
Optimal Partition of QoS Requirements
for Many-to-Many Connections

Dean H. Lorenz∗

Distributed Computer Systems
IBM Haifa Research Labs

Haifa, Israel
Email: dean@il.ibm.com

Ariel Orda
Department of Electrical Engineering

Technion – Israel Institute of Technology
Haifa, Israel

Email: ariel@ee.technion.ac.il

Danny Raz
Department of Computer Science

Technion – Israel Institute of Technology
Haifa, Israel

Email: danny@cs.technion.ac.il

Abstract—We study problems related to supporting multicast
connections with Quality of Service (QoS) requirements. We in-
vestigate the problem of optimal resource allocation in the context
of performance dependent costs. In this context each network
element can offer several QoS guarantees, each associated with a
different cost. This is a natural extension to the commonly used
bi-criteria model, where each link is associated with a single delay
and a single cost. This framework is simple yet strong enough
to model many practical interesting networking problems.

The fundamental multicast resource allocation problem under
this framework is how to optimally allocate QoS requirements on
the links of the multicast tree. One needs to partition the end-to-
end QoS requirement along the various paths in a tree. The goal
is to satisfy the end-to-end QoS requirement with minimum cost.
Previous studies under this framework considered single-source
multicast connections, where the End-to-end QoS requirement is
specified from the source to all other multicast group members.
In this paper we extend these results to the more general, and
considerably harder case of multicast sessions, where the end-to-
end requirement hold for every path between any two multicast
group members. Our aim is to provide rigorous solutions, with
proven performance guaranties, by way of algorithmic analysis.

The problem under investigation is NP hard for general
cost functions, thus we first present a pseudo-polynomial exact
solution. From this solution we derive two efficient ε-approximate
solutions. One achieves optimal cost, but may violate the end-
to-end delay requirement by a factor of (1 + ε), and the other
strictly obeys the bounds and achieves a cost within a factor of
(1+ε) of the optimum. Furthermore, we present improved results
for discrete cost functions, and give a simple linear-time exact
polynomial solution for a specific, and practically interesting,
family of convex cost functions.

I. INTRODUCTION

Consider a conference call that uses IP telephony. Such
an application requires a delay bound of say 120msec in
order to be at an acceptable quality level. Assume further
that the participants in the meeting are located at different
locations and the links among them can travel through dif-
ferent administrative domains. One could construct different
trees connecting the participants in the conference call, each
resulting in different QoS (delay) guaranteed by the different
providers according to the different SLAs we have with each
one of them. Even if the tree is fixed (i.e., we cannot create
the multicast tree), we could still decide to partition the

∗Part of this work done while Dean Lorenz was with the Department of
Electrical Engineering, Technion – Israel Institute of Technology, Haifa, Israel.

delay “budget” in various ways among the different providers.
Among all such partitions that guarantee the required QoS, we
would seek to use the one that is most cost-effective.

This problem is precisely the many-to-many QoS partition
problem on trees, which is the subject of this study. In this
problem, we are given a set of end-points connected through
a fixed given tree. Each link in this tree is associated with a
cost-delay function that indicates the cost per delay guarantee
on the link. We are also given a global bound on the delay
between any two participants. The objective is to find the least
expensive partition of the delay along the different links in
the tree in a way that the delay between any two end-points
(along the unique path in the tree) will be bounded by the
global bound.

The tele-conferencing example described above is an in-
stance of this partition problem, where each link corresponds
to a provider’s network. Each link is associated with several
working points each representing a possible guaranteed delay
and its cost. Fig. 1 shows how this problem can be modeled
for a very simple example. In this example each network
element offers three levels of service: Gold, which costs $3
and guarantees a delay of 20msec; Silver, which costs $2
and guarantees 40msec; and Bronze which costs only $1,
but guarantees 50msec. There are different possibilities for
ensuring a many-to-many bound of no more than 120msec
and the problem is to find the least costly choice. One can
consider different examples in which each link is associated
with a general resource-cost function.

The cost may represent the consumption of local resources
(such as buffer or bandwidth reservations) that must be
reserved on every link of the route to support the QoS
guarantee. The cost may also represent the decrease in overall
network performance resulting from establishing the selected
connection. For instance, there may be loss of revenue due
to blocked future calls or there may be management costs.
If we assume some of the suggested pricing schemes for
QoS provision, the cost may represent a real price that the
user has to pay in order to use the link. All these examples
indicate that the performance-dependent model is of practical
importance, and any efficient solutions established within its
framework may become essential for future network planning
and control. This is particularly true as applications like

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

✍✌
✎�
✍✌
✎�

✍✌
✎�

✍✌
✎�
✍✌
✎�

A

B C

D

E

�
�

❙
❙

{Gold, Silver, Bronze}

{Gold, Silver,
Bronze}{Gold, Silver, Bronze}

Level Cost Delay
Gold $3 20msec

Silver $2 40msec

Bronze $1 50msec

E2E demand: 120msec

{Gold, Silver, Bronze}

(a)
✍✌
✎�
✍✌
✎�

✍✌
✎�

✍✌
✎�
✍✌
✎�

A

B C

D

E

�
�

❙
❙

{Gold}

{Bronze}{Bronze}

{Silver}

(b)
✍✌
✎�
✍✌
✎�

✍✌
✎�

✍✌
✎�
✍✌
✎�

A

B C

D

E

�
�

❙
❙

{Silver}

{Silver}{Silver}

{Silver}

(c)
✍✌
✎�
✍✌
✎�

✍✌
✎�

✍✌
✎�
✍✌
✎�

A

B C

D

E

�
�

❙
❙

c1(d)

c2(d)c3(d)

c4(d)

(d)
Fig. 1. Example: The many-to-many partition problem

The multicast tree (a) offers three levels of service on each link: {Gold, Silver, Bronze} associated with delays {20msec, 40msec, 50msec}
and costs {$3, $2, $1}. The desired end-to-end delay bound is 120msec. The allocations (b), (c) demonstrate that, even in this simple case
of identical links, there are several possible ways to split the delay between the links. The end-to-end delay between any two nodes in the
tree must satisfy the connection requirements of 120msec. Option (b), which induces an overall cost of $7 is better than option (c), which
costs $8. In the general case (d), there is an arbitrary cost function on each link, which maps delay guarantees to cost.

video conferencing and video streaming over wireless are
expected to become popular, and as different providers are
deploying various pricing schemes in order to create revenue
from the new services offered. Accordingly, this study investi-
gates the problem of many-to-many multicast sessions within
the performance-dependent model, and employs algorithmic
analysis in order to provide rigorous solutions, with proven
performance guaranties.

Similar problems, generally referred to as QoS routing and
partitioning, were considered recently, both for unicast and for
multicast [1]–[3]. However, in the context of multicast they
all dealt with the restricted case of one-to-many connections,
where the QoS requirement is just between the common
root to the other members. Since we deal with many-to-
many connections, the bound on the delay should be valid
for any pair of end users and not only from the root to the
end users. This requirement makes the problem different, and
inherently more difficult. Since the tree no longer has a clear
root, building a dynamic solution based on the tree structure
becomes more complex.

In general, the partition problem is intractable. The special
case where the link cost functions (i.e., the functions that
describe the cost of allocating a QoS parameter on a link)
are continuous and convex was addressed recently by several
works. Multicast trees for the strongly convex case were dealt
in [4]. In [5], polynomial algorithms both for trees and paths
for weakly convex cost functions were presented, and the QoS
routing problem was also addressed. The discrete cost function
case was addressed in [6], and approximation algorithms were
considered in [1], [2], [7].

The specific aspect of resource allocation in this context
has also been extensively studied; in particular, a similar
framework was studied by [3]–[5], [8], [9]. The reader is
also referred to [10] for a survey on QoS multicast routing
algorithms, though from a slightly different perspective.

In this paper we provide exact and approximated solutions
for various cases. We first present a pseudo polynomial solu-

tion that uses dynamic programming to find the best partition
of the tree. We then describe a set of steps that allow us to use
this algorithm in order to derive a polynomial approximation
algorithm for the problem. We note that, while the techniques
used for these results are similar to the one used in [2], [5], the
problem in our case is significantly more complex and thus the
actual algorithms (and their proofs) are much more complex.
We then deal with specific cost-delay function which are of
practical importance. These include discrete cost functions
(which reflect the current DiffServe architecture [11]), and a
specific case of a convex cost function that is often used in
this context. For the latter, we present a remarkably efficient
linear algorithm that finds the best partition of the delay along
a given tree.

The rest of the paper is organized as follows. In the next
section we give the basic notions and preliminary observations.
Then, in Section III, we present the basic pseudo polynomial
algorithm. In section IV we describe the approximation al-
gorithms, and in Section V we present particularly efficient
algorithms for some cost-delay functions of special interest.
We conclude with a brief discussion.

II. PRELIMINARIES

A. Terminology

The network is represented as an undirected graph G(V,E).
We are given a multicast group M ⊆ V and a multicast tree
T ⊆ E, such that for all u, v ∈ M , there exists a unique
path, pu❀v from u to v, on links that belong to T . We use T
to denote both the links and the nodes of a tree, and denote
by n = |T | its size (number of links). N(u) denotes all the
outgoing links from u, namely N(u) ≡ {(u, v) ∈ T }. If the
degree of node u is one, i.e., N(u) consists of a single link
(u, v), then we use the term leaf for both u and (u, v). We
assume that T is a binary tree, namely |N(u)| ≤ 3 for all
u ∈ T . This assumption greatly simplifies the presentation

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

without loss of generality.1

We denote by T uv the sub-tree rooted at u, for which (u, v)
is the first (root) link. For example, for any node u ∈ T we
have T = ∪v∈N(u)T

uv . Although links are undirected, note
that T uv 	= T vu, since these denote different sub-trees on
the two sides of the link. Also, note that T uv ∪ T vu = T ,
and T uv ∩ T vu = {(u, v)}. We use Luv,Ruv respectively to
denote the “left” and “right” child of node v on T uv , and the
corresponding sub-trees are denoted by T Luv and T Ruv . We
call the union of both sub-trees the branches of T uv and use
T Buv ≡ T Luv ∪ T Ruv ≡ T uv \ {(u, v)}.

Each link l ∈ E offers different delays with different costs.
The cost associated with a link is a function cl(dl) of the
delay allocated to it. Each link cost function cl(dl) is non-
increasing with the delay and both the delays and associated
costs are assumed to be integers.2 A delay partition on a tree
T specifies the delay allocated on each link, i.e., is a set of
link delays d ≡ {dl}l∈T . The cost of a partition d on a tree T
is defined as the sum of all link costs, namely cost(T ,d) ≡∑

l∈T cl(dl).
A given partition determines the end-to-end delay of any

path p ⊆ T . Since delay QoS requirements are additive,
the end-to-end delay of a path is the sum of the delays
allocated on its links, i.e., delay(p,d) ≡

∑
l∈p dl. We define

two end-to-end delay metrics for the whole tree which we
term depth and width. The depth of a tree is the maximal
end-to-end delay of any path from its root, and the width
of a tree is the maximum delay between any two of its
nodes. More formally, the depth and width of a tree T uv are
defined as depth(T uv,d) ≡ maxw∈T uv delay(pu❀w,d), and
width(T uv,d) ≡ maxx,y∈T uv delay

(
px❀y,d

)
. We say that a

partition d is D-deep on T uv if depth(T uv,d) ≤ D, namely
delay(pu❀w,d) ≤ D for all w ∈ T uv . Similarly, we say that
a partition d is D-wide on T if width(T ,d) ≤ D, namely
delay

(
px❀y,d

)
≤ D for all x, y ∈ T uv . We use the shorthand

Duv(d) ≡ depth(T uv,d) and may omit the argument d when
it is clear from context.

B. Problems Definition

We can now define the problems of interest, namely Prob-
lem WPQ and Problem DPQ for multicast trees.

Problem DPQ (Depth optimal Partition of QoS): Given
a multicast tree T uv and an end-to-end delay requirement D
from u to all other m ∈M , find a D-deep partition d∗, such
that cost(d∗) ≤ cost(d), for every (other) D-deep partition
d on T uv .

Problem WPQ (Width optimal Partition of QoS): Given
a multicast tree T and an end-to-end delay requirement D
between any two members in M , find a D-wide partition
d∗, such that cost(d∗) ≤ cost(d), for every (other) D-wide
partition d on T .

1If the degree at any node is greater than 3 we can add “dummy” links to
split the node. Overall, at worst, this doubles the number of links.

2This is true for any real-life network since neither link reservations nor
payments can be made with arbitrary precision.

Note Both problems are NP-hard. In [12] it is shown that
Problem DPQ is NP-hard even for a simple path topology.
Since for a path both problems are equivalent, Prob-
lem WPQ is also intractable.

III. SOLUTION TO PROBLEM WPQ

A. Foundations

In this section we show that any optimal partition on a
tree is made of optimal partitions on sub-trees. This tree
decomposition allows for the dynamic programming solution,
which we present in the next section. The observation made in
the following lemmas are quite intuitive, however their proofs
require careful formulation. It is possible to skip directly to
Section III-B, which is self-contained.

We start with Lemma 1, which states that all sub-trees of a
D-wide tree are also D-wide.
Lemma 1: Let d be a D-wide partition on T and let T ′ be

any sub-tree of T . Then, d is a D-wide partition on T ′.
Proof: Since d is D-wide, delay

(
px❀y

)
≤ D for all

x, y ∈ T implying delay
(
px❀y

)
≤ D for all x, y ∈ T ′ ⊆ T .

Hence, d is D-wide partition on T ′.
Note that, although all sub-tree have width not greater than

D, Lemma 1 does not imply that it is exactly D. In fact, their
actual width may be much smaller than D. Also, note that a
partition is D-wide iff it is D-deep on every T uv ⊆ T .
Lemma 2: Let d be a D-wide partition on T , let T uv be

any sub-tree of T , and let w ∈ T \T uv be a node outside the
sub-tree. Then, Duv + delay(pu❀w) ≤ D.

Proof: Let y be a Duv-deep node in T uv , namely
delay

(
py❀u

)
= Duv (such a node must exist in T uv by the

definition of the sub-tree depth, Duv). Since w is outside T uv ,
py❀w = py❀u +pu❀w.3 Combining with the fact that this is
a D-wide partition, we get

Duv + delay(pu❀w) =
delay

(
py❀u

)
+ delay(pu❀w) =

delay
(
py❀w

)
≤ D,

as claimed.
Lemma 3 provides the relation between the depths of

adjacent sub-trees.
Lemma 3: Let d be a D-wide partition on T uv . Then

DLuv
+DRuv

≤ D.
Proof: By Lemma 1, d is a D-wide partition on T Buv .

We can apply Lemma 2 on T Luv as a sub-tree of T Buv ,
thereforeDLuv

+delay(pv❀w) ≤ D for all w ∈ T Ruv . Hence,

DLuv
+ max

w∈T Ruv
delay(pv❀w) = DLuv

+DRuv
≤ D.

We will use Lemma 3 as a feasibility test when searching for
an optimal partition. Also, note that the lemma can be applied
in any “direction” and by symmetry we have DLuv

+Dvu ≤ D
and DRuv

+Dvu ≤ D.

3Here ’+’ is a path concatenation operator.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

We proceed to show that an optimal partition is also optimal
on sub-trees. But first, we need Lemma 4 that allows us to
build a new partition by replacing part of an old one.
Lemma 4: Let d1 be a D-wide partition on T , let T uv be

any sub-tree of T and let d2 be both a D-wide and D1
uv-deep

partition on T uv . Then, the partition

dl =
{
d2l l ∈ T uv

d1l l ∈ T Bvu

is a D-wide partition on T .
Proof: T uv ∪T B(v,u) = T and T uv ∩T B(v,u) = ∅, thus

for any x, y ∈ T we have three cases:

(1) x, y ∈ T uv:
In this case, px❀y ⊆ T uv so

delay
(
px❀y,d

)
= delay

(
px❀y,d

2)
.

Since d2 is a D-wide partition on T uv , we get

delay
(
px❀y,d

)
= delay

(
px❀y,d

2)
≤ D.

(2) x, y 	∈ T uv:
Here x, y ∈ T B(v,u), so

delay
(
px❀y,d

)
= delay

(
px❀y,d

1)
.

Similarly to the previous case, we have

delay
(
px❀y,d

)
= delay

(
px❀y,d

1)
≤ D.

(3) x ∈ T uv, y 	∈ T uv:
Here px❀u ⊆ T uv and d2 is D1

uv-deep on T uv ,
hence delay

(
px❀u,d

2
)

≤ D1
uv . Also, d1 is a D-wide

partition on T , so by Lemma 2,

D1
uv + delay

(
pu❀y,d

1)
≤ D

and therefore

delay
(
px❀u,d

2)
+ delay

(
pu❀y,d

1)
≤ D.

Since in this case px❀y = px❀u +pu❀y we can write

delay
(
px❀y,d

)
= delay(px❀u,d) + delay

(
pu❀y,d

)
= delay

(
px❀u,d

2)
+ delay

(
pu❀y,d

1)
.

Combining all, we get delay
(
px❀y,d

)
≤ D.

In all three cases delay
(
px❀y,d

)
≤ D, thus d is a D-wide

partition on T .
We have shown that any D-wide partition is made of D-

wide sub-partitions. This observation also applies to optimal
partitions, as stated in Lemma 5.
Lemma 5: Let d∗ be an optimal D-wide partition on T and

let T uv be any sub-tree. Then d∗ is an optimal D-wide and
D∗

uv-deep partition on T uv .
Proof: By definition, d∗ is a D∗

uv-deep partition on T uv

and by Lemma 1, it is D-wide. By Lemma 4, if we replace the
sub-partition on T uv with any D-wide and D∗

uv-deep partition
on T uv then we would still get a D-wide partition on T . If d∗

is not an optimal D-wide and D∗
uv partition on T uv then we

can replace it with an optimal one. The resulting overall D-
wide partition would be cheaper than d∗ on T contradicting
the optimality of d∗ on T .

The same claims hold for any sub-branches as follows:
Corollary 1: Let d∗ be an optimal D-wide partition on

T uv . Then, d∗ is an optimal D-wide and D∗
Buv

-deep partition

on T Buv , where D∗
Buv

≡ depth
(
T Buv

)
.

Proof: The proofs of Lemma 4 and Lemma 5 apply (with
slight modifications) to this case too.

B. The algorithm

The previous lemmas provide us with the building blocks
of our algorithm. We solve Problem WPQ using dynamic
programming, computing optimal partitions on sub-trees and
combining them to an optimal partition on the whole tree.
Algorithm WPQ (Fig. 2) finds the best D-wide partition for
every possible depth. The work is done by Procedure FIND-
COST-TAB which recursively computes the tables T ,L,R,B
corresponding to T uv,T Luv ,T Ruv and T Buv , respectively.
The tables are all of size D which hold an entry for every
every depth 0 ≤ d ≤ D. The entry for d is the best cost
achieved for a D-wide and d-deep allocation on the tree.
Procedure FIND-COST-TAB recursively merges tables of sub-
trees until it reaches the root of the tree.

WPQ (T uv, {cl(d)}l∈T uv ,D):
1 T ←FIND-COST-TAB(Tuv , {cl(d)}l∈T uv , D)
2 if T (D) = ∞ return FAIL

3 (else) return T (D) and the corresponding partition.

Procedure

FIND-COST-TAB (T uv, {cl(d)}l∈T uv ,D):
1 L ←FIND-COST-TAB(TLuv , {cl(d)}l∈T L , D)
2 R ←FIND-COST-TAB(TRuv , {cl(d)}l∈T R , D)
3 for d = 0 . . . 	D/2

4 B(d) ← L(d) + R(d)
5 for d = �D/2 . . . D
6 B(d) ← min{(L(d) + R(D − d)), (L(D − d) + R(d))}
7 for d = 0 . . . D
8 T (d) ← min

0≤x≤d
cuv(x) + B(d − x)

9 return T
Fig. 2. Algorithm WPQ

The computation of the table for T Buv (B) is based on
Corollary 1 and Lemma 3. By Corollary 1, the optimal
allocation on T Buv is made of optimal allocations on T Luv

and T Ruv . By Lemma 3, the depth of those allocations must
satisfy DLuv

+DRuv
≤ D. The computation is divided into

two separate regions. For all depths 0 ≤ d ≤ �D/2�, the
requirement DBuv

= max{DLuv
+ DRuv

} ≤ d is satisfied,
since DLuv

+ DRuv
≤ 2�D/2� ≤ D. Therefore, the cost of

the optimal D-wide and d-deep partition on T Buv is found by
simply summing the cost of d-deep partitions on T Luv and
T Ruv . This is done at Line 4 of Procedure FIND-COST-TAB

by summing the corresponding entries from L and R. On the
other hand, for all depths �D/2� ≤ d ≤ D, if we allocate d
on one sub-tree then we must allocate D − d on the other in

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

order to satisfyDLuv
+DRuv

≤ D. Line 6 of Procedure FIND-
COST-TAB chooses the least costly among these two options.

The computation of the table for T uv (T) is based on
Corollary 1 and the fact that Duv = duv + DBuv

. By
Corollary 1, the optimal allocation on T uv is made of an
optimal allocations on T Buv . In order to find the best partition
we must check all possible depth allocations between (u, v)
and T Buv . This is done at Line 8 of Procedure FIND-COST-
TAB. Observe that, so long as Duv ≤ D, the resulting partition
is D-wide. To see this, we first note that the delay for all
paths from u to any other node in T uv is less than Duv ≤ D.
Second, any path between other nodes of T uv is entirely inside
T Buv , therefore its delay is less than D because the partition
on T Buv is D-wide.

When the recursive call returns, all entries of T correspond
to validD-wide partitions. We must check the entry for a depth
of D, which is the least restrictive, hence should have minimal
cost. If any link requires a minimal delay allocation on it then
we might have infinite cost on it. If no partition satisfies the
minimal delay requirement of all links then we would have
overall infinite cost and the algorithm returns FAIL. With each
cost entry update of T at Line 8 of Procedure FIND-COST-
TAB, we can also record the allocation to (u, v) that achieved
the minimum. Thus, if the algorithm is successful it can return
both the optimal partition and its cost.

Complexity Each iteration of Procedure FIND-COST-TAB

requires O(D2) operations. Each link is processed once,
so the overall time complexity is O(nD2).

Parallel implementation The algorithm can be implemented
in a parallel fashion, computing L and R at the same
time. Such an implementation would require O(hmaxD

2)
time, where hmax is the depth of the recursion. Observe,
that hmax is bounded by the maximal number of hops in
any path, i.e., the width of the tree in terms of hops. For
balanced trees, hmax is of order O(log n).

Distributed implementation The algorithm can also be eas-
ily modified to operate in a distributed fashion. Each sub-
tree can compute is optimal partition and forward the
result. Such a solution is obviously parallel and also has
the advantage that the link cost functions do not have to
be advertised.

Note We must call Algorithm WPQ with T uv = T , however
we can select any leaf (u, v) of the tree.

IV. APPROXIMATE SOLUTION

Algorithm WPQ is a pseudo polynomial solution, which
depends on the value of D. The latter could be arbitrarily
large, depending on the precision in which delays are specified.
Hence, in this section we improve the complexity at the
expense of finding an approximate solution. The techniques
we use are similar to the ones used in [2] for the approximate
solution to Problem DPQ. We therefore give only a brief
description and omit the proofs.

We consider two types of approximations: delay-approxima-
tion and cost-approximation. An ε-delay optimal solution is a
partition which is (1 + ε)D-wide with cost no greater than

the cost of the optimal D-wide partition. An ε-cost optimal
solution is aD-wide partition with cost no greater than a factor
of (1 + ε) from the cost of the optimal D-wide partition.

A. Delay Approximation

Delay approximation is useful when the application can
tolerate a delay that slightly higher than the required end-to-
end delay. In general, as shown in [7], delay approximation is
considerably simpler than cost approximation.

The approximation is based on scaling and rounding. Rather
than finding the optimal cost for every possible depth 0 ≤ d ≤
D, we consider only delays that correspond to integer factors
of some scaling factor S. Algorithm εD-WPQ (Fig. 3) is a
Fully Polynomial Approximation Scheme (FPAS) which finds
an ε-delay optimal solution to Problem WPQ using scaling. It
is polynomial in n and 1/ε.

εD-WPQ (T uv, {cl(d)}l∈T uv ,D, ε):
1 hmax ← width of Tuv in hops
2 S ← Dε

hmax
3 for each l ∈ T
4 define c̃l(d) ≡ cl(�d ∗ S)
5 D̃ ← � hmax

ε

6 return WPQ
(
Tuv , {c̃l(d)}l∈T uv , D̃

)

Fig. 3. Algorithm εD-WPQ

A careful choice of S is required to ensure that the resulting
solution is indeed ε-delay approximate and the complexity is
low enough. It can be shown that the overall error due to this
type of scaling is hmaxS,4 since the delay error of any path is
summed over all its links. Thus, S = Dε

hmax
ensures an ε-delay

optimal solution. Each D factor in the complexity expression
for Algorithm WPQ is reduced to D/S = hmax/ε. This result
is summarized by Theorem 1.
Theorem 1: Algorithm εD-WPQ finds an ε-delay optimal

solution to Problem WPQ in

O

(
n(
hmax

ε
)2

)

time.
Note A distributed/parallel implementation requires

O
(
h3

max/ε
2)

time.

B. Cost Approximation

Often, the end-to-end requirement is strict and delay ap-
proximation cannot be used. One might be tempted to slightly
strengthen the original delay requirement and then use delay
approximation. However, while this indeed leads to a feasible
solution,5 its cost might be arbitrarily higher than that of the
optimal solution.

In order to facilitate cost approximation, we must first
reverse the roles of cost and delay in Algorithm WPQ. Instead

4Recall that hmax denotes the width of the tree.
5So long as there exist a solution which satisfies the stricter requirement.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

of storing tables that hold the best cost achieved for every
delay, we will store tables that hold the best delay achieved
for every cost. Then, the same scaling techniques that were
use for delay-approximation can be applied.
1) Cost-based dynamic programming: Algorithm C-WPQ

(Fig. 4) is a cost-based version of Algorithm WPQ. Each table
holds, for every cost c, the minimal depth achievable with
overall cost no greater than c and width no greater that D. The
size of each table is U , which is an upper bound on the cost.
We shall assume for now that U is known and differ finding
U to Section IV-B.3. The algorithm returns FAIL(Line 1) if no
feasible solution can be found with cost not greater than U .
Otherwise, it searches the table T for the min-cost entry that
achieves a feasible solution (Line 3).

C-WPQ (T uv, {cl(d)}l∈T uv ,D, U):
1 T ←FIND-DEPTH-TAB(Tuv , {cl(d)}l∈T uv , D, U)
2 if T (U) > D return FAIL

3 (else) return min{c|T (c) ≤ D} and the corresponding partition.

Procedure

FIND-DEPTH-TAB (T uv, {cl(d)}l∈T uv ,D, U):
1 L ←FIND-DEPTH-TAB(TLuv , {cl(d)}l∈T L , D, U)
2 R ←FIND-DEPTH-TAB(TRuv , {cl(d)}l∈T R , D, U)
3 for c = 0 . . . U
4 for x = 0 . . . c
5 Z(x) ← max{L(x), R(c − x)}
6 if L(x) + R(c − x) > D then
7 Z(x) ← ∞
8 B(c) ← min

0≤x≤c
Z(x)

9 for c = 0 . . . U
10 Z(x) ← min{d|cuv(d) ≤ c}
11 for c = 0 . . . U
12 T (c) ← min

0≤x≤c
Z(x) + B(c − x)

13 return T
Fig. 4. Algorithm C-WPQ

Procedure FIND-DEPTH-TAB is similar to Procedure FIND-
COST-TAB of Algorithm WPQ and recursively calls itself for
each sub-tree. However, it computes “depth”-tables instead of
“cost”-tables. Unlike delay, the cost can be arbitrarily divided
between the sub-trees, therefore we must check all possible
cost allocations. In order to compute a single entry B(c),
we must check all possible cost divisions between T Luv and
T Ruv , i.e., all pairs L(x),R(c − x). This is done at Line 1
of Procedure C-WPQ and stored in a temporary table entry
Z(x). Each entry in Z corresponds to the overall depth of the
pair and is simply the maximal depth of the two. The overall
depth of an allocation is the sum of the depths. If it is greater
than D then the cost allocations is unfeasible, hence its entry
is removed (at Line 3) by assigning an infinite delay. After
Z(x) is computed for all 0 ≤ x ≤ c, the minimal entry in
Z is the best depth that can be achieved with cost c. The
computation and the update to B(c) are done at Line 8.

Procedure FIND-DEPTH-TAB computes all the entries of
B and continues to find the optimal partition between (u, v)
and T Buv . As before, we need to check all possible divisions
of cost between (u, v) and it branches. However, we need the

link “delay”-function duv(c), which is the equivalent of cuv(d)
used in Algorithm WPQ. We use the Z table to store duv(c)
for all 0 ≤ c ≤ U (Line 9). Each entry represents the minimal
delay that induces a cost no greater than c. Note that the cost
cuv(d) is a monotonic non-increasing function of the delay,
hence a binary search can be used to find the minimum. Once
duv(c) is computed, we proceed to fill T . The computation
at Line 12 is similar to the one done for B, but here we are
guaranteed a width no greater than D so long as the depth is
no greater than D (see the discussion of Algorithm WPQ).

Complexity If we employ a binary search at Line 9 of
Procedure FIND-DEPTH-TAB then each entry can be
computed in O(logD) steps and O(U logD) for the
whole table. All other computations require O(U2). Thus,
O(U(logD + U)) time is required for each link and the
overall time complexity is

O (nU(logD + U)) .

Note A distributed, parallel implementation would require

O
(
hpU(logD + U)

)
time.

2) Cost scaling: We can now apply the same scaling
methods as for the delay-approximation in order to achieve
an ε-cost approximation. Algorithm εC-WPQ finds an ε-cost
optimal solution, given a lower bound L and an upper bound
U on the optimal cost.

εC-WPQ (T uv, {cl(d)}l∈T uv ,D, L, U, ε):
1 S ← Lε

n
2 for each l ∈ T
3 define c̃l(d) ≡ 	cl(d)/S

4 Ũ ← �U/S
5 return C-WPQ

(
Tuv , {c̃l(d)}l∈T uv , D̃, Ũ

)

Fig. 5. Algorithm εC-WPQ

Theorem 2 is the equivalent of Theorem 1 for the ε-cost ap-
proximation. Again, a careful choice of S is required to ensure
that the resulting solution is indeed an ε-cost approximate and
the complexity is low enough. In this case, the overall error
due to scaling is nS, since the cost error is summed over all
links of the tree. Thus, S = Lε

n ensures an ε-delay optimal
solution. Here, each U factor in the complexity expression for
Algorithm C-WPQ is reduced to U/S = O(nU/(εL)).
Theorem 2: Algorithm εC-WPQ finds an ε-cost optimal

solution to Problem WPQ in

O

(
n2U

εL

(
logD +

nU

εL

))

time.
3) Finding good bounds: Algorithm εC-WPQ and its com-

plexity depend on good bounds on the optimal cost c∗. If we
chose U < c∗ then we might not be able to find a feasible
partition (in which case the algorithm would FAIL). If we
choose U � c∗ then U/L would be large and the complexity

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

would be too high. The same applies for the choice of L: if
L > c∗ then the scaling error might be too large, i.e., we
cannot ensure an ε-cost optimal solution; if L� c∗ then U/L
(and the complexity) may grow up to the order of c∗.

The problem of finding tight bounds L,U that satisfy L ≤
c∗ ≤ U and U/L = O(1) was addressed in relation to the
restricted shortest path problem [13], [14] and to Problem DPQ
[2]. The details of these techniques are out of the scope of this
work, however, for completeness, we present an outline of the
solution.

The general idea is to perform a binary search for a tight
upper bound. At each iteration, a possible bound is tested by
some test procedure that indicates whether it is too small or
too large. An accurate test procedure might require a large
number of operations for each run. Two key methods allow a
very efficient search. First, approximate tests are used. These
tests have a “gray-zone” around the tested value, for which
they do not provide any information, however they still enable
narrowing in on the bound. The idea is to initially use a simple
and coarse test to find valid bounds that satisfy U/L < n,
and then use more accurate (and costly) tests to refine these
bounds. The second key is the application of geometric (rather
than arithmetic) mean while performing the binary search.
Lemma 6 and 7 summarize these techniques.
Lemma 6: Valid bounds, L ≤ c∗ ≤ U , that satisfy U/L ≤

n, can be found in O(n logD log(Dn)) time.6

Lemma 7: Valid bounds that satisfy U/L ≤ n, can
be refined to tight bounds that satisfy U/L = O(1), in
O

(
n2 log log n(logD + n)

)
time.

The test procedure that enables the result of Lemma 6
searches for the minimum cost required on the most costly
link. Given a possible bound β, it checks in O(n logD)
whether any feasible D-wide partition exist if we assume that
the cost of any single link is no more than β. Selection in
matrices with sorted columns [15] is used to search for such
a feasible bound among theO(Dn) possible values. The test
procedure that enables the result of Lemma 7 is Algorithm εC-
WPQ with ε = 1. Using geometric mean in the binary search
enable finding the tight bounds in O(log log n) tests.

Combining Algorithm εC-WPQ with the efficient bound
search techniques establishes Theorem 3.
Theorem 3: An ε-cost optimal solution to Problem WPQ

can be found in

O
(
n

(
(
n

ε
)2 + log2D

))

time.7

V. SPECIAL CLASSES OF COST FUNCTIONS

So far, the only assumption on the link cost functions was
that they are monotonic non-increasing with the delay. In
practice, link cost functions are more restrictive. For instance,
a link may not offer the full range of delays, but rather provide

6Alternatively, such bounds can be found in O(n log D log log β0), where
β0 is the ratio of some coarse (possibly trivial) initial bounds.

7Assuming 1/ε > log log n.

only a few SLAs. The cost functions in such a case would be
discrete functions,8 i.e., defined only for specific delays. In this
section we show that, by focusing on more specific classes of
cost functions, more efficient solutions can be established. We
discuss two cases of practical interest.

A. Discrete Cost Functions

Discrete cost functions are defined only for a (relatively)
small set Q = {q1, q2, q3, . . .} of link QoS requirements.
Alternatively, we can view each cost function as a step function
with steps at each value in Q. Even if we define the cost (as
a step function) over the whole range of delays, any optimal
allocation would use only values from Q. Indeed, there is no
gain from allocating a delay qi < d < qi+1 on any link,
because the cost of qi is the same with better performance.

Let q be the maximal number of values on any link, then
the binary search at Line 9 of Algorithm C-WPQ can be
performed in O(log q). If we use Algorithm εC-WPQ with
the efficient bound search then the overall complexity is
O

(
n

(
(n

ε)2 + log2 q
))

= O
(
n(n

ε)2
)
, assuming q < n/ε. This

is an improvement over the general case whenever logD >
n/ε.

B. An Example of “Homogeneous” Functions

Here we demonstrate that a more significant improvement
can be achieved when all link cost functions are of the same
form. Specifically, we investigate cost functions of the form
cl(d) = Al/dθ + Cl, where Al, θ, Cl are given constants.
This function has many desirable practical characteristics.
It decreases with the delay, as required; it is convex; it
assigns infinitely high cost when the required delay guarantee
approaches zero, and it assigns a fixed minimal link usage cost
Cl, even if no guarantee is required. The constant θ determines
how fast the cost grows for low delays and the constant Al is
used as a scaling constant.

In the following we establish a linear-time algorithm. We
begin by observing that the fixed cost C =

∑
l∈T C

l is
charged for any partition, so we can just assume add it later
and assume Cl = 0 for all l ∈ T . We will also assume, for
now, that θ = 1 and shall relax this assumption later.

We first establish some properties of the optimal tree cost.
We can view each table T computed by Algorithm WPQ as
the cost function of the sub-tree T uv . It provides the cost of
the optimal partition as a function of the depth of the sub-
tree, under the assumption that it is D-wide. We call this the
tree cost function and denote it by cT

uv

(d) or cT . Similarly,
we define cL , cR , and cB as the cost functions for the sub-
trees T Luv ,T Ruv , and T Buv . We want to be able to compute
cT

uv

(d) analytically, without having to compute it for every
d, as is done by Algorithm WPQ. Lemma 8 provides us with
a method to do so.
Lemma 8: If each link cost functions is of the form Al/d

then for any sub-tree,

cT
uv

(d) = AT uv

/d ∀d ≤ D/2,
8We follow here the terminology of [6].

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

where AT uv

is a scaling constant for the sub-tree. Further-
more, there exist similar scaling constants AL , AR , AB for
T Luv ,T Ruv , and T Buv .

Proof: The proof is by induction. Obviously, the claim
holds if T uv is a single link.

We first show that if the claim holds for T Luv and T Ruv

then it is also true for T Buv . By the results of Section III, we
have for d ≤ D/2

cB(d) = cL(d) + cR(d).

By the assumption cL(d) = AL/d and cR(d) = AR/d, hence

cB(d) = AL/d+AR/d = (AL +AR)/d,

namely cB(d) = AB/d, for

AB = AL +AR .

Next we show that if the claim holds for T Buv then it is
also true for T uv . Again, from Section III,

cT (d) = min
0≤x≤d

cB(x) + cuv(d− x).

Applying the assumption, we have

cT (d) = min
0≤x≤d

AB/x+Auv/(d− x).

It is easy to verify that the minimization yields a cost of
cT (d) = (

√
AB +

√
Auv)2/d at

x =

√
AB

√
AB +

√
Auv

d. (1)

That is, cT (d) = AT /d, where
√
AT =

√
AB +

√
Auv.

We can build cT (d) = AT /d recursively, starting from
the leafs. We have shown that the assumption is preserved
throughout this build procedure. Thus, we have established
the claim with

AB = AL +AR and
√
AT =

√
AB +

√
Auv.

Lemma 8 states that this type of cost function is closed
under the tree building computations, for all depth no greater
than D/2. Using this result, Procedure BUILD-A builds AT uv

recursively in linear (O(n)) time.
Algorithm COMPUTE-A computes AT uv

for all sub-trees
T uv ∈ T . Note that, AT uv 	= AT vu

, therefore it is not enough
to run Procedure BUILD-A for a single root link. However,
after a single call to Procedure BUILD-A we have AT uv

in one
direction for all links of T . The other direction is computed by
starting from the root link and visiting all nodes in pre-order.
The traversal maintains the property that after a node w is vis-
ited then AT wx

is known for every link (w, x) ∈ N(w). This
property trivially holds for v, since only AT vu

is not computed
by the initial call to Procedure BUILD-A and AT vu

= Avu.
Throughout the traversal, we need to compute AT wx

only for
the parent x = parent(w) of w, since all other values are

COMPUTE-A (T , {cl(d)}l∈T):
1 Select any root link (u, v) ∈ T

2 AT uv ←BUILD-A(Tuv)
3 Starting from v, visit all nodes w ∈ Tuv in pre-order order
4 x ← parent(w)
5 AT wx ←BUILD-A(Twx)

Procedure

BUILD-A (T uv, {cl(d)}l∈T uv):
1 if Tuv is a link then
2 AT uv ← Auv

3 return
4 (else) if AT uv

is already known then
5 return
6 (else) call BUILD-A(TLuv , {cl(d)}l∈T Luv)
7 call BUILD-A(TRuv , {cl(d)}l∈T Ruv)
8 AB ← AL + AR

9 AT uv ← (
√

AB +
√

Auv)2

10 return

Fig. 6. Algorithm COMPUTE-A

already known after the initial call to Procedure COMPUTE-A.
Furthermore, the call to Procedure COMPUTE-A requires O(1)
operations, since a recursive call to BUILD-A(T wx) terminates
immediately. This is because x was already visited, hence
AT xy

is already known for all (x, y) ∈ N(x). Thus, overall
only O(n) additional operations are performed after the initial
call to Procedure COMPUTE-A. Theorem 4 summarizes these
results.
Theorem 4: Algorithm COMPUTE-A computes AT uv

for
all sub-tress T uv ∈ T in O(n) time.

We have established cT
uv

(d) for all sub-trees and for all
d ≤ D/2. Next we show how we can avoid having to compute
cT

uv

(d) for larger values of d. We need to find a location in
the tree that is no further than D/2 from any node. We call
this the center of the optimal partition and define it formally
as follows. For a given partition, we call u a center-node if
Duv ≤ D/2 for all (u, v) ∈ N(u); we call a link (u, v)
a center-link if Duw ≤ D/2 for all (u,w) ∈ N(u) and
Dvw < D/2 for all (v, w) ∈ N(v). The center of a partition is
either a center-node or a center-link. Next, we establish some
properties of the center.
Lemma 9: If u is a center-node of an optimal D-wide

partition and all costs are strictly monotonic then Duv = D/2
for all (u, v) ∈ N(u).

Proof: Let (u, v) be a link for which Duv < D/2. Since
u is a center node, both DLvu

and DRvu
are less than D/2,

hence so is DBvu
. This implies that the delay allocation on

T uv can be increased to D/2 without violating the width
constraint. Since all costs are strictly monotonic, an increase
in the delay allocation must reduce the cost, contradicting the
optimality of the partition.

Each cost functions Al/d is strictly monotonic so Lemma 9
can be applied.9 Lemma 9 implies that we can have either a
center-link or a center-node, but not both. The strict monotony

9Even if the cost functions are not strictly monotonic, the proof of Lemma 9
implies that there exists an optimal partition for which u is the center node
and the equality holds.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

implies that the minimal allocation on any link must be greater
than zero, and there exists at least one path through every link
for which delay(p) = D. Otherwise, the allocation to the link
can be increased, reducing the cost without violating the width
assumption. It also implies that

Duv > DBuv
. (2)

Lemma 10: In any optimal D-wide partition there exists a
unique center.

Proof: Lemma 9, together with Equation 2, implies that
we cannot have more than one center-node. Equation 2 also
implies that we can not have more than one center-link. Thus
if either a center-node or a center-link exists then it is unique.
We prove their existence by showing how a center can be
found.

First, we replace each link (u, v) with two directed links
(u, v), (v, u). Then, we color each link green if Duv > D/2
and red otherwise. If all outgoing links from a node u are
red then u is a center-node. If both (u, v) and (v, u) are green
then (u, v) is a center-link. We start from any leaf and traverse
over green links only. For any leaf node u the directed link
(u, v) must be colored green, since at least one path through
(u, v) must have a delay of D. By Lemma 3, there is at most
one green outgoing link from any node so the traversal is well
defined. If we cannot continue the traversal then all outgoing
links are red and we have reached a center-node. Otherwise,
we must eventually enter a simple cycle. Since we started
from a tree, the directed cycle must correspond to a single
bi-direction link, which is a center-link.
Lemma 11: Let (u, v) be a center-link of an optimal D-

wide partition. Then,
√
ABvu <

√
ABuv +

√
Auv .

Proof: Since (v, u) is a center-link DBvu
< D/2.

Consider the allocation we get by moving δ ≤ D−DBvu
delay

from the allocation of (u, v) to increase the depth of T Bvu .
It is easy to verify that the allocation we get still satisfies the
widths constraint. Optimality implies that there is no gain from
such a move. Since this is true for any δ and both cBvu and cvu

are differentiable, we must have |c′Bvu
(DBvu

)| ≤ |c′uv(duv)|.
Hence,

ABvu

(DBvu
)2

≤ Auv

(duv)2
,

implying
duv

DBvu

≤
√
Auv

√
ABvu

.

For similar reasons,

DBuv

DBvu

≤
√
ABuv

√
ABvu

.

Summing both we get

Duv

DBvu

=
duv +DBuv

DBvu

≤
√
Auv +

√
ABuv

√
ABvu

.

The lemma follows from Duv > D/2 > DBvu
, which implies

that 1 < Duv/DBvu
.

Lemma 12: Let u be a center-link of an optimal D-wide
partition. Then, for any (u, v) ∈ N(u), AT uv ≤ ABuv .

Proof: In this case Duv = DBuv
+ duv = D/2, hence

DBuv
< D/2, and duv < D/2. Following the proof of

Lemma 11, it is feasible to move δ from T Bvu to either (u, v)
or T Buv . Since there must be no gain from such a move, this
implies |c′Bvu

(DBvu
)| ≥ |c′uv(duv)| or

duv

DBvu

≥
√
Auv

√
ABvu

.

We also have
DBuv

DBvu

≥
√
ABuv

√
ABvu

.

Summing, as before, we get

1 =
Duv

DBvu

=
duv +DBuv

DBvu

≥
√
Auv +

√
ABuv

√
ABvu

=

√
AT uv

√
ABvu

,

hence, AT uv

ABvu
≤ 1, and the lemma follows.

After we run Algorithm COMPUTE-A, Lemma 11 allows us
to test whether a link (u, v) can be a center link by comparing√
ABvu to

√
ABuv +

√
Auv . Note that,

√
ABuv +

√
Auv =√

AT uv , therefore we can simply compare ABvu and AT uv

.
If ABvu ≥ AT uv

then (u, v) is not a center-link. Lemma 12
provides a similar test for a center-node. If AT uv

> ABvu then
u is not a center-node.

Since ABvu = ALvu + ARvu , from symmetry, there is at
most one link (u, v) ∈ N(u) for which AT uv

> ABvu . Note
that, this test cannot fail for any leaf u ∈ T . In order to find
the center we repeat the method in the proof of Lemma 10.

We replace each link (u, v) with two directed links (u, v)
and (v, u). Then, we color each link green if AT uv

> ABvu

and red otherwise. If all outgoing links from a node u are red
then u is a feasible center-node. If both (u, v) and (v, u) are
green then (u, v) is a feasible center-link. All conditions of
that proof apply, therefore a feasible center can be found. The
time complexity is O(n) since at most n links can be traversed
before a cycle is entered.

The actual partition on each sub-tree can be computed using
Equation 1. All the above results, with slight modifications
apply even if θ 	= 1. The modifications are straightforward and
therefore omitted. We summarize our results in Theorem 5.
Theorem 5: Given link cost functions of the form cl(d) =

Al/dθ+Cl for all l ∈ T , an optimal solution to Problem WPQ
can be found in O(n).

VI. DISCUSSION

We have dealt with the many-to-many QoS partition prob-
lem on trees in context of performance-dependent costs [1],
[2], [6], [12].

The relation between performance and cost is an important
aspect of QoS provisioning in a commercial environment.
Providing QoS guarantees requires resource allocations on
each network element and thus is associated with direct and
indirect costs. Finding the least cost allocation which satisfies
the connection’s QoS requirements is a fundamental network

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

optimization problem. The performance-dependent cost frame-
work considered in this paper is a simple yet powerful model
that incorporates the Cost-QoS tradeoffs. It is an extension
of the well known bi-criteria model in which each link is
associated with a single QoS guarantee and a single cost.
Instead of a single level of service, each link may offer
multiple levels of service or, generally, a complete Cost-QoS
function. This framework is more descriptive of the practical
tradeoffs between the strictness of the QoS requirement and
the cost of their guarantee.

We have continued the work presented in [2], which dealt
with one-to-one and one-to-many connections. The present
study has established the first solution to the many-to-many
case, which arises in the context of QoS-supported group
communication sessions, such as tele-conferencing and virtual
classes. In such applications, there is an end-to-end QoS
requirement between any two members of the session. It turns
out that the many-to-many problem, with additive (delay) QoS
bounds, is inherently much more complex than the one-to-
many multicast tree case. Thus, a considerable amount of work
was needed in order to develop efficient algorithms for this
case.

We established the structure of optimal solutions to this
problem and presented an optimal pseudo-polynomial solution.
From this exact solution, we derived two types of efficient
(fully polynomial) approximations: delay-approximation and
cost-approximation. The approximations are within (1 + ε) of
the optimal solution (in either delay or cost). We showed im-
proved results for the practical case of discrete cost functions.
We further studied a special case of convex cost functions
which are of practical interest. For this case, we developed a
remarkably efficient algorithm that achieves an exact solution
to the many-to-many problem in linear time.

In this study, we have assumed the existence of a single
multicast tree for a session. While some proposed multicast
protocols construct more complex topologies, such as mesh
and reduced-mesh, most of the basic multicast protocols, such
as CBT or PIM, typically maintain a single tree for each ses-
sion. Extending the results of this study in order to make them
apply to more complex or failure-resilient topologies would
require a considerable amount of work, since the theoretical
properties of the problems change significantly. Nonetheless,
we believe that the results presented here, regarding trees,
provide significant insight and some of the required basics
for such extensions.

An important finding of this study is that some generic func-
tions allow for more efficient solutions than even the discrete
model, which is the current basis for QoS provisioning (e.g.,
[11]). Our results show that a more expressive multivalued
cost function framework is not only feasible, but practical.
We believe that efficient linear solutions can be established
for other cases of special practical interest, beyond those
investigated in this paper. These findings should be taken into
consideration when defining future QoS pricing schemes.

REFERENCES

[1] F. Ergün, R. Sinha, and L. Zhang, “QoS routing with performance-
dependent costs,” in Proceedings of the IEEE INFOCOM’2000, Tel-
Aviv, Israel, Mar. 2000.

[2] D. H. Lorenz, A. Orda, D. Raz, and Y. Shavitt, “Efficient QoS partition
and routing of unicast and multicast,” in In Proceeding of The 8th
International Workshop on Quality of Service (IWQoS 2000), Pittsburgh,
PA, June 2000, pp. 75–83.

[3] V. Firoiu and D. Towsley, “Call admission and resource reservation
for multicast sessions,” in Proceedings of the IEEE INFOCOM’96, San
Francisco, CA, Apr. 1996, pp. 776–785.

[4] M. Kodialam and S. H. Low, “Resource allocation in a multicast tree,”
in Proceedings of the IEEE INFOCOM’99, New York, NY, Mar. 1999,
pp. 262–266.

[5] D. H. Lorenz and A. Orda, “Optimal partition of QoS requirements
on unicast paths and multicast trees,” IEEE/ACM Transactions on
Networking, pp. 102–114, Feb. 2002.

[6] D. Raz and Y. Shavitt, “Optimal partition of QoS requirements with
discrete cost functions,” IEEE Journal on Selected Areas in Communi-
cations, vol. 18, no. 12, pp. 2593–2602, Dec. 2000.

[7] A. Goel, K. Ramakrishnan, D. Kataria, and D. Logothetis, “Efficient
computation of delay-sensitive routes from one source to all destina-
tions,” in Proceedings of the IEEE INFOCOM’01, Anchorage, Alaska,
Apr. 2001.

[8] R. Nagarajan, J. Kurose, and D. Towsley, “Allocation of local quality of
service constraints to meet end-to-end requirements,” in IFIP Workshop
on the Performance Analysis of ATM Systems, Martinique, Jan. 1993.

[9] A. Orda and A. Sprintson, “A scalable approach to the partition of
QoS requirements in unicast and multicast,” in Proceedings of the IEEE
INFOCOM’02, New York, NY, June 2002, pp. 685–694.

[10] S. Chen and K. Nahrstedt, “An overview of quality-of-service routing
for the next generation high-speed networks: Problems and solutions,”
IEEE Network Magazine, vol. 12, no. 6, Nov./Dec. 1998.

[11] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” Internet RFC 2475, Nov. 1998.

[12] D. H. Lorenz and A. Orda, “QoS routing in networks with uncertain
parameters,” IEEE/ACM Transactions on Networking, vol. 6, no. 6, pp.
768–778, Dec. 1998.

[13] R. Hassin, “Approximation schemes for the restricted shortest path
problem,” Mathematics of Operations Research, vol. 17, no. 1, pp. 36–
42, Feb. 1992.

[14] D. H. Lorenz and D. Raz, “A simple efficient approximation scheme
for the restricted shortest path problem,” Operations Research Letters,
vol. 28, no. 5, pp. 213–219, June 2001.

[15] G. N. Frederickson and D. B. Johnson, “The complexity of selection
and ranking in X + Y and matrices with sorted columns,” Journal of
Computer and System Sciences, vol. 24, no. 2, 1982.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

