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Abstract— Service discovery is an integral part of the ad
hoc networking to achieve stand-alone and self-configurable
communication networks. In this paper, we discuss possible
service discovery architectures along with the required network
support for their implementation, and we propose a distributed
service discovery architecture which relies on a virtual backbone
for locating and registering available services within a dynamic
network topology. Our proposal consists of two independent com-
ponents: (i) formation of a virtual backbone and (ii) distribution
of service registrations, requests, and replies. The first component
creates a mesh structure from a subset of a given network graph
that includes the nodes acting as service brokers and a subset of
paths (which we refer as virtual links) connecting them. Service
broker nodes (SBNs) constitute a dominating set, i.e. all the
nodes in the network are either in this set or only one-hop away
from at least one member of the set. The second component
establishes sub-trees rooted at service requesting nodes and reg-
istering servers for efficient dissemination of the service discovery
probing messages. Extensive simulation results are provided for
comparison of performance measures ,i.e. latency, success rate,
and control message overhead, when different architectures and
network support mechanisms are utilized in service discovery.

I. INTRODUCTION

Flexibility and minimum user intervention are essential
for future communication networks which are to be easily
deployed and reconfigured automatically when extended with
new hardware and/or software capabilities. Service discovery,
which allows devices to automatically discover network ser-
vices with their attributes and advertise their own capabilities
to the rest of the network, is a major component for such
self-configurable networks. Today, there exist several different
(yet overlapping) industrial consortiums or organizations to
standardize different service discovery protocols (e.g. Service
Location Protocol (SLP) of IETF, Sun’s Jini, Microsoft’s
Universal Plug and Play (UPnP), IBM’s Salutation, and
Bluetooth’s Service Discovery Protocol (SDP)) [1], [2], [3],
[4], [5] .

Mobile ad hoc networks (MANETs) are the ultimate sce-
narios where the nodes sharing a common stack of lower
layer technologies are able to form a temporary communica-
tion network in order to facilitate instant networking needs.
MANET nodes may have very little or no knowledge at
all about the identities and capabilities of each other. There
can be a high degree of variety in terms of the capabilities
of each individual device (e.g. support of multiple physical

interfaces, processing power, printing capability, multi-media
libraries, etc.) and such a heterogeneity makes it even more
attractive to establish an ad hoc network. In addition, MANETs
are characterized by their highly dynamic, multi-hop, and
infrastructure-less nature. The dynamic nature arises from the
facts that (i) nodes are free to move, (ii) the adverse channel
conditions of the wireless medium (e.g. multi-path fading,
shadowing, interference, collisions, etc.) may be in effect, (iii)
node failures may occur because of the limited energy of the
battery-charged devices, and (iv) nodes may frequently join or
leave the network at will. Each node is assumed to have the
routing functionality, so when no direct link exists between any
two devices, they can still communicate via the intermediate
nodes. No existing infrastructure is assumed, because it is
desirable to have a stand-alone and self-configurable network
even in cases where there occur partitions in the network.

Except for Bluetooth’s SDP, none of the proposals for
service discovery directly targets an all wireless network. Their
applicability and performance in MANET scenarios mainly
depend on their assumptions about the available network
support. For example, if any fixed infrastructure is assumed
in the implementation, it would be against the nature of the
ad hoc networking.

Almost all of the service discovery protocols include
the client-server paradigm as a mode of operation. In this
paradigm, service requesting nodes (clients) send out service
request messages and servers listen to such messages at a pre-
determined network interface and port. If the requested service
is supported, then a reply message is sent back to the client.
The alternative scheme involves service brokers (or directory
agents) which reside between clients and servers as a logical
entity. Clients direct their requests to well-known service
brokers whereas servers register their services with these
brokers. In return, service brokers send back the service reply
messages to the clients and registration acknowledgments to
the servers. We will refer to each of these models as directory-
less and directory architectures respectively.

It can be argued that the directory-less architecture is more
suited to a MANET scenario [6], because there is no need for
any infrastructure. Furthermore, network support for broad-
casting, multicasting, or anycasting suffices to implement this
client-server model. It is also clear that using service broker
nodes necessitate either assigning this functionality statically
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to certain nodes in the network or assigning it dynamically
to a subset of nodes in the network depending on the current
network topology. The first choice is not possible under the
given constraints of MANETs. Since the latter choice presents
an extra load to the network for selecting the server brokers
while dynamically adapting to topology changes as well as
informing the rest of the network about the identities of these
service broker nodes (SBNs), it can be seen as an expensive
alternative and be discarded.

On the other hand, there are two very important motivation
points that support the use of a directory system. The first
motivation comes directly from the benefits of using SBNs: 1)
Scalability is achieved when network size becomes larger. 2)
Response time for locating services reduces. 3) Servers are not
flooded with service requests when there is a high demand for
certain type of services (e.g. inter-networking). 4) SBNs can
apply simple load balancing techniques before sending back
a reply message. This further reduces the load on individual
servers and improves the service performance.

The second motivation comes from the recent research
efforts in utilization of virtual backbones or clusters for
improved efficiency as well as quality in MANET routing
protocols (unicasting, multicasting, or broadcasting) and in the
realization of distributed database systems again mainly used
for serving routing protocols [7], [8], [9], [10]. It is highly
desirable to have a tighter relation between different layers of
the communication to reduce the redundancies associated with
repeating similar tasks in different layers which results with
increased control message overhead. Provided that a virtual
backbone formation and maintenance mechanisms exist below
the network layer, upper layer protocols, i.e. routing and ser-
vice discovery algorithms, can exploit this backbone together.
Then the overhead associated with dynamically selecting the
SBNs is justified with the overall efficiency provided that
SBNs are co-located with backbone nodes.

In this paper, our goal is to show that directory architecture
is not only feasible, but also a good candidate for service
discovery in MANETs. For that purpose, we provide our
own solution to realize directory architecture and compare
its performance against directory-less architectures that utilize
multicasting and anycasting support from network layer.

Our solution involves two phases: (i) BackBone Manage-
ment (BBM) phase: a dynamic virtual backbone is formed
below the routing layer such that each node in the network is
either a part of the backbone or one hop away from at least
one of the backbone nodes. Each backbone node knows how
to reach the other backbone nodes within 3-hop neighborhood
after this phase is completed. SBNs are co-located with the
backbone nodes and each non-backbone node is associated
with at least one SBN. (ii) Distributed Service Discovery
(DSD) phase: Service request and registration messages are
used to form subtrees rooted at clients and the servers which
allow efficient dissemination of the subsequent request and
registration messages. Reverse paths in these subtrees are used
for reply messages.

The rest of the paper is organized as follows. In section-II,

an overview of possible network support options and desired
features of a service discovery protocol are provided. Section-
III gives the network model and the notation used. In section-
IV, we present a detailed explanation of the BBM algorithm
and the DSD algorithm. Performance measures, simulation
framework and simulation results are introduced in section-V.
Finally, in section-VI, we summarize and conclude this paper.

II. OVERVIEW

Service discovery protocols can be evaluated under a few
different contexts. For us, the distinguishing characteristic
of these protocols will be their applicability to a MANET
environment.

The first condition is the infrastructure-less operation and
it has a direct impact on the architectural choice of the
service discovery protocols. Directory-less architecture does
not have any directory agents (DAs), hence no infrastructure
associated with them is needed. But directory architectures
are not free of the infrastructure burden in a straight-forward
manner. In directory architectures, first issue is about the
nodes that can carry out the functions of DAs. If DAs are
very specialized nodes having requirements of bridging be-
tween different communication media (e.g. salutation manager
(SLM) in Salutation protocol [4]) or containing the objects
to access the services (e.g. lookup server in JINI [5]), then
these functions can be impossible or very costly to relocate
to another node in the network without any user intervention.
Therefore these DAs constitute an infrastructure contrary to
MANET requirements. On the other hand if DAs simply
contain records of services registered dynamically by the
servers, then any node with enough resources (e.g. battery
power, memory, processing power, etc.) can assume the re-
sponsibility of being a DA which is essential for infrastructure-
less operation. Thus simplicity of DA functions is desired in
MANETs. Then we need mechanisms to dynamically (s)elect
the nodes that DAs will reside in and make their locations
known to other nodes as the topology changes. But these
mechanisms should be same in principle with forming clusters
or virtual backbone in MANETs at the network level except
for the tight coupling with service discovery in application
layer [8], [11], [7], [10], [12], [9], [13]. We will exploit this
observation in designing a directory-based service discovery
architecture.

The second condition is the provisioning of efficient yet
satisfactory network layer support for service discovery in
a dynamic topology. When there are multiple servers (or
DAs) and no direct link exists between clients and servers,
this network support must be in the form of broadcasting,
multicasting, or anycasting. Even for medium-size networks,
broadcasting can have excessive control message overhead
which is quite important in shared wireless channels and
unintended nodes have to receive, process, and re-transmit
these packets which wastes the network resources. Therefore
we will not consider broadcasting in this work as a viable
alternative.
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In multicasting, server and DA nodes (depending on which
architecture is being used) are assigned well-defined multicast
addresses, so they can be reached by all client nodes. The
formation and maintenance of multicast groups in terms of
client, servers, and DAs can incur significant cost in net-
work operations. Thus, even directory-less systems ,which are
preferred because of their light-weight, may in fact turn out
to be heavy-weight in the overall cost when multicasting is
used. On the other hand, anycasting can provide a simpler
framework, because in principle it can be simulated by any
unicast routing protocol [14] which is clearly less demanding
than multicasting. But in anycasting there is no differentiation
among the attributes of the services. Service requests will be
eventually received by only one of the servers which may not
satisfy client request1. Clearly, assigning a different anycast
address for each service type and attribute combination is not
a feasible approach. Hence anycasting has a limited scope as
compared to the cases where service attributes may exhibit a
high variety and clients have preferences2.

We have already pointed out the similarity between virtual
backbone or cluster formation and implementing a directory
architecture. Second condition basically imposes a control
message distribution support on top of this virtual backbone
with a close interaction with service discovery agents in the
application layer. In the following sections, we unravel our
algorithms to satisfy both conditions ,i.e. lack of infrastruc-
ture and efficient dissemination of service discovery control
messages, in a directory architecture.

III. NETWORK MODEL AND NOTATION

In this section, we present the network model and the
notation that is used throughout the paper.

A. Network Model

We assume that all the nodes in the network have an omni-
directional antenna and have the same transmission power. All
links are bi-directional, i.e. if node A can hear node B, then
node B also can hear node A. Nodes share the same commu-
nication channel (e.g. same frequency band, same spreading
code or frequency hopping pattern) to transmit and receive
packets. Hence no node is allowed to transmit and receive at
the same time. No particular assumption is made on medium
access control (MAC) and access scheme can be random,
reservation based, or any variant of both. Without loss of
generality, partitioning in the network is not allowed, because
each partition can be treated as an independent network.

B. Notation and Definitions

We use a color convention in determining the roles of each
node in the network. SBNs are represented by black color. If a

1One may also consider sending application data directly to the anycast
address reserved for a service type rather than first discovering the server
location. But then, subsequent data packets will possibly be routed to different
servers and still the server attributes are not distinguished.

2A client may request a color printer in a close location with low number
of jobs queued. If all the printers are assigned a single anycast address, the
user preference will be ignored in the service query.

node is not part of the virtual backbone and it has at least one
SBN (i.e. black) neighbor, then it is called to be associated
with the virtual backbone and it is represented by green color.
When a node is neither a SBN nor an associated node, then
it is represented by white color. The rest of the notation and
the definitions is as follows.

• N : Set of all the nodes in the network.
• N

(d)
i : Set of nodes that are at most d hops away from

node i excluding node i itself.
• W : Set of white nodes in N .
• ci: Color of node i ∈ N , which can be black, green, or

white.
• V APi: Virtual Access Point (VAP) of green node i. This

node is used by node i as its access point to the backbone.
If node i is a server, it always registers its service with
the DA residing on node V APi.

• di, dwi: Degree information for node i, i.e. total number
of neighbors (or degree) and total number of white
neighbors (or effective degree) of node i in the given
network topology.

• NLFFi: Normalized link failure frequency of node i.
This parameter represents the total number of link losses
for node i in a fixed time window normalized by di at
the end of the observation window.

• nlff th: System threshold that sets the preferred level of
normalized link losses for any backbone node.

• IDi: Network identifier for node i.
• Tw, Tl, Ts, Th: Waiting time, long time, short time, and

hello beacon periods which are ordered as Tw > Tl >
Ts > Th.

We will use the terms SBN, VAP, and backbone nodes
interchangeably throughout the paper.

IV. A DIRECTORY ARCHITECTURE SOLUTION FOR

SERVICE DISCOVERY

Our network level solution to support a directory architec-
ture consists of two parts. The first part, BBM phase, selects a
subset of the network nodes to form a relatively stable domi-
nating set, discovers the paths between dominating nodes and
adapts to the topology changes by adding or removing network
nodes into this dominating set. The formation algorithm for the
dominating set is very similar to the backbone selection phase
used in VDBP [7]. But, the way we incorporate the effect
of link failures and we interconnect the VAP nodes are quite
different. In VDBP, the node with minimum NLFF selects
itself as a backbone node. Instead, we only eliminate the nodes
with NLFF values higher than a given threshold and use the
degree (or effective degree) as the selection criterion for the
remaining nodes. Note that NLFFi is simply the proportion
of the link losses at node i. Relying on a threshold value
eliminates the extreme cases as seen in VDBP, i.e. a node i
with no link losses but very few neighbors would be selected
instead of a node j with very high degree but a few link losses.
Unlike most of the other backbone or clustering algorithms,
BBM utilizes only a 1-hop local broadcast control message
(Hello Beacon) for forming the backbone, creating virtual links
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between backbone nodes, and maintaining the backbone. Hello
beacons are also light-weight, because they do not carry all
the neighborhood information of the transmitting node.

After the first part is successfully carried out, we have a
virtual backbone that constitutes a mesh structure with the
backbone nodes and the virtual links connecting them. The
second part is used to efficiently distribute the request and
registration messages from the service discovery agents to the
DAs (i.e. backbone nodes). These messages assist in forming
multicast trees rooted at client and server nodes on top of the
backbone mesh.

The detailed descriptions of both parts are provided in the
subsequent sub-sections.

A. BackBone Management (BBM) Phase

The goal of the BBM algorithm is to obtain a small size (not
necessarily minimum size) and relatively stable backbone. The
algorithm is highly distributed and based on local decisions
which makes it fast to react back to the changes in the network
topology. BBM algorithm can be described in three compo-
nents: (i) initial selection of backbone nodes, (ii) mesh forma-
tion by finding the paths between backbone nodes, (iii) and
maintenance against topology changes. All the components
rely on the periodically broadcasted hello beacons which bear
the following information about the transmitting node i: {IDi,
di, dwi, NLFFi, ci, V APi, f lags, routing information}.
Each node creates a neighborhood information table (NIT) and
a routing table using the information carried by these beacons.

Initially, e.g. when first powered on, every node is assigned
white color. Before deciding on their role in the network,
white nodes collect hello messages and built up their own
neighborhood information table (NIT) for time period Tw.
After the waiting period is over, each node k ∈ W , which has
NLFFk < nlff th, joins the virtual backbone and becomes
black if dwk > dwl for each l ∈ (N (1)

k

⋂
W ) such that

NLFFl < nlff th. Ties are broken by giving strict priority
to lower ID node. Checking the normalized link loss threshold
helps to avoid the nodes with a lot of link losses relative
to their total number of links becoming backbone nodes. If
no node in {k}

⋃
N

(1)
k has a link loss rate lower than the

threshold, then node k decides as if its nlff th is set to ∞.
Effective degree information is checked to force undecided
subnets in the network to continue the process. If a node is
still white and does not have the best effective degree among
its white neighbors, it extends its waiting period to receive
more hello messages. This extra waiting time must be in the
order of hello beacon interval Th. At any point in the waiting
time period, if a white node k receives a hello message from
a black node l, V APk becomes IDl and ck becomes green. If
white node is left as the only white node in its neighborhood at
the end of the waiting time, then this node must select a green
node as its VAP node by giving strict priority to nodes that
first satisfy the nlff th requirement and secondly have a higher
degree. When any green node i receives a hello beacon from
node j with V APj = IDi, node i must become a backbone
node and turn into black.

Following lemmas show that all nodes decide in a finite
amount of time, we end up with a dominating set, and each
VAP node has other VAP nodes within 3-hop distance if the
network radius is large enough.

Lemma 1: [Time-boundedness and Correctness of BBM
phase]: Initial selection part of BBM terminates in a finite
amount of time and the set of black nodes constitutes a
dominating set under the assumptions that the network graph
is connected, network size is bounded, hello beacons are
transmitted error-free and frequency of hello beacons is faster
than the topology change events.

Proof: Since network size is bounded, in a finite amount
of time, all the nodes in the network must be powered on.
Without loss of generality, suppose that at any time t0, there
is connected subgraph Gs where any node i ∈ Gs is white,
all nodes have already waited for time Tw, and |Gs| > 1. If
we show that at least one node in Gs decides to be black in
a finite amount of time τ , then |Gs| becomes a monotonically
decreasing function when observed at time instants t0 + k ×
τ until |Gs| becomes one. But at this moment, we have an
isolated white node which selects another green node as a
VAP node and it turns into green. Since all the white nodes
are exhausted, we end up with a set of black nodes which
forms a dominating set.

Since all nodes have finished initial waiting time of Tw, all
of them are in the extended waiting time period which is in
the order of Th. Thus in time interval [t0, t0 + α × Th), all
the nodes must check their NIT to see if they are the best
node. Let’s choose α = 0.5 and suppose a topology change
occurred at t1 ∈ [t0, t0+0.5×Th). Then the assumption about
the topology changes ensures that in [t1, t1 + Th) topology
remains same. But our selection of α enforces all the nodes to
check their NIT table again in [t1, t1 + Th). Our criterion for
selecting the best node guarantees that there is a unique best
node at any time instant. Because the best node remains same
in [t1, t1 + Th), it decides to be black in that time interval.
Thus, choosing τ = Th suffices for completing the proof.

Lemma 2: Assuming that network graph is connected and
the maximum distance in that graph (i.e. network radius) is
greater than or equal to 3 hops, there exists a black node i
for each black node j such that i �= j and i ∈ N

(3)
j after the

selection part of BBM.
Proof: We will prove the lemma by using the way of

contradiction. Let’s assume that there is not any black node
i ∈ N

(3)
j . Because of the assumptions of the lemma, there is a

green node k which is 2 hops away from node j. Since there is
no black node in 3 hops of node j, green node k can not have
black neighbors either. This is a contradiction to the definition
of a green node. Hence, the lemma follows.

Lemma-1 and lemma-2 provide the necessary framework
for completing the backbone formation. If each VAP node
discovers the paths to other VAP nodes within 3 hops (i.e.
VAP neighbors), then we obtain a mesh structure which will
later be utilized in distributing control messages between VAP
nodes.

Hello beacons convey enough information for finding paths
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Fig. 1. An instance of virtual backbone formation.

between VAP neighbors. We will refer these paths as virtual
links. A virtual link can be 2-hop or 3-hop long, i.e. there
may be one or two green nodes between VAP neighbors
respectively. Both situations are outlined in fig.1. In the figure,
dashed nodes are our black nodes, and non-dashed smaller size
nodes represent the green nodes. Black nodes are identified by
single digit numbers, whereas green nodes are identified by
two digit numbers with most significant digit indicating their
VAP node. For instance of a 2-hop virtual link, we see green
node 11 between black nodes 1 and 3. Node 3 sees in the hello
beacons of node 11 that node 11 has a different VAP node than
itself. Since node 11 also sees that node 3 is black and it is not
its VAP node, it includes this routing information in its Hello
beacons. Thus both black nodes 1 and 3 have the information
that they can reach to each other via node 11 and they update
their routing tables. When there exist 2 green nodes along the
virtual link, the situation is slightly different. For example, we
have two green nodes between black nodes 1 and 2. Nodes
13 and 24 recognize from each other’s hello beacons that they
have different VAP nodes. Therefore, node 13 caches node 24
as next hop for node 2 and node 24 caches node 13 as next
hop for node 1. They also include this routing information as
an extension in their Hello beacons, so that nodes 1 and 2 will
know that nodes 13 and 24 are next hop nodes respectively
towards each other. Hence, green nodes play the major role
in discovering the virtual links between VAP neighbors. To
reduce the size of hello beacons, routing extensions that carry
no new information are avoided for a time-out period.

The maintenance of the dominating set feature of the
backbone is a very important task against frequent topology
changes. If green nodes do not receive hello messages for
a time period from their VAP nodes, they choose another
neighbor as their new VAP node by giving strict priority to
black nodes and then green nodes that conform to the mobility
threshold and highest degree criterion. Thus no node is left
without a VAP node. On the other hand, a black node can
migrate to a location where none of the green nodes have this
node as their VAP node. Therefore, when no hello message

indicating itself as a VAP node is received for a time period
Tl, a black node must turn into a green node and follow the
same actions that a green node left without a VAP node takes.
Because of mobility, black nodes can be grouped together in
the same locality. To resolve such cases, if a black node i has
other black nodes in its NIT, it transmits its hello message
with a flag indicating it will change its color to green. When
green neighbors which has node i as their VAP node receive
this hello message, they compute the best black neighbor
from their own NIT. If the best black neighbor is not node i,
they simply assign the best black neighbor as their new VAP
node. Otherwise they set the flag in their own hello messages
indicating i as the best node. As long as black node i receives
hello messages from its green neighbors indicating i as the
best VAP node, node i remains black. If no such messages are
received for a time period Ts, then node i turns into green and
leave the backbone.

B. Distributed Service Discovery (DSD) Phase

Now, we have the virtual backbone and DAs are co-located
with the VAP nodes. But we still need mechanisms to let
servers register their services with one or more DAs and clients
request the services. This is done in the following fashion.
When a server located on node i wants to register its service,
it has to register with the DA located on V APi assuming
node i is a non-backbone node. V APi is referred as source
VAP node. If the node i is already a black node, then the
service is registered with the DA on the same node and node
i itself becomes the source VAP node. Server may register
with more DAs (even maybe with all DAs). Then we need a
multicast or broadcast mechanism to distribute the registration
messages to other DAs located on other VAP nodes. Any time
the VAP node of a server changes, it must renew its registration
with the DA operating on the new VAP node. Also, the server
should be able to keep the scope of its registration messages
local by bounding the number of black nodes the registration
messages could traverse. Similar arguments are true for the
service request. When a client on node j requests for a service,
node j forwards the request to V APj provided node j is not
already a black node and V APj passes the request to co-
located DA. If node j is black, then the request is passed to the
DA on node j. In case DAs do not have any fresh registration
for the service, the service should be requested from other
DAs again by multicasting or broadcasting.

Wireless bandwidth is scarce because of the shared medium
and wireless channel impairments. Although backbone itself
helps to reduce the overhead in disseminating broadcast or
multicast messages by using simple mechanisms like flooding
the backbone, it is not sufficient when we consider the
increasing frequency of multicast events and the topologies
where backbone with virtual links exhibits lots of loops and
high average degree. To make things simple, scalable and
efficient, we propose a source based multicast tree algorithm
which is triggered by service discovery request and registration
messages sent to the backbone management layer by clients
and servers.
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In our algorithm, every backbone node keeps a forward-
ing list among their VAP neighbors for each multicast tree
uniquely identified by the source VAP node. As initial condi-
tion, forwarding lists include all of the VAP neighbors except
for the source VAP node. Multicast messages contain the
following fields: {source node, source VAP node, sequence
number, last-hop VAP node, next-hop VAP node, next hop
node, time-to-live (TTL), options, payload data}. Source node
indicates the client or the server which initiated the request or
registration process. Each multicast message is uniquely iden-
tified by the 2-tuple {source VAP node, sequence number}.
Multicast messages flow from last-hop VAP node to next-hop
VAP node. Last hop VAP node and the green nodes along
the virtual link compute the next hop node from their routing
tables using next-hop VAP node as the destination point. Note
that these routing tables are generated and updated by BBM
phase. When next-hop VAP node receives the message, it
prunes the last-hop VAP node from the forwarding list of
the particular tree. If the message is received for the first
time the replicas are sent to each node in the forwarding list.
When a duplicate multicast message is received from a pruned
VAP node to which the same message has not been sent, an
explicit PRUNE message must be sent to that VAP node to
force it to prune the same link. This algorithm guarantees a
multicast tree after a convergence time given that topology
changes slower than the convergence time. In the worst case
situation, multicasting to backbone nodes will be same as
flooding among the backbone nodes. Options field basically
defines the type of the encapsulated payload data, e.g. service
registration, service request, etc. Depending on the options
field, a VAP node waits for a feedback from upper layer
protocols, where the payload data is handled, in order to stop
or proceed with the forwarding operation. TTL field can be
used to further limit the depth of forwarding for a particular
multicast message (i.e. the information is explicitly kept local).

Forwarding list members basically can be referred as child
nodes, and the VAP node from which a multicast message is
received for the first time can be referred as parent node. When
a VAP node loses its parent node, it sends an UNPRUNE
message to its VAP neighbors. Child nodes upon receiving
an UNPRUNE message from their parent, generates their
own UNPRUNE message and send it to other VAP neighbors
except for their parent node. All VAP nodes which receive
an UNPRUNE message add the sender to the forwarding list
of the particular multicast tree as specified in the UNPRUNE
message.

To give more insight about the algorithm, we provide two
examples in fig.2 and fig.3. These figures essentially show the
same topology as in fig.1 except for the fact that the links and
green nodes between VAP nodes are replaced by bidirectional
dashed lines as virtual links. Suppose server on node 12 wants
to register its service to all VAP nodes (nodes 1 to 9 in the
figure). Node 12 sends the registration message to its VAP
node 1. Then node 1 initiates multicasting process by first
unicasting the copies of the registration message to its VAP
neighbors. Nodes 2, 3, 4, and 5 receive a multicast message
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Fig. 2. Source based multicast tree formation on virtual backbone.

originated by node 1 for the first time. So they forward the
copies of the message to their own VAP neighbors except
for the node from which that message is received and the
originator of the message. In the figure, node 2 will receive
the same multicast message from node 3 as it received from
node 1. Thus node 2 knows at that moment that node 3 has
already received the same multicast message. As a result node
2 stops forwarding multicast messages originated from node
1 to node 3. Similarly node 3 will see duplicates via node 2
and 4, so it stops forwarding multicast messages originated
from node 1 to these nodes. A different case will happen at
node 9. Node 9 first receives the multicast message via 6 and
then via 7 at almost the same time. The message from node 7
is duplicate, and since node 7 is pruned from the forwarding
list of node 9, node 9 explicitly sends a PRUNE message to
node 7. Hence node 7 stops forwarding multicast messages
originated from node 1. Explicit PRUNE mechanism is also
used when duplicates are received persistently from a pruned
node. This can happen in cases where multicast or PRUNE
messages are lost. At the end a multicast tree is formed on
top of the virtual backbone. The source VAP node, i.e. node
1, becomes the root of this multicast tree. In fig.2, directed
solid lines labeled with node 1 represents this tree. Dashed
lines with a cross represent the pruned links. If node 13 also
wants to initiate a service registration or request, since it has
the same VAP node as 12, it uses the same multicast tree
represented by source VAP node 1. Note that the multicast
tree can be logically viewed as two separate trees rooted at
nodes 12 and 13.

Fig.3 shows a general scenario when TTL field is set to
2 hops for multicasting service registrations from node 32.
TTL field includes the link from node 32 to its VAP node 3.
The solid one directional links show the multicast tree and
the numbers on them indicate the root of the tree. Suppose
this service is only provided by node 32 and node 91 wants
to utilize it. Then node 91 sends a service request message
to its VAP node 9 and request is multicasted until it reaches
nodes 1 and 4 which already have the information. Therefore,
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nodes 1 and 4 stops forwarding the request message and
using reverse link information, they reply back to node 9
and node 9 replies back to node 91. Here, it is important
to note the interaction between service discovery agent and
multicasting in forwarding decisions. A service request is
propagated further unless query is resolved.

V. SIMULATION ENVIRONMENT

In this section, we first describe the performance metrics
that are used to evaluate different architectural and network
support choices. Then the simulation framework and the
simulation results are presented as two separate sub-sections.

A. Performance Metrics

Three performance criteria are considered in our simula-
tions. The first performance metric is the total mean control
message overhead of each service discovery mechanism which
measures the load of the algorithms on network resources
in terms of the number of packets. The second performance
metric is the mean hit ratio of these mechanisms. In the
generic service discovery algorithm used in our simulations, a
client does not repeat the request until it receives a successful
reply. This is simply because we want to see how many
original requests are successfully replied, and we label these
requests as successful attempts. Hit ratio is simply the ratio of
the total number of successful attempts to the total number
of requests. When hit ratio and control message overhead
combined together, it reflects the efficiency of each approach.
Our last performance metric is the average time delay between
the time any successful request is sent from a client and the
time corresponding reply is received by the same client. This
metric measures the promptness of the service discovery and it
is particularly important when we have real time applications
waiting for timely response for each service query.

B. Simulation Model

We simulated four different service discovery mechanisms
using ns-2 with CMU wireless extensions [15]. One of these
mechanisms is our proposal for the directory architecture,

and other three mechanisms are based on directory-less ar-
chitectures. As network support, we considered multicasting
and anycasting as two major contenders for the directory-less
architecture.

There exists a rich literature on multicasting for mobile
ad hoc networks [16], [17], [18], [19], [20], [21], [22]. In
our scenarios, we considered multiple senders (i.e. clients)
and multiple receivers (i.e. servers). We did not include the
case, where servers advertise their services and clients learn
about the services passively. Instead only the request-reply
and registration mechanisms are considered which cover the
majority of the applications. Since clients issue the service
requests at will, the multicast protocol should be sender based
rather than receiver based. We also want to have a multicast
protocol which does not depend on any particular unicast
routing protocol which restricts its use. When these choices
are considered together, on demand multicast routing protocol
(ODMRP) [16] fits quite well to the features that we seek for.
We implemented ODMRP in ns-2 without using its mobility
adaptive part which requires GPS receivers on mobile devices.

We implemented anycasting by modifying two very popular
ad hoc unicast routing protocols already implemented in ns-2,
namely DSR [23] and AODV [20], by defining a virtual node
that only server nodes have routing entries as suggested in
[14]. We will refer these two modified algorithms as anycast-
DSR and anycast-AODV respectively. The choice of these
protocols also stems from the fact that they are reactive
algorithms and quite efficient in terms of control message
overhead. Both of them support similar mechanisms like
flooding route request messages and obtaining replies, and the
main difference is in the way the routing entries are created,
cached, and maintained.

For our proposal, BBM and DSD are implemented below
the routing and above the link layer with direct interfaces with
the service discovery protocol again in ns-2. The TTL field
for service registration messages are kept fixed at 1, so each
servers registers with only one DA. We will refer the overall
proposal as distributed service discovery protocol (DSDP) in
simulation results.

We use the distributed coordination function (DCF) of IEEE
802.11 as the underlying MAC protocol. DCF in IEEE 802.11
is a random access scheme and belongs to CSMA/CA family.
The radio interface is based on Lucent’s WaveLan technology
with 250 meters of nominal propagation range and 2 Mbps
of nominal bit rate. Radios use omni-directional antennas
and we assume a two-ray ground propagation model. The
network size is fixed to 50 nodes. Both square (1000mx1000m)
and rectangular (1500mx300m) topologies are considered, but
since the relative results are very similar to each other, we
only provide the results for the rectangular topology. We
use random-way point model as the mobility model. In this
model, nodes select a random destination point and a speed
value from a uniform distribution U [0, Vmax] after a pause
time P . When they reach the destination, they repeat the
same process. A higher Vmax or a lower P corresponds to a
higher mobility level. Five different mobility patterns are used
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for each {Vmax, P} pair. In the experiments, where Vmax is
varied, P value is kept at 0 sec.,i.e. nodes are always in motion.
When we vary the P value, we had fixed the Vmax value at
20 m/sec.

Besides mobility, other important parameters to play with
are the number of clients and the number of the servers.
Number of clients is selected as 10, 20, and 30, whereas
number of servers is varied between 1, 3, and 5. For each
mobility pattern, again five different random set of clients and
servers are used. Thus, each point in the simulation plots are
averaged over 25 random scenarios. Each server periodically
registers its service every 10 seconds and whenever its VAP
node changes for the directory architecture. Without any loss
of generality, we assumed that there exists only one service
class which is offered by all the servers in the network. Clients,
on the other hand, send their requests such that the inter-arrival
time is a random process ζ = T0+τ where T0 is deterministic
time set to 6 seconds and τ is exponential random variable
with mean 2 seconds.

C. Simulation Results

In the first set of experiments, we try to capture the
effect of the number of servers when the number of users
is kept constant. Control message overheads of on-demand
anycast protocols are found to be very sensitive to the number
of servers3. ODMRP tends to have more overhead while
other protocols have a lower overhead as number of servers
increase. This is not an unusual outcome considering the
main mechanisms of these approaches. In multicasting, all
the servers receive the requests, and then all of them have to
reply back. But in anycasting only one of the servers receives
the message regardless of the number of servers. Since it is
highly likely that the closer server replies back and the average
shortest distance between clients and servers gets smaller with
more servers in the network, the control message overhead
decreases. Higher number of servers also decrease the depth
of the query trees in DSDP, hence we have a slight reduction
in control overhead.

End to end delays for successful service discovery improve
with the increasing number of servers. This result is expected
again due to the fact that the average distance between users
and servers decrease as the number of servers increases.
Anycast-DSR and ODMRP show more rapid improvements,
however anycast-AODV and DSDP offer consistently lower
delays. Delay performance of ODMRP reaches to that of
anycast-AODV and DSDP, but anycast-DSR can not compete
in terms of delay.

The hit ratio also improves with number of servers.
Anycast-AODV performs inferior compared to other protocols.
ODMRP has consistently the best hit ratio. DSDP outper-
forms anycast-DSR more significantly as mobility level and/or
number of servers increase. Note that all performance metrics
become worse as mobility in the network increases, because
the link failures occur more often.

3In the plots, arrow directions indicate the increasing number of servers or
users.
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Fig. 6. Average delay comparison for 1-server/10-user case.

The second set of simulations address the question how
increased load in terms of number of users affects the per-
formance of the protocols. The results are plotted in figures 7,
9, 10, 11, 12, 13, 14, and 15. The number of servers are kept
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Fig. 8. Average delay comparison for 5-server/10-user case.
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Fig. 9. Control message overhead for 3-server case.

as three and number of users varied between 10 and 30.
The overhead of each protocol increases with the number

of users with DSDP being the least sensitive one. Although
ODMRP is a heavy-weight protocol, it is quite sensitive to
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Fig. 10. Ratio of successful requests for 3-server case.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Average Delay Performance (3 servers, 20 users, 1500mx300m)

Vmax (maximum speed in m/sec)

av
er

ag
e 

de
la

y 
(s

ec
.)

ODMRP       
anycast−AODV
anycast−DSR 
DSDP        

Fig. 11. Average delay comparison for 3-server/20-user case.
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Fig. 12. Average delay comparison for 3-server/30-user case.

the increased number of users rather than the servers. This
result is a natural consequence of the facts that ODMRP is a
sender-based multicast scheme and senders broadcast periodic
refresh messages to maintain the multicast group.
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Fig. 13. Control message overhead under variable pause time.
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Fig. 14. Ratio of successful requests under variable pause time.
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Fig. 15. Average delay under variable pause time.

The delay of each protocol tends to decrease as number
of users increase. At first sight, this can be regarded as a
counter-intuitive result. Because an increase in number of
users create a higher load on the network which may result

in congestion and packet collisions, hence deteriorating delay
values. But increasing number of users can have the effect
of reducing the average distance from the servers, therefore it
can improve the end-to-end delays. It also helps to on-demand
anycast algorithms to discover the routes in advance when
users share more common links. For networks operating below
its capacity, these positive effects suffice to make delay values
better.

ODMRP and DSDP does not show much response to the
change in number of users in terms of successful service
requests. Anycast-DSR shows significant improvements at
higher mobility cases whereas anycast-AODV suffers from
further performance loss.

To summarize all the results: 1) Under various mobility
scenarios, number of users and servers, the relative perfor-
mances of the protocols remain same in general for a fixed
number of nodes and persistent service requests. 2) In terms
of overhead, ODMRP is the most heavy-weight protocol and
on-demand anycast protocols are the most light-weight. An
increase in number of users almost linearly effect the message
overhead of ODMRP, because it is a sender-driven multicast
protocol. On the other hand, DSDP is not as sensitive as other
protocols against mobility, number of servers or number of
clients, since the bulk of the message overhead for DSDP
is generated by periodically transmitted hello beacons. In
our simulations, each node transmits a hello beacon every 1
second. Considering that we run simulations with 50 nodes and
for 900 seconds, the overall cost of these beacons amounts to
45,000 packets, i.e. 75% to 94% of the overall overhead. 3)
In terms of hit ratio anycast-AODV performs poorly except
for almost stationary scenarios and therefore can not be a
good candidate in general even though the delay and overhead
performances are much better than ODMRP and anycast-
DSR. ODMRP has consistently the best hit ratio performance
as much as 18% above the next best protocol DSDP at
very mobile environments. Anycast-DSR catches ODMRP and
DSDP for low mobility cases, but the performance difference
goes up to more than 10% with second best DSDP. 4) Delay
performance of DSDP is consistently better than other choices.
This is due to the fact that lower number of nodes are involved
in search queries and because registration of services makes
the average distance in number of hops shorter. 5) Although
we have not presented any results in the paper, we also tested
the performance of DSDP for TTL values higher than 1 hop.
Depending on the number of servers and receivers as well as
the frequency of service requests and registration, higher TTL
value may have more positive or negative impact on overhead.
In high mobility conditions, since servers have to re-register
their services when they change their VAP nodes, higher TTL
value turns out to be costlier. But it certainly increases the
promptness in service discovery and the hit ratio.

VI. CONCLUSION

In this paper, we presented possible architectural and net-
work support choices for service discovery in mobile ad hoc
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networks. We provided our original service discovery mecha-
nism to support directory architecture. We also implemented
ODMRP, anycast-DSR, and anycast-AODV protocols along
with our proposal to compare (i) directory and directory-less
architectures and (ii) to compare different network support
options, i.e. anycasting vs. multicasting. We used control
message overhead, mean success rate and the average delay
as three performance metrics for comparison purposes. We
changed the parameters such as number of clients, number of
users, and the mobility level for a comprehensive analysis.

It is the general idea that since no cost of selecting and main-
taining DAs are involved, a directory-less architecture would
be the least expensive and easiest to implement in a mobile
ad hoc network. This view does not take into account the
operational costs of the lower layer support required for such
an implementation. Our results indicate that if the required
network support is multicasting, then maintaining multicast
trees can be very expensive in terms of control message
overhead. Hence overall cost of directory-less architecture with
multicast support requirement can in fact be more than that of
the directory architectures. On the other hand, if anycasting is
used as a network support, we can have a very light-weight
directory-less service discovery. However this reward comes
at the expense of significantly reduced performance in terms
of average hit ratio. Even the level of hit ratio may drop
to unacceptable levels as seen in our simulation scenarios
with anycast-AODV. Anycast-DSR shows a more competitive
level in terms of hit ratio, but then the mean delay values
are compromised a lot even under mild mobility conditions.
These problems are put aside, the main restriction for anycast
support arises from the fact that it can only be utilized in a
limited number of service classes. Therefore multicast support
displays a more robust, reliable, and general framework for
directory-less service discovery architectures.

Results also reveal that directory architecture supported by
a virtual backbone structure can perform quite well under
various mobility conditions in addition to its inherent advan-
tages, e.g. resource allocation, load balancing, localization,
etc. The most dominant figures are observed in the average
delay performances. Our proposal consistently have the best
delay values as well as achieving very competitive mean hit
ratio values relative to the best values obtained by ODMRP in
directory-less service discovery. Also the performance results
show relatively very small sensitivity against mobility, load
on the network, and number of servers. This suggests that
DSDP is not only feasible, but also a very good candidate
for real-time service discovery scenarios where a prompt and
low jitter response is essential. Although virtual backbone
approach is not as light-weight as anycasting solutions in
terms of message complexity, when backbone is exploited by
multiple stack of higher level protocols and light-weight hello
messages are piggybacked behind data packets or other layer
control beacons, the overhead of forming and maintaining the
backbone can be quite justified. Thus, contrary to the general
view, we demonstrate in this paper that directory architecture
is a compelling solution especially for medium size MANETs.

In this paper, we have not investigated the effects of several
load balancing and resource allocation techniques on the loads
of the servers and on the system performance, e.g. delay and
throughput, when a directory architecture is utilized. This will
be our immediate future research interest. As a future work,
we also want to develop a full stack of routing protocols which
rely on our virtual backbone proposal.
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