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Abstract—We present an information theoretic framework
for network management for recovery from non-ergodic link
failures. Building on recent work in the field of network coding,
we describe the input-output relations of network nodes in
terms of network codes. This very general concept of network
behavior as a code provides a fundamental way to quantify
essential management information as that needed to switch
among different codes (behaviors) for different failure scenarios.
We give bounds on the network management information needed
for link failure recovery in various network connection problems,
in terms of basic parameters such as the number of source
processes and the number of links in a minimum source-receiver
cut. This is the first paper to our knowledge that looks at network
management for general connections.

I. INTRODUCTION

Robustness to network failures is an important and much-
researched concern. In this paper we are concerned with
non-ergodic link failures, which do not allow averaging over
working and non-working states. Such failures in backbone
networks can cause large volumes of transmitted data to
be lost, making efficient recovery schemes essential. Various
schemes for recovery from such failures have been devised,
among them live end-to-end path protection, loopback, and
generalized loopback [7], which are used in different situations
and have different advantages. What they have in common is
a need for detecting failures, and directing network nodes to
respond appropriately.

While failure detection is itself an important issue, it is the
latter component of management overhead, that of directing
recovery behavior, that we seek here to understand and quan-
tify in a fundamental way. This work is an attempt to start
developing a theory of network management for non-ergodic
failures. Our aim is to examine network management in a
way that is abstracted from specific implementations, while
fully recognizing that implementation issues are interesting,
numerous and difficult. Network coding gives us a framework
for considering this, independently of the specifics of circuit
switched or packet switched networks.

Our approach has its roots in recent work on network
coding [6], [1], [4], [5]. Ahlswede et al [1] showed that the
traditional approach of transmitting information by routing
or replication is not always sufficient to achieve maximum
capacity for multicast, and that this sometimes requires coding
together signals from different incoming links. Koetter and
Médard [4], [5] introduced an algebraic framework for ana-
lyzing network coding. It is not yet clear how widely coding
is needed to achieve capacity. We know though that it is useful
for robust recovery from link failures. In particular, [5] showed

that with coding, a multicast network has a linear receiver-
based solution for all recoverable failures, defined as a solution
in which only the receiver nodes react to the failure pattern,
while the other nodes (interior nodes) do not change their
behavior.

This leads to a very general concept of network behavior as
a code, and provides a fundamental way to quantify essential
management information as that needed to switch among
different codes (behaviors) for different failure scenarios.
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Fig. 1. An example of a receiver-based recovery scheme. Each diagram
corresponds to a code valid for failure of any of the links represented by
dashed lines. The only nodes that alter their input-output relations across the
three codes are the receiver nodes β1 and β2.
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Fig. 2. An example of a network-wide recovery scheme. Each diagram gives
a code which is valid for failure of any of the links represented by dashed
lines.

In this paper we analyze a centralized formulation for
quantifying network management, in which the management
requirement is taken as the logarithm of the number of codes
that the network switches among. We consider two types of
recovery schemes: reciver-based recovery, which involves only
receiver nodes, and network-wide recovery, which may involve
any combination of interior nodes and receiver nodes.

As an illustration of some key concepts, consider the simple
example network in Figures 1 and 2, in which a source node
α simultaneously sends processes X1 and X2 to two receiver
nodes β1 and β2. These connections are recoverable under
failure of any one link in the network. One possible set of
codes forming a receiver-based recovery scheme is shown in
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Figure 1, and a possible set of codes forming a network-
wide scheme is given in Figure 2. For this example, routing
and replication are sufficient for network-wide recovery, while
coding is needed for receiver-based recovery. Here linear
coding is used, i.e. outputs from a node are linear combinations
of the inputs to that node.

For this example it so happens that the minimum centralized
management requirement is log(3) for both receiver-based and
network wide recovery, but we shall see that in some cases the
centralized management requirements for receiver-based and
network wide recovery can differ.

This is the first work to our knowledge to consider general
connections. This paper builds on work first begun in [2]
and [3]. Reference [2] considered the multi-transmitter single-
receiver case, and [3] considered the multi-transmitter multi-
cast case, and presented results for failures of links adjacent
to the receiver nodes.

Our main results provide, for network management infor-
mation bits necessary to achieve link failure recovery over
general networks, a lower bound for arbitrary connections and
an upper bound for multi-transmitter multicast connections.

We present our model in Section IV, state our main results in
Section III, give a detailed mathematical development, proofs
and ancillary results in Section V, and present conclusions and
discuss further work in Section VI.

II. MODEL

As in [4], we represent a network by a directed graph
G with vertices representing nodes and ν directed edges
representing links. In this paper we consider delay-free acyclic
networks. Discrete independent random processes X1, . . . , Xr

are observable at one or more source nodes, and processes
originating at different source nodes are independent. There
are one or more receiver nodes, comprising a set D, |D| = d.
Output processes at a receiver node β are denoted Z(β, i).
The general network connection problem is to transmit a given
subset Xβ of the source processes to each receiver node β ∈ D.
The multicast connection problem is to transmit all the source
processes to each of the receiver nodes.

Edge l carries the random process Y (l). Edge l is an incident
outgoing link of node v if v = tail(l), and an incident incoming
link of v if v = head(l). We call an incident incoming link of
a receiver node a terminal link, and other links interior links.

We choose the time unit such that the capacity of each link
is one bit per unit time, and the random processes Xi have
a constant entropy rate of one bit per unit time. Edges with
larger capacities are modelled as parallel edges, and sources
of larger entropy rate are modelled as multiple sources at the
same node.

The processes Xi, Y (l), Z(β, i) generate binary sequences.
We assume that information is transmitted as vectors of bits
which are of equal length u, represented as elements in the
finite field F2u . The length of the vectors is equal in all
transmissions and all links are assumed to be synchronized
with respect to the symbol timing.

❤v

❅
❅❘

Y (1) 	
	✠

Y (2)

❄
Y (3) = a1,3X1 + f1,3Y (1)

+f2,3Y (2)

Fig. 3. Illustration of linear coding at a node.

We first consider linear coding, which has been shown by
Li and Yeung [6] to be sufficient for multicast. In a linear
code, the signal Y (j) on a link j is a linear combination of
processes Xi generated at node v = tail(j) and signals Y (l)
on incident incoming links l (ref Figure 3):

Y (j) =
∑

{i : Xi generated at v}
ai,jXi +

∑
{l : head(l) = v}

fl,jY (l)

and an output process Z(β, i) at receiver node β is a linear
combination of signals on its terminal links:

Z(β, i) =
∑

{l : head(l)=β}
bβi,lY (l)

The coefficients {ai,j , fl,j , bβi,l ∈ F2u} can be collected
into matrices r×ν matrices A = (ai,j) and Bβ = (bβi,l), and
the ν × ν matrix F = (fl,j), whose structure is constrained
by the network. A triple (A,F,B), where

B =


 Bβ1

:
Bβd




specifies the behavior of the network, and represents a linear
network code. We also consider nonlinear receiver-based
schemes, where the interior nodes’ outputs are static linear
functions of their inputs as before, but the output processes
Z(β, i) at a receiver node β may be nonlinear functions of
the signals on the terminal links of β.

We assume that when a link fails, a zero signal is observed
on that link. An alternative is to treat signals on failed links
as undetermined, which, as discussed in Section V-A, restricts
the class of recovery codes that can be used. For the linear
coding matrices described above, failure of link h corresponds
to setting to zero the hth column of matrices A, B and F , and
the hth row of F . A recovery code (A,F,B) is said to cover
(failure of) link h if all receiver nodes are able to reconstruct
the same output processes in the same order as before the
failure.

III. MAIN RESULTS

Our first result shows the need for network management
when linear codes are used. We call a link h integral if it
satisfies the property that there exists some subgraph of the
network containing h, on which the set of source-receiver
connections is feasible if and only if h has not failed.

Theorem 1 (Need for network management): Consider any
network connection problem with at least one integral link
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whose failure is recoverable. Then there is no single linear
code (A, F , B) that can cover the no-failure scenario and all
recoverable failures for this problem.1 �

Theorems 2-4 give bounds, for various types of networks
and connections, on the number of codes needed by different
link failure recovery schemes. These bounds translate directly
into bounds on the centralized network management require-
ment, by taking the logarithm of the number of codes.

The bounds are given in terms of the following parameters:

• r, the number of source processes being transmitted in
the network;

• m, the number of links in a minimum cut between the
source nodes and receiver nodes;

• d = |D|, the number of receiver nodes;
• tβ , the number of terminal links of each receiver β;
• tmin = minβ∈D tβ , the minimum number of terminal

links among all receivers.

By tight bounds we mean that, for any values of the parameters
in terms of which the bounds are given, there are examples in
which these bounds are met with equality.
Theorem 2 (General lower bound for linear recovery):

For the general case, tight lower bounds on the number of
linear codes for the no-failure scenario and all single link
failures are:

receiver-based
⌈

m
m−r

⌉

network-wide
⌈

m+1
m−r+1

⌉

�
Theorem 3 (Upper bounds for linear recovery):

a) For the single-receiver case, tight upper bounds on the
number of linear codes needed for the no-failure case
and all single link failures are:

receiver-based

{
r + 1 for r = 1 or m − 1
r for 2 ≤ r ≤ m − 2

network-wide




2 for r = 1
r for r = 2, 3 or m − 1
r − 1 for 4 ≤ r ≤ m − 2

b) For the multicast case with two receivers, an upper
bound on the number of linear codes for the no-failure
scenario and all single link failures is r2 + 2.

c) For the multicast case with d ≥ 3 receivers, an upper
bound on the number of linear codes for the no-failure
scenario and all single link failures is (r + 1)d.

d) For the general case, an upper bound on the number
of linear codes for the no-failure scenario and all single
terminal link failures is given by∑

β : tβ≤r

tβ +
∑

β : tβ≥r+1

(r − 1)

where the sums are taken over receiver nodes β ∈ D.

1A solution with static A and F matrices always exists for any recoverable
set of failures in a multicast scenario [4], but in such cases the receiver code
B must change.

�
Network-wide schemes are more general than receiver-

based schemes, which are a special case of the former.
The additional flexibility of network-wide schemes allows for
smaller centralized network management requirements than
receiver-based schemes in some cases, though the differences
in bounds that we have found are not large. Figure 4 gives
a plot of how the bounds look for a single-receiver network
with a minimum cut size m of 20.
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Fig. 4. Plot of tight upper and lower bounds for centralized network
management, in a single-receiver network with minimum cut size m = 20.

Our lower bounds for the general case and our upper bounds
for the single-receiver case are tight. Establishing tight upper
bounds for the general case is an area of further research.

Up to this point we have been considering linear codes in
which the outputs at all nodes are linear functions of their
inputs. Relaxing the restriction on linear processing at the
receivers may eliminate the need for network management in
some cases, as shown in the next theorem.
Theorem 4 (Nonlinear receiver-based recovery): For the

multicast case, tight bounds on the number of nonlinear
receiver-based codes for the no-failure scenario and terminal
link failures are:

lower upper
bound bound{

r for 1 < r = tmin − 1
1 for r = 1 or r ≤ tmin − 2

r

�

IV. MATHEMATICAL MODEL

A linear network code is specified by a triple of matrices A,
F and B, defined in Section IV. The product A(I−F )−1BT =
AGBT defines a transfer matrix from the source processes
X to the output processes Z [4]. Matrix A can be viewed
as a transfer matrix from the source processes to signals on
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source nodes’ outgoing links, and B as a transfer matrix
from signals on terminal links to the output processes. F
specifies how signals are transmitted between incident links.
G = I+F +F 2 + . . . sums the gains along all paths between
each pair of links, and equals (I − F )−1 since matrix F is
nilpotent. A code (A,F,B) is equivalently specified by the
triple (A,G,B), where G = (I − F )−1. A pair (A,F ), or
(A,G), is called an interior code.

We use the following notation in this paper:

• cj and bj denote column j of AG and B respectively.
We call the column vector cj corresponding to a link j
the signal vector carried by j.

• GK and BβK denote the submatrix of G and Bβ respec-
tively consisting of columns that correspond to links in
set K.

• Gh, Gh
K and chj are the altered values of G, GK and cj

respectively resulting from failure of link h.
• GH, GH

K and cHj are the altered values of G, GK and cj
respectively under the combined failure of links in set H.

• Tβ is the set of terminal links of receiver β.
• T h

β is the set of terminal links of receiver β that are
downstream of link h. If there is a directed path from a
link or node to another, the former is said to be upstream
of the latter, and the latter downstream of the former.

In the general case, each receiver β requires a subset Xβ

of the set of source processes. A code (A,G,B) is valid if

for all receivers β ∈ D, AGBT
β =

[
eiβ

1
| . . . |eiβ

|Xβ |

]
, where

iβ1 , . . . , i
β
|Xβ | are the elements of Xβ in some specified order2,

and ei is the unit column vector whose only nonzero entry is
in the ith position. In the single-receiver and multicast cases,
we choose the same ordering for input and output processes,
so this condition becomes AGBT

β = I ∀ β. An interior code
(A,G) is called valid for the network connection problem if
there exists some B for which (A,G,B) is a valid code for
the problem.

The overall transfer matrix after failure of link h is
AIhGh(BIh)T = AGhBT , where Ih = I−δhh is the identity
matrix with a zero in the (h, h)th position, Fh = IhFIh,
and Gh = Ih + Fh + (Fh)2 + . . . = Ih

(
I − FIh

)−1 =(
I − IhF

)−1
Ih. If failure of link h is recoverable, there

exists some (A′, G′, B′) such that for all β ∈ D, A′G
′hB

′T
β =[

eiβ
1
| . . . |eiβ

|Xβ |

]
where Xβ = {iβ1 , . . . , i

β
|Xβ |}.

In receiver-based recovery, only B changes, while in
network-wide recovery, any combination of A, F and B may
change.

V. DETAILED DEVELOPMENT, ANCILLARY RESULTS AND

PROOFS

A. Codes for different scenarios

As a first step in analyzing how many codes are needed
to cover the various scenarios of no failures and individual

2each receiver is required to correctly identify the processes and output
them in a consistent order

link failures, we characterize codes that can cover multiple
scenarios.
Lemma 1 (Codes covering multiple scenarios):

1. If a code (A,G,B) covers the no-failure scenario and failure
of link h, then ch

∑
j∈T h

β
G(h, j)bTj = 0 ∀ β ∈ D, where 0

is the r × r zero matrix.
2. If code (A,G,B) covers failures of links h and k, then
∀ β ∈ D, either

(a) ch
∑

j∈T h
β
G(h, j)bTj = 0

and ck
∑

j∈T k
β
G(k, j)bTj = 0

or
(b) γh,k

∑
j∈T h

β
G(h, j)bTj =

∑
j∈T k

β
G(k, j)bTj �= 0

and ch = γh,kck �= 0
where γh,k ∈ F2u

Proof outline: The results follow from writing AGh
T B

T
T

in the form
∑

j∈T c
h
j b

T
j and noting that ∆chj = cj − chj =

G(h, j)ch.
These results lead to the notion of active and non-active

recovery codes. A recovery code which is active for a receiver
β in a link h is one in which AGhBT

β is affected by the value
on link h, i.e. ch

∑
j∈T h

β
G(h, j)bTβj

�= 0. A recovery code
is active in a link h if it is active in h for some receiver
β. Otherwise, the code is non-active in h. For a code which
is non-active in a link h, the value on h is set to zero (by
upstream links ceasing to transmit on the link), cancelled out,
or disregarded by the receivers.

By Part 1 of Lemma 1, a code which covers the no-failure
scenario as well as one or more single link failures must be
non-active in those links. By Part 2 of Lemma 1, a code which
covers failures of two or more single links is, for each receiver,
either non-active in all of them (case a) or active in all of them
(case b). In the latter case, those links carry signals that are
multiples of each other. We term a code active if it is active in
those links whose failures it covers, and non-active otherwise.
If signals on failed links are undetermined, then consideration
must be restricted to non-active codes.

The expressions in Lemma 1 simplify considerably for
terminal links as follows:
Corollary 1:

1. If code (A,G,B) covers the no-failure scenario and failure
of terminal link h, then chb

T
h = 0.

2. If (A,G,B) covers failures of two terminal links h and k,
then either

(a) chb
T
h = 0 and ckb

T
k = 0

or
(b) h and k are terminal links of the same receiver β,

γh,kb
T
h = bTk �= 0 and ch = γh,kck �= 0

where γh,k ∈ F2u

�
Proof of Theorem 1: Consider an integral link h whose

failure is recoverable, and a subgraph G′ on which the set of
source-receiver connections is feasible if and only if h has
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not failed. G′ does not include all links, otherwise failure
of h would not be recoverable. Then the set of links not
in G′, together with h, forms a set H of two or more links
whose individual failures are recoverable but whose combined
failures are not. By Lemma 1, a code which covers the no-
failure scenario and failure of a link k is non-active in k.
However, a code which is non-active in all the links in H is
not valid.

B. Bounds on linear network management requirement

1) Single receiver analysis:
Let M be a set of links on a minimum capacity cut between
the sources and the receiver3, where |M| = m, and let J be
the set of links upstream of and including links in M.

We define the r× |J | matrix Q = (qi,j) and the |J | × |J |
matrices D = (dl,j) and J = (I−H)−1, which are analogous
to A, F and G respectively, but which specify only signals on
links in J . qi,j and dl,j (corresponding exactly with ai,j and
fl,j for l, j ∈ J ) are the coefficients of the linear combination
of source signals Xi and signals on incident links l that appear
on link j:

Y (j) =
∑

{i : Xi generated at v}
qi,jXi +

∑
{l : head(l) = v}

dl,jY (l)

For given A and G matrices, the submatrix AJ of A,
consisting of columns that correspond to links in J , is a value
for Q that corresponds to the given A, and the submatrix
GJ×J of G, consisting of entries from rows and columns
that correspond to links in J , is a value for J that corresponds
to the given G. We also define JK to be the submatrix of J
consisting of columns that correspond to links in K. Rounding
out the analogy, we define a related connection problem Π′

on a network with sources, nodes and links corresponding
exactly to those in the original network that are upstream of
M, and with a single receiver node β′ whose terminal links
h′ correspond to links h in M, with tail(h′) = tail(h).

The following two lemmas allow us to relate codes for
terminal link failures in problem Π′ to codes for failures of
links in M.
Lemma 2: Let (Q, J) be a partial interior code in which no

link in M feeds into another. If there exists an r ×m matrix
L such that QJh

ML
T = I for h ∈ M1 ⊆ M, then there

exists a code (A,G,B) covering failure of links in M1 such
that AJ = Q and GJ×J = J . Conversely, if (A,G,B) is a
code in which no link in M feeds into another, and (A,G,B)
covers links in M1 ⊆ M, then there exists some r×m matrix
L such that Q = AJ and J = GJ×J satisfy QJh

ML
T = I

for h ∈ M1.
Proof outline: There exists a set of link-disjoint paths

{Pk | k ∈ M} where Pk connects link k to the receiver.
(Q, J) can be extended to a valid interior code (A,G), where
AJ = Q and GJ×J = J , by having each link k ∈ M simply
transmit its signal along the path Pk, such that the terminal

3a partition of the network nodes into a set containing the sources, and
another set containing the receiver, such that the minimum number of links
cross from one set to the other

link on Pk carries the same signal as link k. Then the receiver
matrix B whose columns for terminal links on paths Pk are the
same as the corresponding columns k of L, and zero for other
terminal links, satisfies AGhBT = QJh

ML
T = I ∀ h ∈ M1.

For the converse, note that

AGhBT =
∑
j∈T

∑
l∈M
l �=h

clG(l, j)bTj

Thus, we can construct a matrix L which satisfies the required
property as follows:

LT =




∑
j∈T G(l1, j) bTj

...∑
j∈T G(lm, j) bTj




where l1, . . . , lm are the links of M in the order they appear
in JM.
Lemma 3: If failure of some link in J is recoverable,

recovery can be achieved with a code in which no link in
M feeds into another.

Proof: If failure of some link in J is recoverable, then
there exists a partial interior code (Q, J) in which QJM has
full rank. Having one link in M feed into another only adds
a multiple of one column of QJM to another, which does
not increase its rank, so there exists a valid (Q, J) such that
no link in M feeds into another. By Lemma 2, this can be
extended to a valid code (A,G).
Lemma 4: For a single receiver with t terminal links, an

upper bound on the number of receiver-based codes required
for the no failure scenario and terminal link failures is

max
(⌈

t

t− r

⌉
, r

)
=

{
r + 1 for r = 1 or t− 1
r for 2 ≤ r ≤ t− 2

Proof: For r = 1,
⌈

t
t−r

⌉
= 2. Just two codes are needed

as only one of the links needs to be active in each code. For
t = r + 1,

⌈
t

t−r

⌉
= r + 1. We can cover each of the r +

1 terminal links by a separate code, so r + 1 codes suffice.
For 2 ≤ r ≤ t − 2, consider any valid static code (A,G).
Let v1, . . . , vr be r columns of AGT that form a basis, and
w1, . . . , wt−r the remaining columns. Assuming that all single
link failures are recoverable, and that there are at least r + 2
nonzero columns, we can find a set (vi, wi′ , vj , wj′) such that
{wi′ , vx |x �= i} and {wj′ , vx |x �= j} have full rank. Then the
links corresponding to vi and wj′ can be covered by one code,
the links corresponding to vj , wi′ and {wk | k = 1, . . . , t −
r, k �= i′, j′} by another code, and the links corresponding to
{vk | k = 1, . . . , r, k �= i, j} by a separate code each.
Lemma 5: For any set of n ≥ 2 codes with a common

(A,G) covering failures from a set T1 ⊆ T of terminal links,
there exists a set of n or fewer non-active codes that cover
failures in set T1.

Proof: A set of two or more terminal links covered by a
single active code carry signal vectors which are multiples of
each other. One of the links can be arbitrarily designated as
the primary for the set. If all n codes are active codes which
cover two or more terminal link failures, then only 2 ≤ n
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non-active codes are required, one non-active in the primary
links and the other non-active in the rest. Otherwise, there is
some non-active code in the set, or some active code covering
only one terminal link failure which can be replaced by a
corresponding non-active code covering that link. The primary
link of each active code can be covered together with some
non-active code, and its secondary links can be covered by
a separate non-active code. This forms a set of n non-active
codes covering the same terminal link failures as the original
set.
Corollary 2: For receiver-based recovery, the minimum

number of codes for terminal link failures can be achieved
with non-active codes.
Lemma 6: Bounds on the number of receiver-based codes

needed to cover the no-failure scenario and failures of links in
M, assuming they are recoverable, are given in the following
table. These bounds are the same in the case where only non-
active codes are used.

lower bound upper bound

⌈
m

m−r

⌉ max
(⌈

m
m−r

⌉
, r

)

=

{
r + 1 for r = 1 or m − 1
r for 2 ≤ r ≤ m − 2

Proof: It follows from Lemma 3 that if failure of some
link in J is recoverable, it is recoverable for the related
problem Π′. Any code (Q′, J ′) covering failure of terminal
links h ∈ M1 in problem Π′ can be extended to obtain a
code (A,G,B) covering links h ∈ M1 in the original problem
(Lemma 2). We can thus apply the upper bound from Lemma 4
with m in place of t.

For the lower bound, from Lemma 1, a single code in a
valid receiver-based scheme can cover at most m − r of the
links in M. By Corollary 2, restricting consideration to non-
active codes does not increase the receiver-based lower bound
for the related terminal link problem Π′, which is also

⌈
m

m−r

⌉
,

and so does not increase the receiver-based lower bound here.

Lemma 7: A lower bound on the number of network-wide
codes needed to cover the no-failure scenario and failures
of links in M, assuming they are recoverable, is given by⌈

m+1
m−r+1

⌉
.

Proof: It follows from Lemma 1 that a single non-active
code covers the no-failure scenario and at most m− r single
link failures among links in M, while a single active code
covers at most m − r + 1 links in M. Each code therefore
covers at most m−r+1 out of m+1 scenarios of no failures
and failures of links in M.
Lemma 8: For a single receiver, there exists a valid static

interior code (A,G) such that no link feeds into more than
one link in M.

Proof outline: From Lemma 3, there exist valid codes for
failures of links in J in problem Π′. Thus, a static interior
code (Q′, J ′) covering these failures exists for Π′ [4]. This
can be extended (Lemma 2) to a static interior code (A,G)
in which no link in M feeds into another. For any such code
(A,G), consider any link h which feeds into more than one
link in M. Let Mh = {h1, . . . , hx} be the set of links in M

that h feeds into, and let Mh = M/Mh.
Case 1: h feeds into some link hi in M via some path P

without further coding with other signals. We can construct
a partial code (Q, J) in which h feeds only into hi ∈ Mh,
whose extension is a valid static code.

Case 2: Coding occurs between h and each hi ∈ Mh. We
can show by contradiction that there exists a proper subset
L ⊂ M such that AGh

L has full rank and which does not
include all links in Mh, i.e. Mh ∩M/L is nonempty.

Let hj be some link in Mh ∩M/L.
Case 2a: There exists a set R of links forming a single path

from h to hj , excluding h and hj , such that none of the links
h′ ∈ R feeding into some other link hi, i = 1, . . . , x, i �= j
has a signal vector other than a multiple G(h, h′)ch of the
signal vector ch of link h. We can then construct a partial
code (Q′,D′) which is the same as (AJ , FJ×J ) except that
h feeds only into links in R, whose extension we can show is
a valid static code.

Case 2b: Every path from h to hj contains some link that
feeds into one or more links hi ∈ Mh besides hj , and has a
signal vector which is a linear combination of ch and some
other signal vector. Consider any path R′ from h to hj and
let h̃ be the furthest upstream of these links.

We apply the entire argument described from paragraph 1
onwards with (A,G) and h̃. If case 1 or case 2a applies,
then we have a modified code (A′, G′) in which h̃ feeds into
only one link in M. We then apply the same argument once
again, this time to (A′, G′) and h, with h feeding into strictly
fewer links in M than before. If on the other hand case 2b
applies, we proceed recursively, with h̃ replaced by one of its
downstream links. If we come to a link that is incident to a
link in M, then case 1 or case 2a will apply, allowing us to
eliminate a nonzero number of links in M from consideration.
Thus, the procedure terminates with a valid static interior code
in which h feeds into only one link in M.

Proof of Theorem 3a: We can find a valid static interior
code (A,G) such that the subgraphs Sk of links which feed
into each k ∈ M are link disjoint with each other, and the
paths Pk along which k transmits to the receiver are also link
disjoint (Lemmas 2 and 8). A non-active code (A,G,B) which
covers failure of link k also covers failure of all links in Sk

and Pk. Thus the bounds for receiver-based, or static, recovery
here are the same as those in Lemma 6. An example of a valid
static interior code achieving the lower bound with equality is
an interior code (A,G) where AGM is of the form shown in
Figure 5.

For the network-wide upper bound, since network-wide
recovery includes receiver-based recovery as a special case, the
maximum number of terminal link codes needed in network-
wide schemes is no greater than that needed in receiver-based
schemes.

For r = m − 1, by Lemma 8, there exists a valid static
interior code (A,G) such that no link feeds into more than
one link in M. Choose any link h ∈ M and let the set
of remaining links in M be Mh. Consider any i such that
AG(i, h) is nonzero, i.e. link h carries signal i. Let ei ∈ F

r
2u
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x 0 . . . 0 x 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
0 x . . . 0 x 0 . . . . . . :
...

. . .
...

...
: x x :
: x 0 . . . 0 x :
: x . . . 0 x :
...

. . .
...

...
: x x :
...

. . .
...

: x 0 . . . 0 x
: x . . . 0 x
...

. . .
...

0 x x







⌈
m

m−r

⌉
− 1




⌈
m

m−r

⌉
− 1


 m − (m − r − 1)

⌈
m

m−r

⌉
− 1

Fig. 5. An example of an AGM matrix in a receiver-based code that achieves the lower bound of
⌈

m
m−r

⌉
codes, with m − (m − r − 1)

⌈
m

m−r

⌉
≥ 2.

be the unit vector which has 1 in the ith position as its only
nonzero entry. Since no link feeds into more than one link
in M, column AGh can be set to ei without affecting any
of the other columns in AGM. Since (A,G) is a valid static
interior code covering failure of h, AGMh has full rank, so
ei is a linear combination of some subset Mh

i of columns
in Mh. There exists some k ∈ Mh

i for which AG(i, k) is
nonzero. Column AGk can be set to ei without reducing the
rank of AGM, since AGk is a linear combination of the other
columns in Mh

i , together with ei. Then h and k and their
upstream links can be covered by a single active code. The
remaining r − 1 links in M, and their upstream links, can
be covered by their corresponding receiver-based codes. An
example in which r = m− 1, and r network-wide codes are
needed is given in Figure 6.

Src 1
Src 2 Src r

Rcv

Fig. 6. An example network in which r = m−1, which achieves the linear
receiver-based upper bound of r + 1 codes and the linear network-wide and
nonlinear receiver-based upper bounds of r codes.

For 4 ≤ r ≤ |M| − 2, we show that there exists a static
interior code (A,G) satisfying the condition that either there
is no pairwise dependence among columns in AGM, or the
dependent links are part of a set of 2x links in M that carry
all possible pairwise independent combinations of a set of x
processes. We start with a static interior code (A′, G′) in which
no link feeds into more than one link in M. If (A′, G′) does
not satisfy the condition above, we show how to construct a
related code (A,G) that does.

Suppose there is a pair of dependent columns in A′G′
M,

corresponding to links h1, h2 ∈ M. Let {Xi|i ∈ X} be the

set of processes carried on h1 and h2.
For |X | = 1, links h1 and h2 form a set of 2|X | = 2 links

that carry the same |X | = 1 process.
For |X | ≥ 2, let CX be the set of all possible pairwise

independent signal vectors corresponding to nonzero combi-
nations of of signals Xi, i ∈ X . Suppose there exists at least
one signal vector in CX that is not dependent on any column in
A′G′

M. If A′G′h1,h2
M has full rank, then h2 can carry this (or

any) signal vector and the resulting code will be a valid static
code. If A′G′h1,h2

M does not have full rank, then the column
space of A′G′h1,h2

M is a subspace of dimension r− 1, and ch1

is not in this subspace. There exists some ei, i ∈ X that is not
in this subspace, since if all ei′ , i

′ ∈ X were in the subspace,
then ch1

would also be in the subspace. Thus the signal vector
of h2 can be set to ei, forming a valid static code.

Case 1: There is a set of r + 2 columns in AGM which
contains a basis and such that no two columns of the set are
pairwise dependent. We show that the set contains three pairs
of columns such that each pair can be covered by a single
code, and r + 2 − 3 = r − 1 non-active codes suffice.

Let the columns in this set be u1, . . . , ur, w1, w2, where
u1, . . . , ur form a basis, and let the remaining columns in
AGM be w3, . . . , w|M|−r. Expressing each wi as a linear
combination wi = λi,1u1 + . . . + λi,rur, the pairwise inde-
pendence of columns in the set implies that for i = 1 and
i = 2, at least two of λi,1, . . . , λi,r are nonzero, and that there
exist k, l such that λ1,kλ2,l �= λ1,lλ2,k. The last condition
implies that λ1,k, λ2,l �= 0 or λ1,l, λ2,k �= 0; we assume wlog
that λ1,k, λ2,l �= 0. By the assumption of recoverability, at
least one of λ1,j , . . . λ|M|−r,j is nonzero.

Case 1a: λ1,k′ , λ2,l′ �= 0 for some k′, l′ other than k, l.
Then links corresponding to each pair of columns (w1, ul′),
(w2, uk′) and (uk, ul) can be covered by a single code.

Case 1b: λ1,k′ , λ2,k �= 0 for some k′ �= k, l, λ2,j = 0 ∀ j �=
k, l. Then λ1,k′λ2,l �= λ1,lλ2,k′ , so links corresponding to the
pair of columns (uk′ , ul) can be covered by a single code. The
pairs (w1, uk) and (w2, ul′) for some l′ �= k, l or k′ can each
be covered by a single code.

Case 1c: λ1,l, λ2,l′ �= 0 for some l′ �= k, l, λ1,j = 0 ∀ j �=
k, l. This case is similar to case 1b.
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Case 1d: λ1,l, λ2,k �= 0, λ1,j = 0, λ2,j = 0 ∀ j �= k, l. Links
corresponding to each pair of columns (uk, ul), (w1, ul′) and
(w2, uk′) can be covered by a single code, for some k′, l′ �=
k, l.

Case 2: For any basis set of r columns in AGM, there are
no two columns among those remaining that are not multiples
of each other or multiples of columns in the basis set. Now
pairs of dependent columns are from a set of 2x links in M
that carry all possible pairwise independent combinations of a
set of x processes. Links in such a set can be covered by two
non-active codes.

Let ρ be the total number of processes not involved in such
sets, and ν be the number of links not in such sets. We use
reasoning similar to our analysis of earlier cases to find the
number of codes needed to cover these ν links. We have that
ρ + 1 non-active codes suffice if ρ = 1, ρ non-active codes
suffice if 2 ≤ ρ ≤ ν − 2, and that ρ − 1 non-active and one
active code suffice if ρ = ν−1. If ρ−1 ≥ 2, then the dependent
sets can be covered together with the ρ− 1 non-active codes,
and a total of ρ codes suffice. If ρ ≤ 2, then ρ+1 = 3 ≤ r−1
codes suffice.

For 1 ≤ r ≤ 3, the receiver-based upper bound of max(2, r)
is also a tight upper bound for network-wide recovery, which
includes the former as a special case.

The example network of Figure 7 achieves the receiver-
based upper bound of r, and the network-wide upper bounds
of r codes for r = 3, and r − 1 codes for 4 ≤ r ≤ m− 2.

Src r

Rcv

Src 1

Src 2
Src 3

Fig. 7. An example network which achieves the receiver-based upper bound
of r, the network-wide upper bounds of r codes for r = 3, and r − 1 codes
for 4 ≤ r ≤ m − 2.

2) General case lower bound:
Proof of Theorem 2: Consider joining all receivers with

max(m, 2r) links each to an additional node β′. If we consider
β′ to be the sole receiver node in the augmented network, the
number of links in a minimum cut between the sources and
this receiver is m, and there is a minimum cut of m links
among the original links. The number of codes needed to cover
links on this minimum cut is at least

⌈
m

m−r

⌉
for receiver-based

recovery and
⌈

m+1
m−r+1

⌉
for network wide recovery (Lemmas 6

and 7), which gives a lower bound on the number of codes
required to cover all links in the original problem.

An example which achieves the receiver-based lower bound
with equality for any values of m and r is given in Figure 8,
where the number tβ of each receiver β is set to 2rβ , twice
the number rβ of processes needed by receiver β. Here, all

links in M can be covered with
⌈

m
m−r

⌉
non-active codes, two

of which can cover at the same time all terminal links.
This example with tβ = 2rβ also achieves the network-

wide lower bound with equality when
⌈

m+1
m−r+1

⌉
is not an

integer. Let
⌈

m+1
m−r+1

⌉
(m− r+ 1) = m+ 1 + y. Links in M

can be covered with a set of
⌈

m+1
m−r+1

⌉
codes that includes

min
(⌈

m+1
m−r+1

⌉
, y + 1

)
≥ 2 non-active codes, which can at

the same time cover all the terminal links.
For the case where

⌈
m+1

m−r+1

⌉
is an integer, however, cov-

ering links on the minimum cut with exactly
⌈

m+1
m−r+1

⌉
codes

would allow for only one non-active code (Lemma 7). An
example which achieves the network-wide lower bound of⌈

m+1
m−r+1

⌉
when

⌈
m+1

m−r+1

⌉
is an integer is obtained by having

receivers β = 1, . . . , u in Figure 8 each havem−r+1 terminal
links and each receive a different single process, and a receiver
at the central node require all remaining processes.

... m ...

... t
1 ... ..

. t
u
..
.

... t2...

a

b1

b2

bu

Fig. 8. An example network which achieves the general case lower bounds
of Theorem 2 with equality, where ri is the number of processes received by
receiver βi.

3) Upper bounds for all link failures, multicast case:
Proof of Theorem 3c: Let the number of links in a

minimum cut between the sources and receiver β be mβ .
From Lemmas 2 and 8, we know that for each receiver node β
individually, there is a static solution for all single link failures
in which mβ link-disjoint subgraphs feed into mβ different
terminal links of β. Each subgraph is a tree whose links are
directed towards the root node β, with an unbranched portion
between the root and the branches, which we term its trunk.
These trees can be grouped into sβ ≤ r+1 link-disjoint forests
such that failure of all links in any one forest leaves a subgraph
of the network that satisfies the max-flow min-cut condition
for receiver node β. We will denote trees rooted at receiver
βx by Gi

x, i = 1, 2, . . ..
In the multicast case, if a network satisfies the max-flow

min-cut condition for each receiver, then the connections to
all receivers are simultaneously feasible [1]. Thus a set of
links intersecting 0 or 1 of these forests for each receiver can
be covered together.

Each of the sβ1 ≤ r+1 forests for a receiver β1 may contain
links that are part of at most r + 1 such sets for receiver β2,
which have to be covered separately. Each of the resulting
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≤ (r + 1)2 subsets may in turn contain links that are part of
≤ r + 1 such sets for receiver β3, and so on. Thus at most
(r + 1)d codes are required for d receivers.

Proof of Theorem 3b: Here we consider the two receiver
case. The max flow min cut condition translates into the
existence of a basis for all r processes among the signals on
the trunks of each receiver’s trees. If a receiver has a min
cut of more than r + 1, then at most r codes are needed. So
the corresponding trees these can be grouped into ≤ r forests
which can each be covered together. If this is the case for
both receivers, then at most r2 codes are needed. If not, then
at least one of the receivers, say β1, has a min cut of r + 1
links. Of the corresponding r + 1 trees, any r of them have
trunks whose signal vectors forming a basis.

Let a link that lies on two trees Gi
1 and Gj

2 be called
an intersection, denoted (Gi

1, Gj
2). Intersections between the

same two trees, Gi
1 and Gj

2 , that form a contiguous path are
considered part of the same intersection, and if they do not
form a contiguous path but are not separated along both Gi

1

and Gj
2 by intersections involving other paths, then they are

also considered part of the same intersection. Two or more
intersections involving the same pair (Gi

1, Gj
2) of trees can be

covered together, so the maximum number of codes needed
is the maximum number of intersections involving different
pairs of trees.

First we show that in determining the maximum number
of codes needed, we need only count intersections involving
links that are on the trunks of their trees. Suppose there exists
an intersection of a tree Gi

1 along one of its branches Bi
1 with

a tree Gj
2 . The trunks of the r trees other than Gi

1 carry signals
forming a basis, and the subtree of Gi

1 excluding branch Bi
1

can replace some tree Gi′
1 in this basis. Then the intersection

(Bi
1, Gj

2) can be covered together with intersections (Gi′
1 ,Gj

2),
if any. A similar argument holds for an intersection of a tree
Gj′

2 along one of its branches with a tree Gi′′
1 . Thus, we need

only count intersections involving links that are on the trunks
of their trees.

Next we show that we need not count an intersection which
is the furthest upstream for one tree but not the other. Suppose
an intersection (Gi

1, Gj
2) is the furthest upstream intersection

in J of some tree Gj
2 . Then there exists a set of r paths

satisfying the max flow min cut condition between the sources
and receiver β1, that excludes the portion of the trunk of Gi

1

upstream of (Gi
1, Gj

2) and the trunk of one other tree of β1. To
see this, note that the trunks of the r trees other than Gi

1 carry
signals forming a basis. If Gj

2 does not have any intersections
upstream of (Gi

1, Gj
2) with branches of other trees Gi′

1 , then
joining the portion of Gi

1 downstream of (Gi
1, Gj

2) with the
portion of Gj

2 upstream of (Gi
1, Gj

2) gives a tree which can
replace one of the trees in the basis set. If Gj

2 does have one or
more intersections upstream of (Gi

1, Gj
2) with branches of other

trees Gi′
1 , let its furthest downstream of these intersections be

with a branch Bĩ
1 of tree G ĩ

1. Consider the path formed by
joining the portion of Bĩ

1 upstream of this intersection with the
portion of Gj

2 between this intersection and (Gi
1, Gj

2), and the

portion of Gi
1 downstream of (Gi

1, Gj
2). This path can replace

some tree G î
1 in the basis set that originally excluded Gi

1. Then
any intersection (Gi

1, Gj′
2 ) upstream of (Gi

1, Gj
2) on Gi

1 can
be covered together with intersections (G î

1, Gj′
2 ) in J , if any.

Thus, we need only count potential intersections along Gi
1 that

are downstream of (Gi
1, Gj

2) inclusive.
Let I be the set of all such intersections. Then the furthest

upstream intersection in I of any tree Gi
1 is with the furthest

upstream intersection in I of some tree Gj
2 , and I contains

intersections involving at most r + 1 trees Gj
2 .

We show that if each of the trees Gi
1 has ≥ 2 intersections

in I, then we can define an alternative set of disjoint trees G
′j
2

corresponding to a valid static solution, such that their inter-
sections I ′ form a subset of the original set of intersections
I, and one of the trees Gi

1 has 0 or 1 intersection in I ′.
Consider the set K1 of furthest upstream intersections of

trees Gi
1 in I, and the set K2 of second furthest upstream

intersections of trees Gi
1 in I. Each intersection in K1 is with

a different tree Gj
2 , but there may be more than one intersection

in K2 with the same tree Gj
2 .

We note that if there exists a subset of trees Gi
1, i ∈ S such

that their intersections in K2 are with the same set of trees
Gj

2 as their intersections in K1, then we can define G
′j
2 , j ∈ S

to match the portion of the paths Gi
1 between their first and

second intersections in I, as shown in Figure 9.
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Fig. 9. Illustration of algorithm for defining trees G′j
2 .

Consider the following algorithm for obtaining a new set
of trees G

′j
2 . Each G

′j
2 is initialized to be the same as Gj

2 .
We start with an intersection (Gi1

1 , G
′j1
2 ) that is the furthest

upstream in I for Gi1
1 and G

′j1
2 . Let the adjacent downstream

intersection for Gi1
1 be (Gi1

1 , G
′j2
2 ), let the furthest upstream

intersection in I for G
′j2
2 be (Gi2

1 , G
′j2
2 ), and let the adjacent

downstream intersection for Gi2
1 be (Gi2

1 , G
′j3
2 ). If G

′j3
2 =

G
′j1
2 , then the subset {Gi1

1 ,Gi2
1 } has intersections in K1 and

K2 involving the same trees G
′j1
2 and G

′j2
2 . We can redefine

the portion of G
′j1
2 downstream of (Gi2

1 , G
′j2
2 ) to match the

portion of the paths Gi1
1 and Gi2

1 between their first and second
intersections. This collapses the four intersections into two.
If not, we continue in a similar fashion, letting the furthest
upstream intersection in I for G

′jn

2 be (Gin
1 , G

′jn

2 ), and letting
the adjacent downstream intersection for Gin

1 be (Gin
1 , G

′jn+1
2 ),

until G
′jn+1
2 = G

′jp

2 for some p < n + 1. Then the subset
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{Gip

1 , . . .Gin
1 } has intersections in K1 and K2 involving the

same trees {G
′jp

2 , . . .Gin
1 } and we can define G

′jp

2 , . . . ,G
′jn

2 to
match the portion of the paths Gip

1 , . . . ,Gin
1 between their first

and second intersections, collapsing 2(n−p+1) intersections
to n − p + 1 intersections. We repeat the process, redefining
paths G

′j
2 until no further redefinition is possible. As long as

each path Gi
1 has at least two intersections, carrying out this

process always results in redefinition of paths G
′j
2 to reduce

the number of intersections. When no further redefinition is
possible, there will be some path Gi

1 that has 0 or 1 intersection
in I.

Now suppose each of r + 1 trees G
′j
2 are involved in

≥ 2 intersections in I. By similar reasoning as before, we
can define an alternative set of disjoint trees G′i

1 such that
their intersections I ′′ form a subset of the original set of
intersections I ′, and one of the trees G

′j
2 has 0 or 1 intersection

in I ′′.
Thus, at most r2 + 2 codes are needed.
We are not yet certain as to how tight the bounds are for the

multi-receiver all link failures case. For the two-receiver case,
an example in which (r+1)(r+2)/2 codes are needed is given
in Figure 10. In this figure, there are r + 1 paths leading to
each receiver, which intersect each other in a stair-like pattern:
the first path to β1 intersects one path to β2, the second path to
β1 intersects two paths to β2, the third intersects three and so
on. Each of the (r+1)(r+2)/2 intersections must be covered
by a separate code.

Xr-1 XrX2X1

Rcv 1

Rcv 2

Fig. 10. An example multicast problem in which (r + 1)(r + 2)/2 codes
are needed for all link failures.

The general case differs from the multicast case in that
processes which are needed by one node but not another can
interfere with the latter node’s ability to decode the processes
it needs. As a result, a static interior solution does not always
exist, and the network management requirement for terminal
link failures may exceed the corresponding upper bound from
the multicast case. Unlike the multicast case where the number
of codes for terminal link failures is bounded by r+ 1, in the
general case, the number of codes for terminal link failures
can grow linearly in the number of receivers.

Proof of Theorem 3d: Let a set S of terminal links of a
receiver β be called a decoding set for β in a given interior
code if β can decode the processes it needs from links in S,

but not from any subset of S. S is called a decoding set for
β in a given failure scenario if S is a decoding set for β in
some valid interior code under this scenario.

Consider a receiver β that has ≥ r + 1 terminal links, and
any interior code valid under failure of some other receivers’
terminal links. Either β has a decoding set of ≤ r−1 links, or
it has at least two possible choices of decoding sets of r links.
So at most r− 1 of its terminal links terminal links cannot be
covered together with any valid combination of terminal link
failures of other receivers.

We have not yet determined whether this bound is tight.
Figure 11 gives an example which comes close to this bound,
requiring

∑
tβ≤r(tβ −2)+

∑
tβ≥r+1(r−1) codes. Here, each

adjacent pair of receivers i and i+1 shares a common ancestral
link hi,i+1 which can carry two processes, each of which is
needed by only one of the two receivers. Failure of any link
to the left of ji, other than ji′ , i′ < i requires h1,2 to carry
one of the processes only, and failure of any link to the right
of ki+1, other than ki′ , i′ > i + 1, requires h1,2 to carry the
other process only, necessitating separate codes.

C. Nonlinear receiver-based recovery

Proof of Theorem 4: We can view the signals on a
receiver’s terminal links as a codeword from a linear (tβ , r)
code with generator matrix AGβ . The minimum number of
nonlinear receiver codes required is the maximum number
of codewords that can be the source of any one received
codeword under different scenarios.

Assuming that zero signals are observed on failed links, no
network management is needed for single link failures if each
codeword differs from any other in at least 2 positions which
are both nonzero in at least one of the codewords.

For a single receiver β, recovery from single terminal link
failures with no network management requires the code with
generator matrix AGβ to have minimum weight 2 and satisfy
the property that for any pair of codewords which differ in
only 2 places, one of them must have nonzero values in both
places. Now if there were a code of weight 2, rank r and
length t = r + 1, it would be a maximum distance separable
code, which has the property that the codewords run through
all possible r-tuples in every set of r coordinates. In a set of
r coordinates, where each entry is an element in Fq, consider
the (q−1)r codewords with exactly 1 nonzero entry in this set
of coordinates. For a weight 2 code, these (q−1)r codewords
must all be nonzero in the remaining coordinate. They must
also all differ from each other in the remaining coordinate if
they are to satisfy the property that for any pair of codewords
which differ in only 2 places, one of them must have nonzero
values in both places. This is possible for r = 1, but not for
r > 1, as there are only q−1 possible values for the remaining
coordinate. There will be at least r different codewords which
give the same received codeword for different failures. For
t ≥ r+2, there exist codes of weight 3 in some large enough
finite field Fq . A simple example is a network consisting of
t parallel links between a single source of r processes and a
receiver.
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Fig. 11. An example network in which
∑

tβ≤r(tβ − 2) +
∑

tβ≥r+1(r − 1) codes are needed.

The linear receiver-based upper bounds of Lemma 4 apply
since linear coding is a special case. For 2 ≤ r ≤ t − 2,
the bound of r codes is tight, as shown in the example of
Figure 12. For r = 1, there are at least two terminal links
that carry the single process, and loss of either link leaves the
receiver able to decode using an OR operation, so one code
suffices. For r = t − 1, suppose we need r + 1 codes for
each of the r+ 1 terminal link failures. This means that there
are r+ 1 different combinations of source processes that give
the same received codeword, each under a different failure
scenario, since no two combinations of source processes give
the same received codeword under the same scenario. The
common codeword would then have 0 in all r + 1 places,
which implies that the weight of the code is 1. However, this
is not possible in a valid static code as loss of a single link
could then render two codewords indistinguishable. Thus at
most r different codewords can be the same under different
single link failures. An example in which r = t − 1, and r
nonlinear receiver-based codes are needed is given in Figure 6.

Next we consider the multiple receiver case. We refer to
the code generated by AGβ as a β code, and the codewords
as β codewords. A β codeword under a single link failure
of a receiver β cannot coincide with a different β codeword
under no failures of terminal links of β, since this would imply
that the β code has minimum distance 1, which would not be
the case in a valid static code. So a receiver which receives
a no-failure codeword can ignore management information
regarding failures. Thus the management information does not
need to distinguish among terminal link failures of different
receivers. As such, a static code in a multiple receiver problem
such that each receiver requires nβ nonlinear codes requires
maxβ nβ codes in total.

Src 1
Src 2 Src r

Sink

Fig. 12. An example network in which 2 ≤ r ≤ t − 2, which achieves the
nonlinear receiver-based upper bound of r codes.

VI. CONCLUSIONS AND FURTHER WORK

As the complexity of networks increases, so do the network
management overhead and the catastrophic effects of imperfect
network management. It is thus useful to understand network
management in a fundamental way. We have proposed a frame-
work for considering and quantifying network management,
seeking through our abstraction not to replace implementation,
but to guide it.

We have given a framework for quantifying network man-
agement in terms of the number of different network behav-
iors, or codes, required under different failure scenarios. We
have compared the management requirements for network-
wide and receiver-based recovery, and have provided bounds
on network management for various network connection prob-
lems in terms of basic parameters, including the number of
source processes, the number of links in a minimum source-
receiver cut, and the number of terminal links.

Several areas of further research spring from this work.
One such area is network management needs for network
connection problems in which certain links are known to fail
simultaneously. For instance, if we model a large link as
several parallel links, the failure of a single link may entail
the failure of all associated links. Other directions for further
work include extending our results to networks with cycles
and delay, studying the capacity required for transmission
of network management signals, and considering network
management for wireless networks with ergodically varying
link states.
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