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Abstract— We analyze the susceptibility of the Internet to
random faults, malicious attacks, and mixtures of faults and
attacks. We analyze actual Internet data, as well as simulated data
created with network models. The network models generalize
previous research, and allow generation of graphs ranging from
uniform to preferential, and from static to dynamic. We introduce
new metrics for analyzing the connectivity and performance of
networks which improve upon metrics used in earlier research.
Previous research has shown that preferential networks like the
Internet are more robust to random failures compared to uniform
networks. We find that preferential networks, including the
Internet, are more robust only when more than 95% of failures
are random faults, and robustness is measured with average
diameter. The advantage of preferential networks disappears
with alternative metrics, and when a small fraction of faults
are attacks. We also identify dynamic characteristics of the
Internet which can be used to create improved network models.
This model should allow more accurate analysis for the future
Internet, for example facilitating the design of network protocols
with optimal performance in the future, or predicting future
attack and fault tolerance. We find that the Internet is becoming
more preferential as it evolves. The average diameter has been
stable or even decreasing as the number of nodes has been
increasing. The Internet is becoming more robust to random
failures over time, but has also become more vulnerable to
attacks.

I. INTRODUCTION

Many biological and social mechanisms—from Internet
communications [1] to human sexual contacts [2]—can be
modeled using the mathematics of networks. Depending on
the context, policymakers may seek to impair a network (e.g.,
to control the spread of a computer or bacterial virus) or to
protect it (e.g., to minimize the Internet’s susceptibility to
distributed denial-of-service attacks). Thus a key characteristic
to understand in a network is its robustness against failures
and intervention. As networks like the Internet grow, random
failures and malicious attacks can cause damage on a propor-
tionally larger scale—an attack on the single most connected
hub can degrade the performance of the network as a whole,
or sever millions of connections. With the ever increasing
threat of terrorism threat, attack and fault tolerance becomes an

important factor in planning network topologies and strategies
for sustainable performance and damage recovery.

A network consists of nodes and links (or edges), which
often are damaged and repaired during the lifetime of the
network. Damage can be complete or partial, causing nodes
and/or links to malfunction, or to be fully destroyed. As a
result of damage to components, the network as a whole
deteriorates: first, its performance degrades, and then it fails
to perform its functions as a whole. Measurements of per-
formance degradation and the threshold of total disintegration
depend on the specific role of the network and its components.
Using random graph terminology [3], disintegration can be
seen as a phase transition from degradation—when degrading
performance crosses a threshold beyond which the quality of
service becomes unacceptable.

Network models can be divided into two categories accord-
ing to their generation methods: static and evolving (growing)
[4]. In a static network model, the total number of nodes and
edges are fixed and known in advance, while in an evolving
network model, nodes and links are added over time. Since
many real networks such as the Internet are growing networks,
we use two general growing models for comparison—growing
exponential (random) networks, which we refer to as the GE
model, where all nodes have roughly the same probability to
gain new links, and growing preferential (scale-free) networks,
which we refer to as the Barabási-Albert (BA) model, where
nodes with more links are more likely to receive new links.
Note that [5] used two general network models, a static random
network and a growing preferential network.

For our study, we extend the modeling space to a continuum
of network models with seniority, adding another dimension in
addition to the uniform to preferential dimension. We extend
the simulated failure space to include mixed sequences of
failures, where each failure corresponds to either a fault or an
attack. In previous research, failure sequences consisted either
solely of faults or attacks; we vary the percentage of attacks
in a fault/attack mix via a new parameter β which allows us
to simulate more typical scenarios where nature is somewhat
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malicious, e.g., with β ≈ 0.1 (10% attacks).
We analyze both static and dynamic susceptibility of the In-

ternet to faults and attacks. In static analysis, we first reconfirm
previous work of Albert et al. [5]. Based on these results, we
address the problems of existing metrics, the average diameter
and the S metric, and propose new network connectivity met-
rics, K and DIK. Second, we put that result to test by diluting
the sequence of faults with a few attacks, which quickly strips
scale-free networks of any advantage in resilience. Our study
shows that scale-free networks including the Internet do not
have any advantage at all under a small fraction of attacks
(β > 0.05 (5%)) with all metrics. Moreover, we show that
the Internet is much more vulnerable under a small fraction
of attacks than the BA model—even 1% of attacks decrease
connectivity dramatically. In dynamic analysis, we trace the
changes of the Internet’s average diameter and its robustness
against failures while it grows. Our study demonstrates that
the Internet has been becoming more preferential over time
and its susceptibility under attacks has been getting worse.
Our results imply that if the current trend continues, the threat
of attack will become an increasingly serious problem in the
future.

Finally, we analyze 25 Internet topologies examined from
November, 1997 to September, 2001, and perform a detailed
analysis of dynamic characteristics of the Internet. These
results provide insight into the evolution of the Internet, may
be used to predict how the Internet will evolve in the future,
and may be used to create improved network models.

II. PREVIOUS WORK

Network topology ties together many facets of a network’s
life and performance. It is studied at the overall topology level
[6], link architecture [7], [8], and end-to-end path level [9],
[10]. Temporal characteristics of a network are inseparable
consequences of its connectivity. This linkage is apparent
from [11], [12], [13]. Scaling factors, such as power-law
relationships and Zipf distributions, arise in all aspects of
network topology [6], [14] and web-site hub performance [15].

Topology considerations inevitably arise in clustering clients
around demanding services [16], strategically positioning “dig-
ital fountains” [17], and mobile positioning [18] etc. ad
infinitum. In QoS and anycast, topology dictates growing
overlay trees, reserved links and nodes, and other sophisticated
connectivity infrastructure affecting overall bandwidth through
hubs and bottlenecks [19], [20], [21]. Other special connectiv-
ity infrastructures include P2P netherworlds [22] and global,
synchronizable storage networks with dedicated topology and
infrastructure for available, survivable network application
platforms such as the Intermemory [23], [24], [25].

An important aspect which shows up more and more is
fault control [26]. Several insights have come from physics,
with the cornerstone work by Barabási [5], and further detailed
network evolution models, including small worlds and Internet
breakdown theories [4], [27], [28], [29], [30], [31], [32].

Albert, Jeong, and Barabási [5] examine the dichotomy of
exponential and scale-free networks in terms of their response

to errors. They found that while exponential networks function
equally well under random faults and targeted attacks, scale-
free networks are more robust to faults but susceptible to
attacks. Because of their skeletal hub structure, preferential
networks can sustain a lot of faults without much degradation
in average distance, d, a metric also introduced in [5] to
aggregate connectivity of a possibly disconnected graph in a
single number.

Recent research [33], [34] has argued that the performance
of network protocols can be seriously effected by the network
topology and that building an effective topology generator is
at least as important as protocol simulations. Previously, the
Waxman generator [35], which is a variant of the Erdos-Renyi
random graph [3], was widely used for protocol simulation.
In this generator, the probability of link creation depends on
the Euclidean distance between two nodes. However, since
real network topologies have a hierarchical rather than random
structure, next generation network generators such as Transit-
Stub [36] and Tiers [37], which explicitly inject hierarchical
structure into the network, were subsequently used. In 1999,
Faloutsos et al. [6] discovered several power-law distributions
about the Internet, leading to the creation of new Internet
topology generators.

Tangmunarunkit et al. divide network topology generators
into two categories [38]: Structural and Degree-Based network
generators. Other recently proposed generators are [1], [14],
[39], [40], [41], [42]. The major difference between these
two categories is that the former explicitly injects hierarchical
strcuture into the network, while the later generates graphs
with power-law degree distributions without any consideration
of network hierarchy. Tangmunarunkit et al. argue that even
though degree-based topology generators do not enforce hier-
archical structure in graphs, they present a loose hierarchical
structure, which is well matched to real Internet topology.

Characteristics of the Internet topology and its robustness
against failures have been widely studied [1], [5], [6], [14],
with focus on extracting common regularities from several
snapshots of the real Internet topology.1 On the other hand,
[42], [43] have shown that the clustering coefficient of the
Internet has been growing and that the average diameter of
the Internet has been decreasing over the past few years.2

However, [43] used this characteristic only as evidence of
topology stability.

III. NETWORK MODEL AND SIMULATION ENVIRONMENT

Network models can be divided into two categories accord-
ing to their generation methods: static and evolving (growing)
[4]. In an evolving model, nodes are added over time—time
goes in steps, and at each time step a node and m links are
added. The probabilities in such a network are time-dependent
(because the total number of nodes/edges changes with each
time-step). In a static network model, the total number of
nodes and edges are fixed and known in advance. Note that this

1Those characteristics, e.g., power-law of the degree distribution, we define
as Static Characteristics because of their consistency over time.

2We define these as Dynamic Characteristics of the Internet.
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difference between the models affects the probability of each
node to gain new edges—old nodes have a higher probability
than new nodes to gain new edges in an evolving network
model. Both classes of models can be placed at the edges
of a seniority continuum, defined as follows. Seniority is a
probability σ that all of the m edges of this iteration will be
added immediately, or at the end of time. A seniority value
of 1 corresponds to a pure time-step model, and a seniority
value of 0 represents a pure static model.

In our simulations, we use a modified version of the model
in [44] for comparison with the Internet. The model contains a
parameter, α, which quantifies the natural intuition that every
vertex has at least some baseline probability of gaining an
edge. In [44], both endpoints of edges are chosen according
to a mixture of probability α for preferential attachment and
1 − α for uniform attachment. Let ki be the degree of the
ith node and m denotes the number of edges introduced at
each time-step. If m0 represents the number of initial nodes
and t denotes the number of time-steps, the probability that
an endpoint of a new edge connects to vertex i is

Π(ki) = α
ki

2mt
+ (1 − α)

1
m0 + t

.

An α value of 0 corresponds to a fully uniform model, while
α values close to 1 represent mostly preferential models.

When an evolving network is generated, we initially intro-
duce a seed network with two nodes and an edge between them
(n0 = 2 , e0 = 1).3 Then, at each time-step, after a new node
is introduced, new edges can be located with two different
edge increment methods: external-edge-increment [5], [1] and
internal-edge-increment [44]. In a growing exponential net-
work with the external-edge-increment method, a new node is
connected to a randomly chosen existing node. However, with
internal-edge-increment, new edges are added between two
arbitrary nodes chosen randomly. In our experiment, unlike
[44], we apply external-edge-increment instead of internal-
edge-increment because preferential networks generated by
internal-edge-increment contain too many isolated nodes. Note
that when α equals 1, preferential networks in our experiments
are the same as the Barabási-Albert (BA) model in [1], [5],
which is very similar to the network in [44] with α = 0.5.

Failures can be characterized as either faults or attacks [5].
Faults are random failures, which affect a node independent of
its network characteristics, and independent of one another. On
the other hand, attacks maliciously target specific nodes, possi-
bly according to their features (e.g., connectivity, articulation
points, etc.), and perhaps forming a strategic sequence. The
topology of the network affects how gracefully its performance
degrades, and how late disintegration occurs. To measure
robustness of networks against mixed failures, we use β for
characterizing failures. With probability 1 - β, a failure is a
random fault destroying one node chosen uniformly. Otherwise
(probability β), the failure is an attack that targets the single

3A seed network is needed to generate a network using the preferential
model—the probabilities of new links for all initial nodes at t = 1 are zero
if there are no initial links.
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Fig. 1. Phase space of the network models in our study. We conducted
experiments with both the evolving network family (pure time-step models)
and the static network family. We focus on the evolving network family
because most real networks are considered to be evolving networks.

most connected node. When β equals 1, all failures are attacks,
and when β equal 0, all failures are faults.

Figure 1 shows the phase space of different network models.
We conducted experiments with both the evolving network
family (pure time-step models) and the static network family.
However, in this paper we mainly compare the robustness of
two different types of evolving networks: evolving exponential
(uniform) networks and evolving scale-free (preferential) net-
works, because many real networks, such as the Internet and
the World Wide Web, are considered to be evolving networks.

We implemented our simulation environment in C++ with
LEDA [45]4. The networks are derived from LEDA’s graph
type, with additional features and experiments as separate
modules. We do not allow duplicate edges and self-loops in
our models and we delete all self-loop links from the Internet.

Like [5], the Internet’s robustness against failures can be
measured from a snapshot of the Internet. We call this kind of
analysis Static Analysis. However, the Internet is a growing
network and its topology changes continuously. Does the
growth mechanism of the Internet affect its robustness? How
is the Internet’s robustness changing while it is growing?
Will performance and robustness of the Internet improve in
the future? To answer these questions, we analyze historical
Internet topologies. We call this Dynamic Analysis. In this
paper, we mainly compare the robustness of the Internet with
two different network models, the BA model and a growing
exponential network model (GE model).

IV. STATIC ANALYSIS OF THE INTERNET’S

SUSCEPTIBILITY TO FAULTS AND ATTACKS

A. Metrics

As noted in [46], finding a good connectivity metric remains
an open research question. [5] introduced two important met-
rics, d and S. The average diameter or average shortest path

4Library of Efficient Data types and Algorithms (LEDA), available at
http://www.algorithmic-solutions.com/.
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length, d , is defined as follows: let d(v, w) be the length of the
shortest path between nodes v and w; as usual, d(v, w) = ∞
if there is no path between v and w. Let Π denote the number
of distinct node pairs (v, w) such that d(v, w) �= ∞ where
v �= w.

d =

∑
(v,w)∈Π d(v, w)

|Π|

where v �= w. To evaluate the reliability of the d metric, we
started with measuring the robustness of three different evolv-
ing networks under faults or attacks only. Our experiments are
somewhat different from [5]. We compared behaviors of the
growing scale-free network (the BA model) and the Internet
with those of the growing random network (the GE model),
while [5] used static exponential networks for comparison.

As we expected, our results are very similar to [5]; A
growing exponential network performs worse under faults,
but better under attacks. However, as we can see in Figure
2(a), d is not always representative of the overall connectivity
because it ignores the effect of isolated nodes in the network.
Note that d is decreasing rapidly after a certain threshold
under attacks only, showing that when the graph becomes
sparse, d is less meaningful. The other metric, S, is defined
as the ratio of the number of nodes in the giant connected
component divided by the total number of nodes. One might
notice the different characteristics of the two metrics. Shorter
average diameter means shorter latency. It demonstrates how
fast a network can react when an event occurs, providing an
indication of the performance of a network. On the other hand,
S mainly considers the networks’ connectivity, showing how
many nodes are connected to the largest cluster.

Since the S metric only considers the relative size of the
largest connected component, and does not characterize the
entire network, we created a new metric, K, that describes the
whole network connectivity. K is defined as follows: let Ψ be
the number of distinct node pairs, and Π is defined as above.
Then

K =
|Π|
|Ψ|

K measures all connected node-pairs in a network. In Figure
2, we can see that the Internet shows the best robustness under
faults according to the diameter. However, if we use the K or
S metrics, the Internet is most vulnerable even under faults.

One weakness of the K metric is that it does not consider the
effect of redundant edges. The K value for a connected graph
with n nodes and n-1 edges5 (K = 1 , d ≥ 1) is the same as that
of a fully connected graph6 (K = 1 , d = 1) even though the
diameter and connectivity of each graph is quite different. To
solve this problem, we introduce a modified diameter metric,
which we call Diameter-Inverse-K (DIK). DIK is defined as:

DIK =
d

K

5A graph where all nodes are connected to the giant connected component.
6A graph where all nodes are connected to all other nodes.

The DIK metric uses the K metric as a penalty parameter
for sparse graphs and measures both the expected distance
between two nodes and the probability of a path existing
between two arbitrary nodes. Figure 2 demonstrates that d
significantly decreases when it reaches a certain threshold,
while DIK continuously increases. Note that the Internet is
most vulnerable even under faults if we measure network
connectivities with S or K.

B. Robustness against Mixed Failures

In real life, it is somewhat unrealistic to expect that failures
are either all faults or all attacks. One may expect that failures
are a mixture of attacks and faults, e.g., only a small fraction
of failures are attacks while most failures denote faults. In
the following experiments, network destruction was performed
until 10% of the total number of nodes was destroyed, using
different values of β (probability of attack). We performed 10
runs in each case with different seed numbers. The results in
Figure 3 are the average of the ten runs. We define the average
diameter ratio as df/do where do denotes the average diameter
of the initial network, and df is the average diameter after 10%
of the nodes have failed. Similarly, the DIK ratio is defined as
DIKf/DIKo where DIKo is the DIK value of the original
network, and DIKf is the DIK value after 10% of the nodes
have failed. Figure 3 shows that: (a) Although there seems
to be an advantage for scale-free networks under pure faults,
their disadvantage under attacks is much larger, and even a
small fraction of attacks, β > 0.05 (5%), in a mix of failures
removes any overall advantage of the scale-free networks.
(b) The K metric is even more unforgiving to the scale-free
networks, showing no advantage under any β ≥ 0.01 (1%).
Note that the Internet shows the worst robustness even under
faults only. Figure 3(c) clearly shows the vulnerability of the
Internet under a small fraction of attacks. DIK is increasing
very rapidly and even 1% of attacks significantly hurts its
robustness.

We also measured the effect of preferential attachment and
observed the following trends. First, more preferential net-
works have shorter average diameters. We generated networks
with various α and observed this trend, as shown in Figure
4. The most preferential network with n nodes and n − 1
edges has all nodes connected to the most popular node.
The diameter from the most popular node to others is one
and the diameter between any two nodes except the most
popular node is two, therefore the average diameter is less
than two, and the network has the smallest diameter of all
possible networks with n nodes and n − 1 edges. Second,
more preferential networks are more robust under faults only,
but more vulnerable under even a small fraction of attacks if
we measure robustness using the average diameter or DIK.
Figure 5 demonstrates that when α is close to 1, even a
small fraction of attacks (β ≥ 0.01 (1%)) cancels out the
advantage of the scale-free networks and hurts their topologies
more. Note that if the average diameter reaches a certain
threshold, it decrease rapidly and becomes meaningless. Third,
with the K metric, a preferential network does not show any
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Fig. 2. Robustness against faults/attacks; We used the AS (Autonomous System) level topology of the Internet with 6474 nodes and 13895 edges from [47],
which was examined on Jan. 2, 2000. After removing self-loops, the number of edges decreased to 12572. For growing network models, we set m equal to
two and generated networks with 6474 nodes. f denotes the number of failure nodes divided by the total number of nodes in the original network. Two nodes
and an edge between them are initially introduced when we generate the network (n0 = 2, e0 = 1). (a) and (c): (a) shows d for the Internet, and for the BA
and GE models. Note that d significantly decreases when it reaches a certain threshold, while DIK continuously increases. (b) and (d): The S and K metrics
do not agree with the previous observations using d. The Internet is most vulnerable under both attacks and faults using these metrics. Even though S and
K behave very similarly, S only considers the relative size of the giant connected component, while K considers all node pairs which are connected. We set
DIK to zero when d and K becomes zero. Note that smaller is better for d and DIK, but larger is better for S and K.
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Fig. 3. Robustness of the Internet, and the BA and GE models under mixed failures after 10% of total nodes are destroyed. (a): The average diameter of the
Internet and the BA model increases rapidly compared with the GE model as β is increasing. The advantage of smaller d disappears when β > 0.05 (5%).
Figure (c) demonstrates this trend more clearly. Note that even 1% of attacks significantly hurts robustness of the Internet. (b): The K metric is even more
unforgiving to the scale-free networks, and shows no advantage under any β ≥ 0.01 (1%). The Internet shows the worst robustness even under faults only.
The results shown are the average of ten runs. Note that smaller is better for d and DIK, but larger is better for K.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

A
ve

ra
ge

 d
ia

m
et

er

Alpha

Fig. 4. Relationship between preferentiality and average diameter; While α
is increasing, the average diameter of the networks generated is decreasing.
Results are the average of 10 different networks with different seed numbers.

noticeable advantage even under attack, and an exponential
network dominates all kinds of failures.

V. DYNAMIC ANALYSIS OF THE INTERNET’S

SUSCEPTIBILITY TO FAULTS AND ATTACKS

In this section, we measure changes in the Internet’s ro-
bustness against failures over time. We sampled eight Internet
topologies from different points in time from [47]. Self-
loop links were removed. First, we measured the average
diameter. We also generated the BA model and the GE model
and measured their average diameters. While the number of
nodes in the Internet increased, the average diameter actually
decreased, which can not be explained by the BA model. Both
the BA and GE models predict an increasing average diameter
as the number of nodes increases, as shown in Figure 6.

Next, we trace the robustness of the Internet while it is
growing. For each Internet topology, we destroy 10% of the
total number of nodes and measure robustness with three
different metrics—average diameter, K, and DIK. Figure
7(a) and 7(d) show the robustness of the Internet with the
average diameter. The average diameter ratio of the Internet is
decreasing while the number of nodes is increasing under pure
faults. Note that the average diameter ratios of other network
models are fluctuating and do not show any clear trend. Figure
7(d) is misleading because the Internet topology becomes too
sparse after 10% of the nodes are removed. Note that the
average diameter is meaningless when a graph contains many
isolated nodes. With the K and DIK metrics, we observe a
clear trend: the Internet becomes more robust under faults, but
more vulnerable under attacks while it grows. In other words,
the Internet has been becoming more preferential over time and
the growth mechanism of the Internet focuses on maximizing
overall performance (decreasing average diameter) rather than
robustness against attacks, and the Internet’s susceptibility
under attacks will be a more serious problem in the future
if this trend continues.
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Fig. 6. Diameter ratio while a network is growing. We sampled eight
topologies of the Internet, examined on 11/15/1997 (3037 nodes), 04/08/1998
(3564 nodes), 09/08/1998 (4069 nodes), 02/08/1999 (4626 nodes), 05/08/1999
(5031 nodes), 08/08/1999 (5519 nodes), 11/08/1999 (6127 nodes), and
01/02/2000 (6474 nodes), and measured their diameters. For comparison, we
also generated the BA and GE models and measured their average diameters.
We generated each network model ten times with different seed numbers
and calculated average values. Each di is divided by do, the diameter of
the first network with 3037 nodes. do is 3.78 for the Internet, 4.51 for
the BA model, and 5.20 for the GE model. Note that as the networks are
growing, the diameter of the BA and GE models increases, while the diameter
of the Internet decreases, indicating a growth mechanism that maximizes
performance (minimizing diameter and latency).

VI. DYNAMIC CHARACTERISTICS OF THE INTERNET

Existing Internet topology generators are basically limited
since the Internet is a dynamically growing network and its
topology and characteristics will have similar dynamics. For
example, the clustering coefficient of the Internet has been
recently increasing while the average diameter of the Internet
has been decreasing [42], [43]. We define these as Dynamic
Characteristics of the Internet. Since current Internet topology
generators are designed using only the static characteristics of
the Internet, we contend that they will suffer from a lack of
ability to predict future Internet topology. Currently, the best
method to simulate network protocols is using the real Internet
topology instead of using Internet topology generators, which
innately limits our ability to develop, for example, network
protocols that best fit future conditions. We find that most
existing Internet topology generators fail to explain some of
the dynamic characteristics of the Internet. For example, we
found that the average degree of the Internet is frequently
changing. It grew until the end of 1999 then decreased until
September 2001. Most Internet topology generators do not
show this behavior.

Even though degree-based generators represent Internet
topologies better than structural ones [38], we contend that
current degree-based topology generators only mimic some
general properties, i.e. power-law degree distribution, but do
not really explain the Internet’s growing mechanism [48].

Figure 8 clearly shows this argument. Even though the BA
model and the Internet share some general properties such as
the degree-frequency distribution, their topology can be very
different. Figure 8(a) shows during 1998 the that fraction of
nodes with degree one in the Internet is decreasing while
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Fig. 7. Dynamic characteristics of the Internet; do, Ko and DIKo are defined as the average diameter, K, and DIK of the original networks and df ,
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that of nodes with degree two is increasing. However, the
fraction of nodes with degree k becomes stable after 1999.
Note that more than 70% of nodes have degree one or two for
the Internet. Figure 8(b) and 8(c) clearly show the limitations
of the BA model-like topology generators. First, there are no
nodes with degree one. Also, the percentage of nodes with
degree more than two in the BA model are twice that for the
same nodes in the Internet. Only less than 5% of nodes in the
Internet have degree more than four while approximately 10%
of nodes in the BA model have degree more than four.

In order to analyze the dynamic characteristics of the
Internet topology in detail, we sampled 41 Internet topologies
from Oregon RouteViews7. We first analyze the number
of total nodes, node births, and node deaths in the Internet
topologies. Since we cannot guarantee that our data set covers
entire complete Internet topologies, and that a node may not be
discovered because of a temporary failure; we consider a node
dead only when it does not appear in future Internet topologies.
For example, a node in November, 1997 is considered to be
deleted only when it never appears from December, 1997 to
September, 2001.

Figure 9(a) shows the regularity in the number of total
nodes, added nodes, and deleted nodes over the period of
November, 1997 to September, 2001. We also measured the
number of total links, added links, and deleted links as shown
in Figure 9(b). The total number of nodes and edges increases
quadratically and we can predict the number of nodes in
the near future with the equations given in Figure 9(a) and
9(b). Average degrees of the Internet topologies are shown in
Figure 9(c). In most of the time-step based Internet topology
generators including [1], [41], [42], the number of links added
at each time-step is fixed. However, the average degree of the
Internet increased linearly until the end of 1999 but suddenly
decreased from early 2000 even though the number of nodes
was increasing. This implies that the approaches of time-
step and fixed number of link additions may not generate
proper Internet topologies. Calculating the average degree of
the Internet analytically with equation (3) showed results very
compatible with the changes of the Internet’s average degree.

Nnodes = 3 ∗ X2 + 58 ∗ X + 3100 (1)

Nlinks = 4.4 ∗ X2 + 170 ∗ X + 5300 (2)

k =
2 ∗ Nlinks

Nnodes
(3)

Links can be created by two processes. When a new node is
created, new links are created which connect the new node to
existing nodes. We previously defined this process as external
edge increment. Otherwise, links can be added between two
existing nodes, defined as internal edge increment earlier. In
a few cases, we found that a link is created between two
new nodes; however, these cases are ignored. Figure 10(a)

7These data were crawled from the web site of Oregon RouteViews [47]
and Topology Project Group [49] in the University of Michigan. They were
examined on the 15th of each month from November, 1997 to September,
2001. Since most Internet topology generators and previous work does not
consider self-loop links, we removed all self-links.

shows that 1.36 links per new node are added by external
edge increment and 1.86 links per new node are added by
internal edge increment over four years starting November
1997. A total of 3.22 links per new node are added over the
same time period. Note that internal edge increment affects
link increment more than external edge increment. Also, 67%
of new nodes are introduced with a single link and 31% of
new nodes are added with two links. Only 2% of new nodes
are introduced with more than two links over four years; a
result shown in 10(b).

Like link births, a link can be deleted in two ways. When a
node is dead, links connected to the node are broken. Also, a
link can be deleted when any one of the connected nodes
decides to be disconnected from the other. We define the
former as external edge death and the latter as internal edge
death. Node death is not the main factor in link death—link
death frequently happens without node death. Around 82% of
dead links are broken due to internal edge death. According
to Figure 10(d), 1.44 links were broken when a node was
discarded. The average number of internal edge deaths is more
than three times larger than that of external edge deaths in the
same time period. 7.77 links per node death are deleted from
November, 1997 to September, 2001. Are less degree nodes
more likely to die? One of the interesting observations for
link and node death is that more than 74% of dead nodes
had degree one, but less than 20% of dead nodes had degree
two. Note that there are almost the same number of nodes
with degree one and two in the Internet according to Figure 8.
Figure 10(e) clearly shows that nodes with fewer connections
(i.e. less popular) are more likely to die.

Figure 9(c) and 9(f) show the degree-frequency distribution
of new and dead nodes during four years. F (k) can be defined
as follows;

F (k) =
∑k

i=1 f(i)
N

where f(k) is defined as the number of new (or dead)
nodes with degree k. Our results demonstrate that the degree-
frequency distribution for new nodes clearly follows a strict
power law but deviates significantly for dead nodes.

VII. FUTURE WORK

Our study may be extended in various ways, for example:

• Internet topology generator
Currently, we are designing a new Internet topology
generator which fits not only the static characteristics but
also the observed dynamic characteristics of the Internet.
This generator can be used for simulation to develop
network protocols aiming to have optimal performance
in the future.

• Metrics
New overall connectivity or QoS metrics can be created,
for example one possibility is k-disjoint paths: how
many paths are there, on average, between any two
nodes, which have at least k different edges? Novel
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Fig. 8. Relative size of nodes with degree k; (a): f(k), the percentage of nodes with degree k. For the Internet, the percentage of nodes with degree one
decreases while that of nodes with degree two increases. Note that more than 70% of nodes have degree one or two. (b) and (c): These plots clearly show
limitations of the BA model-like topology generators; First, there are no nodes with degree one. Second, the relative fraction of the same degree nodes does
not change in our models—changes in Internet topology over time can not be explained by our network model.
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Fig. 9. Dynamic characteristics of the Internet—number of nodes and links, and average degree of the Internet. (a) and (b): The number of nodes/links is
increasing quadratically. (c): In most time-step based Internet topology generators including [1], [41], [42] , the number of links added at each time-step is
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approaches are also desirable, soliciting actual survivabil-
ity/performance degradation metrics from other network
practitioners.

• Overall performance degradation caused by local net-
work congestion
Instead of attacking the most popular nodes, selected
edges can be blocked. If user requests in the network
increase, the number of requests in the most popular links
will increase and may be blocked by network congestion.
How will the network as a whole be affected by local
network congestion?

VIII. CONCLUSIONS

In our study, we first re-evaluated two basic connectiv-
ity metrics, average diameter and S. The average diameter
may be a good metric for measuring the performance of
networks, but is not always representative of the overall
network connectivity. The S metric only considers the relative
size of the largest component and ignores other components.
To analyze the Internet’s susceptibility to faults and attacks,
we introduced two new metrics, K and DIK. Unlike S, K
measures all connected node-pairs in a network. Also, unlike

average diameter, DIK is still valuable in sparse graphs, and
incorporates both the average expected distance between two
nodes, and the probability of a path existing between two
arbitrary nodes. We also examined the robustness of the
Internet under mixed failures. We found that any advantage
of scale-free networks, including the Internet, disappeared
when a small fraction of failures are attacks, or when using
metrics other than the average diameter. We also conducted
dynamic analysis of the Internet’s susceptibility to attacks
and faults, and discovered two interesting results; First, the
Internet is much more preferential than the BA model, and its
susceptibility under attacks is much larger than even general
scale-free networks such as the BA model. Second, the growth
mechanism of the Internet stresses maximizing performance,
and the Internet is evolving to an increasingly preferential
network. If this trend continues, attacks on a few important
nodes will be a more serious threat in the future. Finally,
we addressed dynamic characteristics of the Internet in detail,
finding that:

• The number of nodes and links has been increasing
quadratically over time.
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Fig. 10. Dynamic characteristics of the Internet—average degree, creation of nodes and links, and death of nodes and links; (a): mn and me denotes the
number of nodes and links added since November, 1997. In general, 1.36 links per new node are added by external edge increment, and 1.86 links per new
node are added by internal edge increment. A total of 3.22 links per new node are added over time. Note that internal edge increment affects link increment
more than external edge increment. (b): For external edge increment, 67% of new nodes are created with a single link and 31% of new nodes are added
with two links. Only 2% of new nodes are created with more than two links over four year. (d): External edge death is not the main factor in link death.
Only about 18% of dead links was due to node deletion and 82% of link deaths occurred without node death. dn and de denote the number of nodes and
links deleted since November, 1997. The number of internal edge deaths per node death is more than three times larger than that of external edge death in
the same time period. 7.77 links per node death are deleted from November, 1997 to September, 2001. (e): More than 74% of dead nodes have degree one
even though the Internet has almost the same number of nodes with degree one and two. This figure shows that less well connected (less popular) nodes are
more likely to die. (c) and (f): Degree-frequency distribution for new nodes clearly follows the strict power law but deviates significantly for dead nodes.

• The average degree of the Internet has been changing
frequently.

• 67% of new nodes are introduced with single links and
31% of new nodes are introduced with two links. Only
2% of new nodes are introduced with more than two links
over four years.

• Two edge increment mechanisms—external edge incre-
ment and internal edge increment—affect link birth. In
general, 1.36 links per new node are added by external
edge increment, and 1.86 links per new node are added
by internal edge increment. A total of 3.22 links per new
node are added over time.

• Node death is not the main factor in link death. Link death
frequently happens without node death. Only about 18%
of dead links are due to node death, while 82% occur
without node death.

• Less popular nodes are more likely to die. More than
74% of dead nodes have degree one, but less than 20% of

dead nodes have degree two. Note that there are almost
the same number of degree-one nodes and degree-two
nodes. Only 6% of dead nodes have degree more than
two.

• Degree-frequency distribution for new nodes clearly fol-
lows a strict power law but deviates significantly from a
power law for dead nodes.

The observed characteristics of the Internet topology
strongly imply that most of existing network generators, based
on only Static characteristics of the Internet, may not generate
true Internet-like topologies. Moreover, they are limited in
their ability to predict future Internet topologies. A direction
for future work is the design of Internet topology generators,
that generate more realistic Internet-like topologies and give
better predictions of the dynamics of future Internet environ-
ments.
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