exists an (s, t)-walk W in G′, such that D̃(W) ≤ D(P̂) and
C(W) ≤ U , and if so, to find a minimum cost (s, t)-walk
W such that D̃(W) ≤ D(P̂). We start with a zero budget
for c and increment it by a value of 1 in each iteration until
either Dt[c] ≤ D(P̂), i.e., there exists a walk between s and
t whose adjusted delay is at most D(P̂), or else c = U . In
each iteration, we process each node vj ∈ G′ by relaxing all
links entering vj .

As discussed below, in our approximation scheme, Algo-
rithm PP is applied to graphs in which cl ≥ 1 for each link l.
Thus, the cost of each link l ∈ G′ is at least 1, except for links
in G′ that originate from the primary path P̂ . Note that for
each link (vi, vj) with zero cost, node vi must be processed
before vj . Accordingly, the nodes vj ∈ G′ are processed in an
order such that vj is before vj′ if vj is a successor of vj′ in
P̂ .

Also, in Step 15, the algorithm identifies a walk W =
{s = u0, · · · , uk = t} whose adjusted delay is at most
D(P̂) using backtracking. Suppose that c is the value at which
Algorithm PP breaks out of the for loop (in Step 16), that is,
Dt[c] ≤ D(P̂). Then, beginning with node t, for each node
ui, the backtracking procedure adds to the returned walk, the
link (ui−1, ui) that resulted in the value Dui

[ci] until node s
is reached, where the ci values for ui are computed as follows:
for the initial node uk = t, ck = c and for every subsequent
node ui−1, ci−1 = ci−c(ui−1,ui). Thus, the cost of the walk W
can be shown to be at most c. The computational complexity
of Algorithm PP is O(M · U).

Theorem 1: Let copt denote the minimum cost of a feasible
(s, t)-walk in G′. If U ≥ copt then Algorithm PP returns a
minimum cost walk walk W such that D̃(W) ≤ D(P̂).

Proof: See [2].

B. Approximation scheme for Problem RT

In this section, we develop an FPAS for computing the
minimum cost feasible (s, t)-walk, and use this near-optimal
walk to construct a near-optimal restoration topology. The
technique we use is similar to the one presented in [13].

We begin with a high-level overview of the approximation
scheme. A critical building block of the scheme is Proce-
dure SCALE (Fig. 6), which uses scaling and rounding in
order to efficiently find an approximate solution. The efficiency
of Procedure SCALE depends on the tightness of the lower
and upper bounds, L, U , on the cost of the optimal solution.
Thus, to compute sufficiently tight lower and upper bounds,
we rely on two procedures, namely Procedure BOUND and
Procedure TEST. The former is used for obtaining initial values
of L, U such that U/L < 2 · N , while the latter performs
iterations to tighten the bounds further. Finally, we combine
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Algorithm PP ( G(V, E), P̂ , d̂, U ):
parameters:

G(V, E) - network,
{dl, cl}l∈E - delays and costs of the network links,

P̂ = {s = v0, v1, ..., t = vn} - QoS path,

d̂- delay constraint,
U - the upper bound on the cost of R.

1 ∆ ← d̂ − D(P̂)
2 E′ ← E
3 for each link l = (vi, vi+1) ∈ P̂ do
4 E′ ← E′ \ {(vi, vi+1) ∈ P̂}
5 E′ ← E′ ∪ {(vi+1, vi) ∈ P̂}, c(vi+1,vi) ← 0
6 for all vi ∈ V do
7 Dvi [0] ← ∞
8 Ds[0] ← 0
9 for c = 1, 2, ..., U do

10 for each vj ∈ V in order such that vj is before vj′ if

vj is a successor of vj′ in P̂ do
11 Dvj [c] ← Dvj [c − 1]
12 for each link l = (vi, vj) ∈ E′ do
13 RELAX(l(vi, vj), c, ∆)
14 if Dt[c] ≤ D(P̂) then
15 determine walk W by backtracking
16 return W .
17 return FAIL

Procedure RELAX (l = (vi, vj), c, ∆)
1 if vj ∈ P̂ and vi ∈ P̂ then

2 if Dvi [c] ≤ D(P̂(s,vi)) then

3 Dvj [c] ← min{Dvj [c], D(P̂(s,vj))}
4 else
5 if cl ≤ c then
6 Dvj [c] ← min{Dvj [c], Dvi [c − cl] + dl)}
7 if vj ∈ P̂ and Dvj [c] ≤ D(P̂(s,vj)) + ∆

then
8 Dvj [c] ← min{Dvj [c], D(P̂(s,vj))}

Fig. 5. Algorithm PP

all the ideas in Procedure RT.

B.1. Scaling and Rounding

We proceed to describe Procedure SCALE (see Fig. 6). The
main idea is to scale and round the cost cl of each link l ∈ E,
replacing it by c′

l, as follows.

c′
l =

⌊cl

S

⌋
+ 1,

where S = Lε
2N . Clearly, with the new costs c′

l, there must

exist a feasible walk with cost at most
⌊

copt

S

⌋
+ 2N and no

more than 2N links (due to Lemma 1). Thus, the actual cost
of the path returned by Algorithm PP (in the final step) is
no more than copt + 2NS ≤ (1 + ε) · copt. It follows that
if Procedure SCALE is invoked with valid lower and upper
bounds, i.e., L ≤ copt ≤ U , then it returns a walk whose cost
is at most (1 + ε) times more than the optimum.

The running time of Procedure SCALE is O(MNU
εL ). Thus,

if we can compute tight lower and upper bounds on copt

such that the ratio U/L is a constant, then we can reduce
the computation time of Procedure SCALE to O(MN

ε ). We

next show how to compute these tight bounds.

B.2. Lower and upper bounds

In this subsection, we present Procedure BOUND (see
Fig. 6), which identifies lower and upper bounds L, U on
the minimum cost copt of a feasible walk copt such that
U/L ≤ 2N .

We denote by c1 < c2 < · · · < cr the distinct costs values of
the links. Our goal is to find the maximum cost value c∗ ∈ {ci}
such that the graph G′′ derived from G′ by omitting all links
whose cost is greater than c∗, does not contain a feasible (s, t)-
walk. Clearly, a feasible (s, t)-walk contains at least one link
whose cost is c∗ or more, hence c∗ is a lower bound on copt.
In addition, there exists a feasible (s, t)-walk that comprises
of links whose cost is c∗ or less, and whose hop count is, by
Lemma 1, at most 2N . We conclude that 2N · c∗ is an upper
bound on copt.

Procedure BOUND performs a binary search on the values
c1, c2, · · · , cr. At each iteration, we need to check whether
c ≤ c∗, where c is the current estimate of c∗. For this purpose,
we remove from G all links whose cost is more than c, and
assign the unit cost to the remaining links. Then, we apply
Algorithm PP on the resulting graph, with the parameter
U = 2N . If Algorithm PP returns a feasible walk, then
c ≥ c∗; otherwise, c < c∗. The computational complexity
of Procedure BOUND is O(MN log N).

B.3. A testing procedure

In order to tighten the bounds further, we make use of
Procedure TEST (shown in Fig. 6). Procedure TEST performs
the following 2-approximation test: if the procedure returns a
positive answer, then definitely copt < 2B; otherwise, it is the
case that copt ≥ B.

Procedure TEST is implemented by invoking Proce-
dure SCALE with U = L = B and ε = 1.

B.4. Putting it all together

We are now in a position to combine the results of the pre-
vious subsections in order to present our final approximation
algorithm, referred to as Algorithm RT (see Fig. 6).

The algorithm begins by applying Procedure BOUND, which
provides the lower and upper bounds L and U on copt such
that U/L ≤ 2N . Then, we iteratively apply Procedure TEST to
improve these bounds until the ratio U/L falls below 8. In
each iteration, we invoke Procedure TEST with B =

√
L · U .

If Procedure TEST returns a positive answer, then, copt < 2B,
hence U is set to 2B. Otherwise, it is the case that copt > B,
hence L is set to B. Note that, if the ratio U/L is equal to x at
the beginning of an iteration, then at the end of the iteration we
have (U/L) ≤ 2

√
x. Thus, since the above process terminates

once U/L ≤ 8, the number of iterations performed can be
shown to be O(log log N).

Having obtained lower and upper bounds L, U such that
U/L ≤ 8, we use Procedure SCALE to find a feasible walk
W , whose cost is at most (1 + ε) · copt. Finally, we return the
restoration topology corresponding to W . The computational
complexity of Algorithm RT is O(MN(1/ε + log N)).
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Algorithm RT ( G(V, E), P̂ , d̂, ε):
1 L, U ←BOUND(G(V, E), P̂, d̂)
2 do
3 B ←

√
L(copt) · U(copt)

4 if TEST(G(V, E), P̂, d̂, B, ε) returns YES then
5 L ← B
6 else
7 U ← 2 · B
8 until U/L ≤ 8.

9 W ←SCALE(G(V, E), P̂, d̂, L, U, ε)
10 return the restoration topology that corresponds to W .

Procedure SCALE(G(V, E), P̂, d̂, L, U, ε)
1 S ← Lε

2N
2 for each link l ∈ E do
3 c′

l ←
⌊ cl

S

⌋
+ 1

4 Ũ ←
⌊

U
S

⌋
+ 2N

5 return PP(G(V, E), {dl, c
′
l}l∈E , P̂, d̂, Ũ)

Procedure TEST(G(V, E), P̂, d̂, B)
1 Apply Procedure SCALE for (G(V, E), P̂, d̂, B, B, 2)
2 if Algorithm SCALE returned FAIL then
3 return NO
4 else
5 return YES

Procedure BOUND(G(V, E), P̂, d̂)
1 let c1 < c2 < · · · < cr the distinct costs values of the

links.
2 low ← 0; high ← r
3 while low < high − 1
4 j ← �(high + low)/2�
5 E′ ← {l|cl ≤ cj}
6 set cl ← 1 for each l ∈ E′

7 apply Algorithm PP on (G′(V, E′), P̂, d̂, 2N)
8 if Algorithm PP returned FAIL then
9 high ← j

10 else
11 low ← j

12 U ← 2N · chigh; L ← chigh;
13 return L, U ;

Fig. 6. Algorithm RT

We summarize our results in the following theorem.
Theorem 2: Given an undirected graph G, a primary QoS

path P̂ ∈ G, a delay constraint d̂ and an approximation ratio
ε, Algorithm RT identifies, in O(MN(1/ε + log N)) time, a
feasible restoration topology R for (P̂, d̂), whose cost is at
most 2 · (1 + ε) times more than the optimum.

C. Approximation Scheme for Problem P+RT

The approximation scheme for simultaneous provisioning
of a primary QoS path and the restoration topology is imple-
mented as follows. First, using Algorithm RSP, we identify a
d̂-delay constrained (s, t)- path P̂ in G whose cost is at most
(1+ε) times the optimum. Then we apply Algorithm RT with
parameters G, P̂ , (d̂ + D(P̂)) and ε. The resulting algorithm
is referred to as Algorithm P+RT.

Theorem 3: Algorithm P+RT identifies, in O(MN(1/ε +
log N)) time, a (3 · (1 + ε), 2)-approximate solution for
Problem P+RT.

ls
l

iv lt

optP̂

P̂

(a)

lB

(b)

lss

l
iv lt

optP̂

P̂

'B
optR̂

's 't

iv +1 iv +1

Fig. 7. The optimal solution (P̂opt, R̂opt) to Problem P+RT and an (s, t)-
path P̂

Proof: The computational complexity of Algo-
rithm P+RT is identical to that of Algorithm RT.

For a path P we denote by E(P) the set of links in P .
Similarly, E(B) denotes the set of links in bridge B.

Let (P̂, R̂) be the output of Algorithm P+RT and let
(P̂opt, R̂opt) be the optimal solution to Problem P+RT. We
prove that there exists a restoration topology R′ for (P̂, d̂ +
D(P̂)) such that E(R′) ⊆ E(P̂opt) ∪ E(R̂opt).

For each link l ∈ P̂ we identify a bridge Bl = {sl, · · · , tl}
such that Bl protects l and E(Bl) ⊆ E(P̂opt) ∪ E(R̂opt). We
consider the following two cases.

• Case 1. If l = (vi, vi+1) ∈ P̂ and l /∈ P̂opt then we
choose Bl to be the subpath P̂opt

(sl,tl)
of P̂opt for which

sl, tl ∈ P̂ , sl is a predecessor of vi in P̂ and tl is a
successor of vi+1 in P̂ (see Fig. 7 (a)). If more than
one such subpath exists, then we choose the one with
minimum hop count.

• Case 2. If l = (vi, vi+1) ∈ P̂ and l ∈ P̂opt then let
B′ = {s′, · · · , t′} be a bridge of R̂opt that protects l. We
denote by P ′ the path P̂opt

s,s′ ◦B′◦P̂opt
t,t′ , i.e., the restoration

path for link l in the optimal solution. Then, we choose
Bl to be the subpath P ′

(sl,tl)
of P ′ for which sl, tl ∈ P̂ ,

sl is a predecessor of vi in P̂ and tl is a successor of
vi+1 in P̂ (see Fig. 7 (b)). If more than one such subpath
exists, then we choose the one with minimum hop count.

Let R′ be a restoration topology formed by bridges {Bl|l ∈
P̂}. We observe that each link l ∈ P is protected by a bridge
in R′, and for each bridge Bl ∈ R′ it holds that D(Bl) ≤ d̂,
hence R′ is a feasible restoration topology for (P̂, d̂+D(P̂)).

We also note that C(R′) ≤ C(P̂opt) + C(R̂opt), since, R′

contains only links from P̂opt and R̂opt. By Theorem 2, the
cost C(R̂) of R̂ is at most 2 · (1 + ε) times more than the
cost of the optimal restoration topology for (P̂, d̂ + D(P̂)),
thus C(R̂) ≤ 2(1 + ε) · C(R′). As a result, C(R̂) ≤ 2(1 +
ε)(C(P̂opt) + C(R̂opt)). Since C(P̂) ≤ (1 + ε)C(P̂opt), we
have C(P̂) + C(R̂) ≤ 3(1 + ε)(C(P̂opt) + C(R̂opt)). Since
d̂ + D(P̂) ≤ 2 · d̂, it follows that R̂ is a (3 · (1 + ε), 2)-
approximate solution for Problem P+RT.

VI. DIRECTED NETWORKS

In this section, we extend our results from the previous
sections for directed networks, which we model as a directed
graph G(V, E). In such networks, for a pair of connected
nodes (vi, vj), the bandwidth provisioned on the link in the
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Fig. 8. (a) Node v is shared by bridges B1 and Bk . (b) Bridges B1 and Bk

are replaced by a single bridge B.

direction from vi to vj may be much larger than the allocated
bandwidth in the opposite direction. In addition, the delay and
cost characteristics of link (vi, vj) may be very different from
those of link (vj , vi).

We observe that, with such asymmetric links, it is possible
that a node or a link is shared by several bridges, which
constitutes a major obstacle for identifying efficient solutions.

We overcome this obstacle by combining bridges. Specifi-
cally, let R be an optimal restoration topology for (P̂, d̂) and
let {B1, B2, · · · , Bk}, k ≥ 3 be the set of R’s bridges that
contain the node v, sorted according to their indexes, where
Bi = {si, · · · , ti}. We combine the bridges B1 and Bk into a
single bridge B, such that B = B1(s1,v) ◦Bk(v,tk), as depicted
in Fig. 8. Since the subpaths of P̂ protected by the bridges
B1 and Bk are disjoint, the delay of bridge B may exceed
the delay of the subpath of P̂ protected by B by at most
2∆ = 2(d̂ − D(P̂)). We use this idea in order to prove the
following lemma, which is the counterpart of Lemma 1 for
undirected networks.

Lemma 3: Given a directed graph G, a delay constraint d̂
and an (s, t)-path, D(P̂) ≤ d̂, there exists a feasible restoration
topology R̂ for (P̂, 2d̂−D(P̂)) such that C(R̂) ≤ OP T , and
each node v ∈ R̂ or link l ∈ R̂ is shared by at most two
bridges.

Proof: See [2].
Note that in the above lemma R̂ is a feasible restoration

topology with respect to ∆ = 2d̂ − D(P̂) and not ∆ = d̂ −
D(P̂), as in the case of undirected networks (see Lemma 1).

Suppose that we apply the (simple) algorithm presented in
Section IV-A for G with ∆ = 2(d̂−D(P̂)). By Lemma 3, the
algorithm provides a (2 · (1 + ε), 2)-approximate solution for
Problem RT. As a result, in the case of directed networks, we
compute the adjusted delay with respect to ∆ = 2(d̂−D(P̂)).

Generally, the approximation scheme for directed networks
is similar to undirected network case, except for the following:

1) Algorithm PP is applied with ∆ = 2(d̂−D(P̂)) (instead
of ∆ = d̂ − D(P̂)).

2) A more elaborate procedure is required for finding the
lower and upper bounds L, U . We provide more details
in [2].

Our results for directed graphs are summarized in the
following theorem.

Theorem 4: There exist algorithms that computes, in
O(MN(1/ε + log N)) time,

1) a (2 · (1+ ε), 2)-approximate solution to Problem RT in
directed networks.

2) a (3 · (1+ ε), 3)-approximate solution to Problem P+RT
in directed networks.

Proof: See [2].

VII. SIMULATION RESULTS

In order to further illustrate the efficiency of our proposed
solutions, we conducted simulation experiments. We compared
the following two algorithms for undirected networks (with re-
spect to the total cost of the computed primary and restoration
paths):

• Algorithm 1 - Two Disjoint Paths. Provision a d̂-delay
constrained path P1, which serves as the primary path,
then delete all its links from the graph, and finally,
provision a d̂-delay constrained path P2 in the resulting
graph, which serves as the restoration path. Both paths
are provisioned using Algorithm RSP of [13].

• Algorithm 2 - Algorithm P+RT with β = 1. Pro-
vision the primary path P1 satisfying d̂ (using Algo-
rithm RSP of [13]), then use Algorithm RT to provision
the restoration topology R for (P1, d̂). Note that the delay
constraint is strictly satisfied for both the primary and
restoration paths.

Recall that Algorithm RSP returns a (1+ε)-approximation
to the minimum cost path satisfying delay constraints. In both
algorithms, we choose ε to be a fairly small constant.

A. Network Generation Models

We used two different methods for generating the undirected
network topologies using the BRITE topology generation tool
[15]. The first is Waxman’s method [19], and the second is
Barabasi and Albert’s [1], described below. Both network gen-
erators assign delays to links based on the distance between the
link’s endpoints. Further, we assigned costs to links uniformly
and randomly from a fixed interval.

• Waxman model [19]. In this model, nodes are placed
on a plane; the probability of interconnecting two nodes
decreases exponentially with the Euclidean distance be-
tween them. We set the value for parameters α and β to
0.15 and 0.2, respectively.

• Barabasi-Albert model [1]. In this model, the node con-
nectivity follows a power-law rule: very few nodes have
high connectivity, and the number of nodes with lower
connectivity increases exponentially as the connectivity
decreases.

B. Experimental Results

In our experiments, we compared the provisioning costs
(i.e., the total cost of the primary path and the restoration
topology) computed by the two algorithms for a randomly
selected source and destination node pair. We studied the
effect of varying the delay constraint. More specifically, let
the delay ratio be x = d̂/dsp, where dsp is the minimum
delay of an (s, t)-path. Fig. 9 depicts the provisioning costs
for Algorithms 1 and 2 for the (a) Waxman and (b) Barabasi-
Albert models in a network of 7000 nodes, and as the delay
ratio is increased from 1.2 to 1.6.
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Fig. 9. Effect of delay ratio on the algorithm performance

The findings of our study can be summarized as follows:

• In many cases, for which Algorithm 1 fails to find a pair
of disjoint paths, Algorithm 2 still computes a (feasible)
primary path and restoration topology solution with a
low cost. For example, for the Barabasi-Albert model,
for values x = 1.5 and x = 1.6 Algorithm 1 fails, while
Algorithm 2 still provides a feasible low-cost solution.
The same occurs for x = 1.2 in the Waxman model. This
clearly demonstrates the superiority of the restoration
topology strategy over the disjoint path approach.

• Algorithm P+RT (even with β = 1!) always exhibits
superior performance (i.e., finds paths with lower cost)
compared to Algorithm 1.

• The cost benefits due to Algorithm 2 are particularly
significant (around 15-20%) when delay constraints are
tight, i.e., closer to the minimum delay of an (s, t)-path.

VIII. CONCLUSION

In this paper, we investigated the problem of provisioning
QoS paths with restoration. Specifically, we developed algo-
rithms that compute a primary QoS path and a restoration
topology comprising of a set of bridges, each of which protects
a different part of the primary QoS path.

A major contribution of this paper is the concept of adjusted
delays, which allows existing path algorithms (e.g., Bellman-
Ford [3], Hassin’s [7]) to be adapted in order to identify suit-
able restoration topologies. This enabled us to devise efficient
approximation schemes with proven performance guarantees.
Specifically, we presented an O(MN(1/ε + log N)) approxi-
mation scheme (Algorithm P+RT) that provides (3·(1+ε), 2)-
approximate solutions for link failures. In [2] we extend the
scheme for directed networks; the extended scheme provides
a (3 · (1 + ε), 3)-approximate solution. We emphasize that,

in our schemes, the delay violation may occur only in the
restoration paths, while the primary path always satisfies the
QoS constraint.

The simulation results indicate that in many cases, for which
the disjoint path strategy fails, Algorithm P+RT still computes
a (feasible) primary path and a low-cost restoration topology.
This clearly demonstrates the superiority of the restoration
topology strategy over the disjoint path approach. The cost
benefits due to Algorithm P+RT are particularly significant
(around 15-20%) when delay constraints are tight.
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