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Abstract— We study the small-time (sub-seconds) scaling
behaviors of Internet backbone traffic, based on traces
collected from OC3/12/48 links in a tier-1 ISP. We observe
that for a majority of these traces, the (second-order)
scaling exponents at small time scales (1ms - 100ms) are
fairly close to 0.5, indicating that traffic fluctuations at
these time scales are (nearly) uncorrelated. In addition,
the traces manifest mostly monofractal behaviors at small
time scales. The objective of the paper is to understand
the potential causes or factors that influence the small-
time scalings of Internet backbone traffic via empirical data
analysis. We analyze the traffic composition of the traces
along two dimensions – flow size and flow density. Our
study uncovers dense flows (i.e., flows with bursts of densely
clustered packets) as the correlation-causing factor in small
time scales, and reveals that the traffic composition in terms
of proportions of dense vs. sparse flows plays a major role
in influencing the small-time scalings of aggregate traffic.

I. INTRODUCTION

Scaling behaviors of the Internet traffic have a significant
impact on network performance and engineering, and
thus have been the focus of much research (see [1] and
references therein). Self-similar scaling over large time
scales (e.g., 1 second and above) has been observed in a
variety of network traffic (see, e.g., [2], [3], [4]). More
recently, more complex, perhaps multifractal-like, scal-
ing behaviors below 1 second time scales have also been
reported [5], [6], [7], [8], [9], [10]. Since queuing inside
routers and network congestion are strongly influenced
by traffic fluctuations at sub-second small time scales,
understanding of small-time scaling behaviors of net-
work traffic is critical to many network engineering prob-
lems, e.g., router buffer dimensioning, delay-sensitive
service provisioning, and congestion control [11], [12],
[13]. The need for such an understanding is particularly
acute in the backbone Internet with high-capacity links
and growing traffic volumes.
In this paper we study the small-time (sub-seconds)
scaling behaviors of Internet backbone traffic. Our
analysis is based on day-long packet traces collected
from OC3/12/48 links on a tier-1 ISP (Internet Service
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Sprint ATL. Zhi-Li Zhang was on leave from University of Minnesota,
and Vinay Ribeiro was a graduate intern. Zhi-Li Zhang was supported
in part by NSF grants ITR-0085824 and CAREER Award NCR-
9734428, and by the University of Minnesota McKnight Land-grant
professorship.

Provider). The high-precision time stamping as well as
the high link capacity allow us to zoom into finer time
scales (say, 1 ms time scale) and perform reliable data
analysis at these time scales. In addition, the large set of
long packet traces enables us to make observations over
time and compare scaling behaviors of traffic carried
across links of various types (e.g., links connecting to
other ISPs, or big corporate customers). In contrast,
majority of the previous traffic data traces used in the
study of traffic scaling behaviors have less than 100
Mb/sec bandwidth, and typically they are relatively short
in duration. Our study, we believe, is the first effort to
use an extensive amount of data from a commercial tier-
1 carrier to study the traffic scaling behaviors inside the
Internet backbone.

As is previously observed on the Internet WAN traffic,
all data traces exhibit a dichotomy of scaling behaviors:
above 1 second or so, the traffic has a clear-cut single
self-similar scaling, while below it, the scaling behaviors
appear to be more varied. The transition occurs between
100 ms and 1 second, regardless of link speed, link
utilization, link type and time. This observation is not
surprising; it merely confirms that what was previously
observed on relatively low-speed links also holds on
high-speed links. What is striking, however, are the ob-
servations regarding the small-time (sub-second) scaling
behaviors on these Internet backbone links. We find that
over a range of small time scales, a majority of packet
traces manifest (nearly) uncorrelated scalings with a
(second-order) scaling exponent below 0.6, often fairly
close to 0.5. This seems to indicate that traffic fluctuation
on these backbone links appear to be almost independent
at these small time scales! A small number of traces do
exhibit some correlation (with scaling exponents within
the range of 0.6-0.7). In addition, via multifractal analy-
sis, we show that all traces manifest mostly monofractal
behaviors at small time scales.

This paper is devoted to the understanding of potential
factors that influence the small-time scalings of Inter-
net backbone traffic via empirical data analysis. We
analyze the traffic composition of the traces along two
dimensions – flow size (defined in terms of bytes in a
flow) and flow density (defined in terms of dominant
packet inter-arrival times within a flow). We show that
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aggregation of flows with small sizes (small flows) gen-
erally exhibits mostly uncorrelated small time scaling,
while aggregation of large flows in itself does not induce
correlated or uncorrelated small-time scaling. Hence flow
size alone does not determine the small-time scaling of
aggregate traffic, unlike traffic scaling behavior at large
time scale (above 1 second), which has been shown
to be determined by heavy-tailed flow size distribution.
However, by analyzing traffic composition along the
dimension of flow density, we uncover dense flows
(i.e., flows with bursts of densely clustered packets)
as the primary correlation-causing factor in small time
scales. To further investigate how correlation in small
time scales is affected by traffic composition, namely,
the relative proportions of dense and sparse flows, we
perform semi-experiments using the traffic traces by
varying the proportions of dense and sparse flows. Our
results demonstrate that traffic composition in terms of
proportions of dense vs. sparse flows plays a major
role in influencing the small-time scalings of aggregate
traffic.
The remainder of this paper is structured as follows.
In Section II we describe packet traces used in the
study and present the data analysis methodology we
use. Observations of the small-time scaling behaviors
of the traces are reported in Section III. In Section IV
we propose two flow classification schemes and use
them to analyze traffic compositions of the traces. The
impact of traffic composition on small-time scalings of
aggregate traffic is analyzed in Section V. The related
work is briefly discussed in Section VI, and the paper is
concluded in Section VII.

II. DATA ANALYSIS METHODOLOGY

We first provide a short description of the packet traces
and how they are collected. We then present the data
analysis methodology used in our study, the second-order
scaling analysis and multifractal analysis using wavelets.

A. Packet Traces

For this work, we consider traces collected on OC-
3 (155 Mbps) and OC-12 (622 Mbps) links within
PoPs (Points-of-Presence) and OC-48 links (2.5 Gbps)
between PoPs from a tier-1 backbone network. The tier-
1 network covers a wide geographical area and has a
variety of link types. Links within a PoP have OC-3
(155 Mpbs) and OC-12 (622 Mbps) speed, and inter-
PoP links have OC-48 (2.5 Gbps) or OC-192 (10 Gbps)
speed. The customers are tier-2 or lower ISPs (Internet
Service Providers), corporations, and international ISPs.
The packet traces were collected at three PoPs: two in
the east coast, and the other in the west coast. Each trace
is a sequence of packet records containing the first 40
bytes of a packet, and a GPS-synchronized timestamp
(with an accuracy down to 5 µs) which indicates when

the packet was observed. For further details about the
measurement system, see [14].
Table I describes part of the traces used in our study that
led to our observations highlighted in the introduction.
The listed traces are used in this paper as examples to
illustrate our observations and analyses.

B. Wavelet Analysis, Energy Plot and Scaling Exponent

We employ wavelet analysis as our scaling analysis tool,
which provides robust estimators of the Hurst parameter
H while eliminating polynomial nonstationarities in traf-
fic [15]. To introduce the essential terminology for our
discussion of observed scaling behaviors in Section III,
we provide a quick primer on wavelet analysis using the
simplest form of wavelets, the Haar wavelets.
Fixing a reference time scale T0, define time scale Tj as
Tj = 2−jT0. At each time scale Tj (scale j for short),
let tj,k = (kTj , (k + 1)Tj) denote the k-th time unit
(of length Tj). Consider a (stationary) traffic process
Y . At time scale j, Yj,k denotes the amount of traffic
(i.e., the total bytes) arriving in time unit tj,k. Then
Yj = {Yj,k, k ∈ ZZ} represents the traffic process that is
observed at time scale j. The Haar wavelet coefficients
Wj,k of the traffic process at time scale j are defined as
follows:

Wj,k = 2j/2(Yj+1,2k − Yj+1,2k+1). (1)

The energy function of the traffic process at time scale
j is then given by

Ej = E[W 2
j,k] (2)

where E[·] denotes expectation. The energy function at
time scale j is related to the spectral density function
(SDF), Γ(ν), of the original signal, i.e., the process Y ,
via the following relation [15]:

Ej =
∫

Γ(ν)2−j |Ψ0(2−jν)|2dν (3)

where Ψ0 denotes the Fourier transform of the mother
(Haar) wavelet ψ0 (at time scale 0). Since Ψ0 corre-
sponds to a bandpass filter centered at the frequency
2jν0, where ν0 is the frequency corresponding to the
reference time scale T0, Ej measures the amount of
energy in the process Y in a frequency band around 2jν0.
The energy function captures the second-order statistics
of a traffic process, and its scalings as a function of time
scale.
Consider a self-similar fractional Gaussian noise (fGn)
process with a Hurst parameter H(0.5 < H < 1):
Yj,2k

D= (1/2)HYj−1,k, k ∈ ZZ. Here
D= denotes equality

in distribution. The self-similar scaling behavior of Y
implies that its SDF has the following form:

Γ(ν) = c|ν|1−2H (4)

where c is some constant. It can be shown [16] that

Ej = 2−j(2H−1)E0. (5)
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Trace Link Type/Direction Start Time Duration Speed Avg. Bandwidth
OC3-tier1-dom to domestic tier-1 peer Aug. 8, 2000 15hrs OC-3 42Mbps
OC3-tier2-dom from domestic tier-2 peer Aug. 8, 2000 23hrs OC-3 44Mbps
OC3-corp-dom from corporate Aug. 8, 2000 19hrs OC-3 28Mbps

OC12-tier1-dom from domestic tier-1 peer Sept. 5, 2001 8hrs OC-12 234Mbps
OC12-tier2-int from international tier-2 peer Sept. 5, 2001 6hrs OC-12 228Mbps

OC12-tier2-dom to domestic tier 2 peer Sept. 5, 2001 7hrs OC-12 187Mbps
OC12-corp-dom from corporate Sept. 5, 2001 20hrs OC-12 122Mbps

OC48-bb-1 inter-PoP link April 19, 2002 1 hr OC48 746Mbps
OC48-bb-2 inter-PoP link April 19, 2002 1 hr OC48 844Mbps
OC48-bb-3 inter-PoP link April 19, 2002 1 hr OC48 1356Mpbs

TABLE I

TRACE DESCRIPTION

Hence log Ej = −jα + log E0, where α = 2H − 1.
Namely, log Ej scales linearly with time scale −j.1 The
slope of a simple plot of log Ej against −j, called the
energy plot, provides an estimate of H . Clearly if H =
0.5, α = 0 (a flat slope) while H > 0.5 yields α > 0 (a
positive slope).
Fractional Gaussian noise is an example of stochastic
processes that exhibit a monofractal scaling over all time
scales. In particular, a fGn process with H > 0.5 is a
long-range dependent (LRD) process; whereas fGn with
H = 0.5 becomes the so-called “white noise,” as the
spectrum is constant at all frequencies. In many practical
applications, empirical processes such as network traffic
processes may manifest different scaling behaviors at
different time scales. To better model such processes,
stochastic processes that exhibit multiple scalings have
also been developed, one example of which is the
multi-scale fractional Brownian motion proposed in [17],
[18]. Such (second-order) multi-scale processes can be
characterized by their spectral density function (SDF).
We say that the process has a (local) scaling exponent
h in the time scale range [j1, j2] if

Γ(ν) ∼ |ν|1−2h for ν ∈ [ν1, ν2] (6)

where ν1 = 2j1ν0, ν2 = 2j2ν0, and [ν1, ν2] is the
frequency band corresponding to the time scale range
[j1, j2]. Using (3), it can be shown that

log Ej = −(2h− 1)j + c(j1, j2), j ∈ [j1, j2], (7)

where c(j1, j2) is a constant depending on [j1, j2].
Hence the slope of log Ej against −j over the range
[j1, j2] in the energy plot provides an estimate of the
(local) scaling exponent h. The same estimator using
linear regression of log Ej developed for Hurst parameter
estimation in [15] can be used to estimate h over the
range [j1, j2]. Following the same argument, such an
estimator for h is (asymptotically) unbiased and efficient.
As an example, consider a multi-scale fractional Brow-
nian motion with two scaling exponents: h(1) for j ≤ j1

1Here the negative sign indicates coarser time scales with increasing
values on the x-axis.

and h(2) for j > j1. (Note that Tj = T0/2j . Hence
smaller j indicate larger time scale.) Hence h(1) governs
the scaling behavior of the process over the large time
scales (j ≤ j1), whereas h(2) governs the scaling behav-
ior of the process over the small time scales (j > j1). In
particular, if h(1) > 0.5, the process is an asymptotically
self-similar process (thus LRD) with the Hurst parameter
H = h(1). Furthermore, if h(2) = 0.5, this process at the
smaller time scales (j > j1) behaves like a “white noise,”
i.e., the (high-frequency) fluctuations at these time scales
are uncorrelated.

C. Multifractal Analysis

Multifractal analysis compares the scaling of different
wavelet moments to estimate the local regularity in
processes [19], [6], [10]. Its main tool is the wavelet
partition function Sj(q), a generalization of the wavelet
energy function (2), defined as

Sj(q) = E|Wj,k|q. (8)

For certain multifractal processes the partition function
scales asymptotically (j → ∞) as

log2 Sj(q) ∼ q · constant + jαq. (9)

Thus the slope of log2 Sj(q) against j provides an
estimate of αq . Processes with trivial monofractal scaling
have αq varying linearly with q while for multifractals
the variation is non-linear.
Stationary Gaussian processes necessarily display trivial
monofractal scaling. It is easily shown that for two
Gaussian random variables X and Y ,

log(E|X |q/E|Y |q) = (q/2) log(E|X |2/E|Y |2), (10)

thus implying that for Gaussian processes

logSj(q) − logSj+1(q) =
(q/2)(logSj(2) − logSj+1(2)), ∀j. (11)

From (9), it follows that αq = (q/2)α2, i.e., αq is a
linear function of q. For example, the fGn process with
Hurst parameter H has αq = q(H+1/2). Non-Gaussian
processes, however, can possess multifractal scaling.
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To test whether a process possesses multifractal scaling,
two quantities ζq = αq − q/2 and hq = ζq/q are
introduced [20]. Note that for fGn, ζq = qH and hq =
H . Thus a straight line ζq plot or a constant hq plot
characterize monofractal processes, while a non-linear
ζq plot or a non-constant hq plot characterize multifractal
processes.
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Fig. 1. Energy plots of OC12 traces.

III. MAJOR OBSERVATIONS

In this section we analyze the scaling behavior of the
Internet backbone traffic using wavelets. For all traces
we form a time series by counting the number of bytes
every 10µs. We then perform wavelet analysis on the
time series using a Daubechies wavelet with 3 vanishing
moments.2

A. Energy Plots

As representative examples to illustrate our observations,
Figs. 1, 2 and 3 show the energy plots for a one-hour
segment3 from the backbone packet traces listed in Table
1. We see that all plots show a dichotomy of scaling
behaviors, the “knee” point (the transition region of
scaling behaviors) occurring around 100ms - 1sec time
scales, typically with a (slight) dip of energy in this
region. Above 1sec or so, a strongly self-similar scaling
(with Hurst parameter H > 0.75) is apparent in all plots.
Below 100ms most links have a rather flat slope with
local scaling exponent h < 0.6. In contrast, the OC-
12 corporate link (OC12-corp-dom) in Fig. 1(d) has a
moderately correlated scaling (h ≈ 0.7).
The Fourier transform (frequency) plots in Fig. 4 cor-
roborate our energy plot correlation inferences. Recall

2The wavelet analysis code is based on the programs from [20].
3The small-time scalings we observed from the traces are fairly

consistent over different time segments of the traces. Due to space
limitation, we do not show these results, which can be found in [21].

from Section II-B that the wavelet energy at different
scales correspond to the energy of the signal in different
frequency bands. For example, the wavelet energy at
small time scales 2-100ms correspond to the signal
energy at the frequency range 10-500Hz. While the
frequency plot of OC12-tier2-dom (Fig. 4(a)) is fairly flat
in this region, signifying “white noise” or uncorrelated
behavior, that of OC12-corp-dom (Fig. 4(b)) varies in a
1/f fashion, signifying stronger correlations.
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Fig. 4. Fourier transform (frequency) plots.

B. Multifractal Analysis

To test whether the traces exhibit multifractal scaling at
small time scales, we perform the multifractal analysis
using the code from [20]. We plot the estimates of ζq and
hq at small time scales and find that all traces show trivial
monofractal scaling. Some examples are shown in Fig. 5,
which reveal that ζq is linear in q and hq is a nearly
constant, typical of monofractal processes. This finding
is in contrast to earlier findings on traffic multifractality
[5], [8], [10], [6]. This apparent contradiction is easily
de-mystified through an analysis of the Gaussianity of
the marginal distribution of traffic traces concerned.

Traces Kurtosis Skewness
OC3-tier2-dom 2.7 0.26

OC12-tier2-dom 3.04 0.2
OC12-corp-dom 2.86 0.24

OC48-bb-1 3.06 0.20

TABLE II

ESTIMATED KURTOSIS AND SKEWNESS AT 4MS TIME SCALE.

Kurtosis and skewness are two metrics commonly used
for Gaussianity test. A Gaussian distribution has kurtosis
3 and skewness 0, while heavier tailed distributions have
higher values. Many of the earlier studied traces are from
relatively low capacity (1-10Mbps) links, which trans-
port less aggregated traffic with non-Gaussian marginals.
For example, [22] reported kurtosis values greater than
5 at a time scale as large as 500ms for traces collected at
Auckland university. This non-Gaussianity gives rise to
non-trivial multifractal scaling. In contrast, the backbone
traces have Gaussian-like marginals at small time scales
(see Table II and Fig. 6 for marginals at 4ms time scale),
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Fig. 2. Energy plots of OC3 traces.

10
0

10
1

10
2

10
3

10
4

20

25

30

35

h=0.58194

time scale (ms)

lo
g2

(W
av

el
et

 E
ne

rg
y)

H=0.77692

10
0

10
1

10
2

10
3

10
4

20

25

30

35

h=0.57783

time scale (ms)

lo
g2

(W
av

el
et

 E
ne

rg
y)

H=0.78576

10
0

10
1

10
2

10
3

10
4

20

25

30

35

h=0.58452

time scale (ms)

lo
g2

(W
av

el
et

 E
ne

rg
y)

H=0.91122

(a) OC48-bb-1 (b) OC48-bb-2 (c) OC48-bb-3

Fig. 3. Energy plots of OC48 traces.

leading to trivial monofractal scaling (as explained in
Section II-C). This is actually to be expected, as the
backbone traces are of highly aggregated traffic (see
Table I for average bandwidth of the traces). Since the
backbone traces we study do not possess multifractality,
which necessitates an analysis of higher-order statistics,
in the remainder of this paper we will use energy
plots only to study the small-time (second-order) scaling
behaviors of the Internet backbone traffic.

IV. FLOW CLASSIFICATION AND TRAFFIC

COMPOSITION

Clearly an aggregate traffic trace observed on an In-
ternet backbone link comprises of packets from many
individual traffic flows (defined in whatever appropriate
terms). In this section, we classify flows in a traffic
aggregate along two dimensions: flow sizes – the number
of bytes contributed by a flow in a given time span,
and flow density – the distribution of inter-packet arrival
times of a flow in a given time span. Using these
two flow classification schemes, we analyze the traffic
composition of the packet traces, i.e., identifying flow
components with different characteristics. In the next
section we will use the proposed flow classification
schemes to understand the scaling behaviors of various
flow components, and investigate the impact of traffic
composition on small-time scalings of aggregate traffic.

We use the standard 5-tuple4 flow as our basic flow
definition. Since we are primarily interested in small-
time scaling behaviors in the range of 1-100 ms, we
zoom into 1-minute segments of the packets traces to
analyze the characteristics of their flows in detail. A
1-minute segment contains enough information to give
good estimates of sub-second time scale (1ms-100ms)
statistics, while being small enough to enable a feasible
detailed flow-level analysis. Moreover, we have observed
little deviation of the energy plot of a 1-minute segment
of backbone traffic from the energy plot obtained from
a 1-hour segment. In the remainder of this paper, we
will focus primarily on two packet traces, OC12-tier2-
dom and OC12-corp-dom, as they manifest strikingly
different small-time scalings. The goal of our study is to
uncover the causes and factors that influence the small-
time scalings of Internet backbone traffic.
One way to classify flows is based on flow size, namely,
the total number of bytes belonging to a flow. The
distribution of flow size in bytes is largely application-
layer dependent, and has proved sufficient to explain the
correlation or long-range dependence at large (seconds
to minutes) time scales [23], [1]. To understand whether
flow size distribution also influence the traffic scaling

4A 5-tuple flow is a stream of packets that have the same source
and destination IP addresses, source and destination port numbers, and
protocol field in a given time span. It is the finest-grain flow one can
identify using only IP/TCP header packet traces.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



0 2 4
0

0.5

1

1.5

2

2.5

3

q

ζ
q

2 4
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

q

h
q

0 2 4
0

0.5

1

1.5

2

2.5

q

ζ
q

2 4
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

q

h
q

0 2 4
0

0.5

1

1.5

2

2.5

3

3.5

q

ζ
q

2 4
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

q

h
q

0 2 4
0

0.5

1

1.5

2

2.5

3

q

ζ
q

2 4
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

q

h
q

(a) OC3-tier2-dom (b) OC12-tier2-dom (c) OC12-corp-dom (d) OC48-bb-1

Fig. 5. Multifractal analysis.
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Fig. 6. Histograms of bytes per 4ms.

behavior at sub-second time scales, we thus also classify
flows based on their size. We introduce two parameters,
BL ≥ BS for large vs. small flow classification. We
term a flow as large if it transmits more than BL bytes
in a given 1-minute interval, and a flow as small if it
transmits less than BS bytes. Flows of sizes in between
are termed as of intermediate size. If BL = BS , then
flows are either large or small. In our study we typically
choose BL = 106 bytes and BS = 104 bytes.

Fig. 7 shows (a portion of) the complementary cumula-
tive distribution function (CCDF) of flow sizes (in bytes)
in five different 1-minute segments that are one hour
apart for both the OC12-tier2-dom and OC12-corp-dom
traces. Note that the x-axis is given in logscale, and the
distribution has a long tail. Clearly in both traces, a great
majority of flows are small. For example, with BS = 104

bytes, OC12-tier2-dom has more than 95% small flows,
while OC12-corp-dom has close to 90% flows are small.
With BL = 106 bytes, only a tiny percentage of flows
in both traces are large: OC12-tier2-dom has about 0.1%
large flows, and OC12-corp-dom has about 0.5%. On the
other hand, the tiny percentage of large flows contribute
a significant proportion (around 20-40%) of total bytes in
the aggregate traffic, as shown in Fig. 8. Figs.7 and 8 also
reveal that the flow size distribution is fairly consistent
over time, with little variations in five different 1-minute
segments, each an hour apart.

Our second flow classification is based on the distribu-
tion of packet inter-arrival times within a flow. Before
we introduce the formal definition, we show an example
of two different flows in Fig. 9(a) and (b). The vertical
bars in the top plots of the figures correspond to packet
arrivals. We see that packet arrivals of the flow a are
more sparsely spaced than those of flow b. The bottom
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Fig. 9. Packet inter-arrival times and arrival process.

plots show the distribution of packet inter-arrival times
of the two flows. Clearly, the dominant packet inter-
arrival times of flow a are around 10 ms or so, while the
dominant packet inter-arrival times of flow b are around
2 ms or so.
The above example motivates us to classify flows based
on their density, namely, the dominant packet inter-
arrival times of a flow. Given an appropriately chosen
parameter T , we classify5 flows with 50% of packet
inter-arrival times less than time T dense, and the
remaining sparse. For T = 3ms, the flow a in Fig. 9
will be classified as sparse and flow b as dense.
To gain an intuitive understanding of the “density” dis-
tribution of flows in the OC12-tier2-dom and the OC12-
corp-dom traces, we compute the histograms of packet
inter-arrival times for individual flows in each trace in a
given 1-minute segment, and then sum the corresponding
bins of all the histograms to obtain an “aggregate”
histogram. The aggregate histogram tells us the relative
occurrence of dominant packet inter-arrival times among
the flows in the trace. The aggregate histogram is shown
in Fig. 10. It is clear that the dominant packet inter-
arrival times of the flows in the OC12-corp-dom trace are
much smaller than those of the flows in the OC12-tier2-
dom. Setting6 T = 2ms, Table III shows that the traffic
composition of sparse and dense flows in 5 different 1-
minute segments, each one hour apart, for both OC12-
tier2-dom and OC12-corp-dom traces. We see that the
dense vs. sparse traffic compositions of the two traces
remain fairly consistent over time, and the difference
between the OC12-tier2-dom and OC12-corp-dom traces
is obvious. In the OC12-corp-dom trace about 2.1-2.5%
of the total flows are dense, compared to the less than
1% dense flows in the OC12-tier2-dom. Furthermore,
the dense flows in the OC12-corp-dom trace contribute
15-20% of the total bytes, while the dense flows in the
OC12-tier2-dom trace contribute fewer than 4% of the
total bytes.

5Of course, we can define a spectrum of flows with different density,
from sparse to dense. For simplicity, we choose a dichotomy of sparse
and dense flows.

6As is evident in Fig. 10, the results reported here hold qualitatively
as long as we classify dense/sparse flows in a reasonable fashion, e.g.,
setting T = 4ms instead of 2ms. Due to space limitation, we do not
show such results here.
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Fig. 10. P.d.f. of intra-flow packet inter-arrival times.

Before we leave this section, we would like to make
a few comments. As mentioned earlier, 5-tuple flow
size distribution is generally application-dependent. The
majority of the flows use TCP, with web and file sharing
(e.g., Kazaa) applications predominant7. On the other
hand, the dominant packet inter-arrival times of flows
are likely a result of the bottleneck link speed of the
underlying networks, coupled with the feedback control
mechanism of TCP. We note that many users behind the
OC12-corp-dom link have high-speed Internet connec-
tions, whereas flows traversing the OC12-tier2-dom link
come from users with more diverse Internet connections.
This may explain why the OC12-corp-dom trace has
more dense flows percentage-wise than the OC12-tier2-
dom trace. We also note that both the file size distribution
as well as the bottleneck speeds within the Internet
backbone are unlikely to change substantially over time,
at least not within a time span of several hours. Thus both
taxonomies are in accordance with our goal of finding
time invariant causes for small-time scalings.

V. TRAFFIC COMPOSITION AND SMALL-TIME

SCALINGS

We investigate how the small-time scalings of aggre-
gate traffic depend on their traffic compositions. More
specifically, we first illustrate how small-time scalings
are affected by the large vs. small and dense vs. sparse
flow decomposition; we then examine how small-time
scalings of aggregate can be altered by varying its traffic
composition of dense and sparse flows. We focus primar-
ily on the OC12-corp-dom and OC12-tier2-dom traces.
Our results point to the (relatively) large proportion of
dense flows in the OC12-corp-dom trace as the key cause
for its strong correlation in small time scales.

A. Small-Time Scalings of Large vs. Small Flows

We begin by studying the dependence of small time
scalings on the flow size. We use a 1-minute segment of
the two OC-12 traces (the “Min 1” segment in Table III)
as an example. The energy plots for the large (BL = 106

7See [21] for a breakdown of various applications in the traces.
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Trace Flow Min 1 Min 2 Min 3 Min 4 Min 5
Name Type %flows %bytes %flows %bytes %flows %bytes %flows %bytes %flows %bytes

OC12-corp-dom dense 2.1 17.1 2.2 14.9 2.4 15.8 2.74 22.1 2.4 15.1
sparse 97.8 82.8 97.7 85.04 97.6 84.1 97.2 77.8 97.6 84.8

OC12-tier2-dom dense 0.7 2.0 0.7 3.9 0.9 3.3 0.8 3.0 0.8 3.6
sparse 99.2 97.9 99.2 96.1 99.1 96.6 99.1 96.9 99.1 96.4

TABLE III

DENSE VS. SPARSE TRAFFIC COMPOSITIONS IN 5 1-MINUTE SEGMENTS OVER 5 HOURS (T = 2MS).
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Fig. 11. Energy plots.

bytes) and small (BS = 104 bytes) flows of the two
traces are displayed in Fig.11. The aggregate of OC12-
corp-com large flows has a small-time scaling exponent
h = 0.69, similar to that of the total traffic aggregate
in Fig. 1(d). In contrast, the aggregate of OC12-corp-
com small flows has a small-time scaling exponent h =
0.54, considerably smaller than that of the total traffic
aggregate. In comparison, both aggregates of OC12-
tier2-dom large and small flows exhibit an uncorrelated
small-time scaling with h fairly close to 0.5, similar to
the total traffic aggregate (Fig.1(c)).
The above results show that the aggregate of small flows
appear like “white noise” with uncorrelated scaling at
small time scales. Unlike small flows, large flows in
themselves do necessarily not induce correlated or un-
correlated small-time scalings, as is evident in Fig.11(a).
Hence flow size alone does not determine the small-time
scaling of aggregate traffic. This phenomenon is quite
different from what we know about the scaling behavior
of aggregate traffic at large (above seconds) time scales:
it has been shown that the (asymptotically) self-similar
scaling of aggregate traffic is caused by the heavy-tailed
file size distribution.

B. Small-Time Scalings of Dense vs. Sparse Flows

We now study the dependence of small time scalings
on the flow density. Using the same 1-minute segment
from both traces as before, we decompose the total traffic
aggregate into aggregates of dense and sparse flows
by setting T = 2ms. The corresponding energy plots
are shown in Fig. 12. Clearly, the aggregate of dense
flows shows strong correlation at small time scales, with
h ≥ 0.7. In particular, the aggregate of dense flows from
the OC12-tier2-dom has a small-time scaling exponent

h ≈ 0.7, significantly larger than that of the total traffic
aggregate. The aggregate of sparse flows has a much
smaller scaling exponent (h ≤ 0.6) at the small time
scales. Note that although the aggregate of sparse flows
of the OC12-corp-dom trace possesses some correlation
(h ≈ 0.6), it is still far smaller than that of the dense
flows (h ≈ 0.76). It is also smaller than that of the
total traffic aggregate (h ≈ 0.65, see Fig. 1(d)). These
observations also hold for other packet traces. As an
example, Fig. 13 shows the small time scalings of dense
vs. small dense flows for two OC48 traces.
To further investigate the impact of flow density on
small-time scalings, we separate the total traffic aggre-
gate of two traces into large and small (with BL = BS =
105 bytes) components, and analyze the impact of dense
and sparse flows (with T = 2ms) on each components.
The resulting energy plots are shown in Figs. 14 and 15.
We observe that the sparse large flows have a much
smaller scaling exponent than the dense large flows at
small time scales. Even the dense small flows manifest
correlated scalings at small time scales. These results
clearly point to dense flows as the correlation-causing
factor at small time scales.
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Fig. 12. Small-time scalings of dense vs. sparse flows.

C. Impact of Traffic Composition on Small-Time Scal-
ings

So far we have demonstrated that the key factor in
influencing the small-time scaling is the flow density –
the dense flow component produces strong correlation
at small time scales, while sparse flow component does
not. Since both the OC12-tier2-dom and OC12-corp-
dom traces contain dense flow component, why do
they exhibit strikingly different small-time scalings? The
answer to this question is obvious when we examine
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Fig. 13. Small-time scalings of dense vs. sparse flows for OC48
traces.
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Fig. 14. Small-time scalings of dense vs. sparse large flows.
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Fig. 15. Small-time scalings of dense vs. sparse small flows.

their traffic compositions in terms of dense and sparse
flows. Fig. 10 in Section IV shows that the flow density
distribution of the two traces are significantly different:
the OC12-corp-dom trace has more flows with shorter
inter-packet arrival time (e.g., 4 ms), namely, more flows
with bursts of densely clustered packet arrivals. Using
T = 2ms to classify dense and sparse flows, Table III
shows that in the OC12-corp-dom trace about 2.1-2.5%
of the total flows are dense, which contribute 15-20%
of the total bytes; whereas in the OC12-tier2-dom trace
less than 1% of the total flows are dense, contributing
fewer than 4% of the total bytes. Consequently, the dense
flows in the OC12-corp-dom trace are more dominant,
causing the aggregate traffic to exhibit correlated small-
time scaling, while the dense flows in the OC12-tier2-
dom have an almost negligible impact on the small time
scaling of the aggregate traffic.
To further illustrate how correlation in small time scales
is affected by traffic composition, namely, the relative
proportions of dense and sparse flows, we perform semi-
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Fig. 16. Impact of dense vs. sparse traffic composition on small-time
scalings.

experiments using the traffic traces. We mix different
proportions of dense and sparse flows and demonstrate
how small-time scalings changes with the traffic com-
position. We first start with the aggregate of all dense
large flows in the OC12-tier2-dom trace, and observe the
change in small-time scaling behaviors by progressingly
adding in sparse large flows: from 0% to 100% of
all sparse flows in the trace. The results are shown
in Fig. 16(a), where we see that the scaling exponent
h in the time scale range of 1-10 ms decreases from
around 0.69 to around 0.52, as the proportion of sparse
flows increases. We now show how small-time scaling
exponent can change in the other direction by starting
with the aggregate of all sparse flows in the OC12-corp-
dom trace, gradually adding more dense large flows into
the traffic aggregate: from 0% to 100% of all sparse
flows in the trace. The results are shown in Fig. 16(b),
where we see that the scaling exponent h in the time
scale range of 1-10 ms increases from 0.59 to 0.70,
as the proportion of dense large flows increases. These
two semi-experiments clearly demonstrate the impact of
dense vs. sparse traffic composition on the small-time
scaling behaviors.

D. Effect of RTT on Small-Time Scaling

We conclude this section by examining the effect of RTT
on small-time scalings of the traces. Through simula-
tions, in [24], [25] it shows that strong periodicities at
the RTT time scale caused by TCP’s feedback control
can lead to a decrease a “dip”) in wavelet energy at that
scale, which might be attributed as the cause of the “flat”
(uncorrelated-like) scaling we observe at the small time
scales. To address this issue, we obtain RTT estimates for
a large sample of TCP flows using the method in [26].
In both traces, the RTTs for both dense and sparse flows
are within the range of around 102 ms to 1 sec or so. In
the case of OC12-tier2-dom, the dense and sparse flows
have a very similar RTT distribution. In contrast, the
dense flows of the OC12-corp-dom have a significantly
large number of RTTs at about 10ms, while the sparse
flows have a wider RTT distribution. The results suggest
that we cannot attribute the different small-time scalings
of sparse and dense flows we observe in the traces to
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the difference in the RTT characteristics of the flows.
Direct inspection of the flow characteristics at the fre-
quency domain (see Fig.18) also corroborate the RTT
analysis. Note the striking 1/f -type decay for the dense
flows in the frequency range 10-200Hz (5-100ms time
scales) and the (relatively) flat spectrum in the same
range for the sparse flows. They more explicitly account
for difference in the small-time scaling behaviors (recall
the relationship between wavelet energy and spectrum
density function in Section II). Note that for the sparse
flows of the OC12-corp-dom trace, the spectrum in fre-
quency range 10-200Hz is not as flat as that of the sparse
flows of the OC12-tier2-dom, which explain the slightly
higher scaling exponent we observe (see Fig.12(b)).
In summary, our analysis does not indicate a strong
impact of RTTs on small-time scalings we observe in the
traces. The difference in the small-time scaling behaviors
can be better explained by the difference in the spectrum
density functions of the dense and sparse flows in the
traces. Intuitively, dense flows, by definition, inject bursts
of densely clustered packets into the network, causing
strong correlation in small time scales. We believe that
flow density is more plausibly determined by the bottle-
neck link speed of the underlying network (coupled with
the TCP feedback control mechanism), rather than the
RTT effect of TCP feedback control mechanism alone.
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Fig. 17. RTT estimates from 3-way TCP handshake packets.

VI. RELATED WORK

Recently multifractal small-time scalings of various net-
work traffic statistics have been reported in a number of
studies [5], [8], [10], most notably [6], where a random
multifractal cascade is used for modeling small-time
scaling behaviors. In [24], through simulation, the au-
thors prescribe TCP (especially the resulting strong RTT
periodicities) as a possible cause for the diverse small-
time scaling behaviors of network traffic. By performing
detailed flow-level analysis of packet traces from high-
speed links, we attribute traffic composition in terms
of flow density (a likely product of both bottleneck
link speed and TCP feedback control mechanism) as
a key factor in influencing small-time scalings. Closely
related to our work is the connection-level analysis of
low-speed packet traces (3 Mpbs) conducted in [22],
which proposes the alpha vs. beta flow dichotomy in

terms of flow marginals at 500ms time scale (similar
to our small/large flow classification), and study the
impact of alpha/beta flows on queueing performance. It
also points to the bottleneck link speed as a potential
factor in producing alpha flows. Our work differs from
[22] in both the time scales (1-100 ms vs. 500 ms)
of analysis and the fact that we study the impact of
flow properties on correlations (small-time scalings) in
addition to marginals. Note that on low-speed links,
alpha or large flows would behave like dense flows, due
to relatively low degree of aggregation. In another set
of studies [27], [28], based on the analysis of inter-
packet arrival times, the authors conclude that packet
arrivals and sizes can go locally to independence with
increased statistical multiplexing. Our study differs from
theirs in two important aspects: (1) we focus on the
second-order statistics of traffic volume fluctuations at
small time scales, not packet arrivals or sizes; and (2)
we find that high degree of aggregation in itself does not
produce uncorrelated scalings, but instead distribution of
flow density plays a major role.

VII. CONCLUSIONS

Using packet traces collected from OC3/12/48 links on a
tier-1 ISP we studied the small-time scaling behaviors of
Internet backbone traffic. We observed that for a majority
of these traces, the (second-order) scaling parameters
at small time scales (1ms - 100ms) are fairly close
to 0.5. Hence for these traces the traffic fluctuations
at these time scales are nearly uncorrelated. A small
number of traces do exhibit some correlation (with
scaling exponents within the range of 0.6 - 0.7). In
addition, the traces manifest mostly monofractal (instead
of multifractal) behaviors at small time scales. This can
be attributed to the high degree of traffic aggregation
on the Internet backbone links, which results in more
Gaussian-like marginal distributions at small time scales.
To understand the factors that influence the small-time
scalings, we analyzed the traffic composition of the
traces along two dimensions – flow size and flow density.
We found that flow size alone cannot determine the
small-time scaling of aggregate traffic. Our results point
to dense flows as the correlation-causing factor at small
time scales. They reveal that traffic composition in terms
of proportions of dense vs. sparse flows plays a major
role in influencing the small-time scalings of aggre-
gate traffic. We are currently investigating mathematical
models to provide explanation for and gain theoretical
insights into our findings.
Our observations and results have significant implica-
tions in networking modeling, service provisioning and
traffic engineering. For example, the discovery of uncor-
related small-time scalings on many Internet backbone
links can lead to simpler network models for analyzing
network performance at small time scales [11], [13]. Our
finding that small-time scalings are determined by dense
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Fig. 18. Fourier transform (frequency) plots of dense and sparse flows.

vs. sparse traffic composition also raises many intriguing
issues regarding the impact of Internet evolution on
traffic behaviors. On the one hand, with increasing speed
of Internet backbone links, dense flows appear “sparser”
as we zoom into even smaller time scales; therefore
we would expect traffic on these links are more likely
to appear “independent” at those small time scales that
matter to queuing [11]. On the other hand, as broadband
access becomes more widely deployed, large files and
objects will be transmitted faster into the Internet, with
more correlated bursts. In addition, the changing nature
of applications and increased use of protocols other than
TCP can also effect a change in the small-time scalings
of the Internet backbone traffic. These are important
questions awaiting to be explored.
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